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Abstract. Dempster-Shafer theory, which can be regarded as a generalisation of
probability theory, is a widely used formalism for reasoning with uncertain infor-
mation. The application of the theory hinges on the use of a rule for combining
evidence from different sources. A number of different combination rules have
been applied, each of which makes certain assumptions about the evidence. Here
we describe several of these rules as argument schemes, using critical questions to
capture the assumptions behind the rules. An example illustrates how we imagine
these argument schemes might be used.

1 Introduction

There is a rich body of work investigating the use of uncertainty within argumentation
theory. Such work typically concerns itself with reasoning about what conclusions can
be drawn from uncertain information. Therefore, this body of work concerns itself with
reasoning with uncertainty. Less attention has been given to the dual of this approach,
namely reasoning about uncertainty. More specifically, while most existing frameworks
determine how uncertain some conclusion is, given some uncertain premisses and rules
for processing this uncertainty, little work addresses which rules should be applied in
what context in order to obtain correct conclusions in the presence of uncertain infor-
mation.

The ability to argue both with, and about uncertainty leads to a complete, extensi-
ble system for uncertain reasoning. Here, rules capable of dealing with uncertainty are
applied to uncertain facts, resulting in new facts with an associated level of uncertainty.
These facts in turn could be used to determine which rules should be applied, and with
what confidence4. The process would repeat over these additional rules and inferences.
Such a system identifies likelihoods of conclusions both due to uncertainty regarding
facts in the world, and differences (again due to uncertainty) regarding which reasoning
rules should be applied.

4 Potentially leading to multiple probabilistic extension distributions



In order to create such a system, this paper introduces a class of argument schemes
for reasoning over uncertain information. These are based on Dempster-Shafer theory
[19] (DST). Our aim is to identify under what conditions specific techniques for com-
bining uncertain information should be used, and to encode these through argument
schemes (Dempster-Shafer theory is a particularly good subject for this because a num-
ber of different combination rules have been applied, each with different assumptions
and intended applications.) By encoding conditions as argument schemes, we are able
to argue about which combination method should be applied, and, by using multiple ex-
tension semantics, can explicitly recognise the different outcomes that can be obtained
through the use of different combination methods, all of which could be appropriate in
some setting.

The rest of this paper is as follows. Section 2 lays out a framework that combines
argumentation with an explicit representation of evidence. Section 3 looks at different
approaches for combining evidence and shows how to cast the application of these as
argument schemes. Section 4 applies these schemes to an example reasoning task, and
Section 5 discusses related work on argument schemes. Section 6 then concludes.

2 Basic notation

In this section we describe a basic framework, previously described in [23] that com-
bines argumentation with an explicit representation of evidence.

A predicate languageL based on a setP of symbols with standard connectives ∧, ∨,
→, ¬ and standard semantics is assumed in this work. We further constrain the domain
of any term of a predicate inP to be finite and no functional symbols are allowed for any
term of a predicate in P . In this way, we will have a finite set of grounded predicates.
For notational convenience, we also use P to denote the set of all grounded predicates.

The set of truth assignments to all ground predicates is denoted by Ω = 2P where
Ω is taken as the frame of discernment. As is standard, every formula θ ∈ L can be
interpreted into a subset of truth assignments to P , I(θ) ⊆ Ω. Truth and falsity are
denoted by the symbols > and ⊥, with I(⊥) = ∅, and I(>) = Ω. Two formulae φ and
ϕ, denoted by φ ≡ ϕ, are equivalent iff I(φ) = I(ϕ).

An inference rule δ for L is of the form:

δ =
p1, ..., pm

c

where p1, .., pm, c ∈ L. The pi are the set of premises of the rule, and a specific pi is
denoted by pi(δ). c is the conclusion of the rule, and is denoted by c(δ).

In order to represent evidence, we start with a knowledge base K = 〈Σ,∆〉 consist-
ing of a set of formulae and a set of rules for reasoning with the formulae.Σ = {〈h,E〉}
is the set of formulae, where each formula h is associated with some supporting evi-
dence E, and ∆ = {〈δ, E〉} is the set of rules, where each rule δ is also associated with
some supporting evidence. Our key notion is that of an evidence argument:

Definition 1. An evidence argument is a pair 〈h,E〉, where h is a formula in L and
E = {e1, . . . , en} is a set of formulae in L.



E is called the supporting evidence for h, denoted by E(h). An element ei ∈ E(h) is
called a focal element of the evidence for h 5, and represents an indivisible chunk of
information serving as evidence. It is possible that {〈h,E1〉, 〈h,E2〉} ⊆ Σ, such that
E1 6= E2. In such cases, we assume that E(h) is able to identify E1 and E2 separately.

Informally, the evidence associated with a formula θ ∈ L or a rule δ ∈ ∆ sum-
marises the data that supports a rule or formula. When we reason with the formulae,
which we do by using the rules, we propagate the evidence, and so obtain the evidence
that supports any conclusions. For every pair 〈h,E〉 it is then the case that:

1. h = θ ∈ L or h = δ ∈ ∆; and
2. E = {e1, ..., en} is a set of evidence for h such that ei 6≡ ej for any i 6= j.

In addition we assume the existence of a probability mass function, defined for every set
of evidence E, and mapping its constituent members to a measure of belief. Formally,
m(E, ·) : E 7→ [0, 1] is defined on E, and satisfies the constraint:

m(E, e1) + ...+m(E, en) = 1

and for all φ 6∈ E, we set m(E, φ) = 0. In other words we associate some measure
of belief m(E, ·) with every item of evidence in E, with the goal that from these we
can calculate a measure for every h. For notational convenience, we also denote E and
m(E, ei) = mi together as: E = {e1 : m1, ..., en : mn}.

The focus of Dempster-Shafer theory revolves around this probability mass, which
constitutes evidence. In the current work, the evidence is a combination of logical state-
ments over which a probability mass can be defined. As in standard Dempster-Shafer
theory, we use the probability mass to determine how much certain interesting hypothe-
sese are believed. In our case, these hypotheses are the conclusions of arguments

Definition 2. Given an evidence argument A = 〈h,E〉 for a formula h ∈ L, the belief
b(h), disbelief d(h), and the uncertainty u(h) of h are computed as follows:

b(h) = ΣI(ei)⊆I(h)m(E, ei) = Σei`hm(E, ei)

d(h) = ΣI(ei)∩I(h)=∅m(E, ei) = Σei`¬hm(E, ei)

u(h) = ΣI(ei)∩I(h) 6=∅m(E, ei) = Σei 6`h and ei 6`¬hm(E, ei)

In other words, the belief in h is the sum of the mass of the all focal elements in E that
are part of the evidence for h; the disbelief in h is the sum of all the mass for all the
focal elements that are evidence for ¬h; and the uncertainty is the sum of all the mass
that for evidence that is assigned to neither h nor ¬h. Equivalently, the belief in h is the
sum of the mass of all the formulae that imply h; the disbelief in h is the sum of the
mass of all the formulae that imply ¬h; and the uncertainty is the sum of the mass of
the formulae that imply neither h nor ¬h.

Example 1. Let 〈h1, E1〉 = 〈p, {p,¬p ∧ q}〉, where m(E1, p) = 0.4 and m(E1,¬p ∧
q) = 0.6. Then, as explained in Table 1(a):

b(h1) = m(E1, p) = 0.4, d(h1) = m(E1,¬p ∧ q) = 0.6, and u(h1) = 0.

5 This term originates from DST, as ei plays the same role as focal elements in that theory.



p q

I(¬p ∧ ¬q) 0 0
I(¬p ∧ q) 0 1
I(p ∧ ¬q) 1 0

}
I(h1)I(p ∧ q) 1 1

(a)

p q

I(¬p ∧ ¬q) 0 0
I(¬p ∧ q) 0 1

}
I(h2)

I(p ∧ ¬q) 1 0
I(p ∧ q) 1 1

}
I(h2)

(b)

Fig. 1. Truth tables for Example 1. (a) Truth table for h1. b(h1) = m(E1, p) as I(p) ⊆ I(h1),
and d(h1) = m(E1,¬p ∧ q) since I(¬p ∧ q) ∩ I(h1) = ∅. (b) Truth table for h2. We can
see that b(h2) = m(E2,¬p ∧ q) because I(¬p ∧ q) ⊆ I(h2), d(h2) = m(E2,¬q) because
I(¬q) ∩ I(h2) = ∅, and u(h2) = m(E2, p) because I(p) ∩ I(h2) 6= ∅.

D C B A

(a) Consonant evi-
dence

A

D

CB

(b) Consistent evidence

A

D

CB

(c) Disjoint evi-
dence

A C

DB

(d) Arbitrary evi-
dence

Fig. 2. Four types of evidence

Let 〈h2, E2〉 = 〈q, {¬p ∧ q,¬q, p}〉, where m(E2,¬p ∧ q) = 0.5, m(E2,¬q) = 0.3,
and m(E2, p) = 0.2. Then, as explained in Table 1(b):

b(h2) = m(E2,¬p∧q) = 0.5, d(h2) = m(E2,¬q) = 0.3, and u(h2) = m(E2, p) = 0.2.

3 Combining evidence

Having introduced a framework in which evidence and arguments can be associated,
we turn to the question of how to combine arguments for the same conclusion.

The problem of combining evidence can be stated in the context of sensor fusion.
Multiple sensors, each of which demonstrate different properties of uncertainty about
the world, generate different characterizations of the world as observed through the
evidence they can obtain. In the framework introduced above, the evidence obtained by
each sensor can be characterized by the basic probability assignments to the frame of
discernment of world as the above. The critical issue here is then how to combine this
evidence. [21] suggests four different kinds of evidence, consonant evidence, consistent
evidence, disjoint evidence, and arbitrary evidence. These different types of evidence
are pictured in Figure 2 as sets of elements of the frame of discernment for where there
are non-zero basic probability assignments. In the next section, we consider each of
these types of evidence in more detail.



3.1 Types of evidence

In the case of Consonant evidence, the evidence can be framed as a nested structure of
subsets in a frame of discernment Ω. (The importance of consonant sets has long been
recognised in Dempster-Shafer theory [19].) For example, consider four sentences —
A,B,C,D — in the language L such that:

A ` B ` C ` D

In other words, the models of these sentences form a nested structure with respect to
the subset relation over the set of models of the discernment frame such that:

I(A) ⊇ I(B) ⊇ I(C) ⊇ I(D)

This is the situation depicted in Figure 2(a). An example that fits this mould is the
following:

– Sensor 1 observes A in the evidence it obtains: E1 = {A : 1}.
– Sensor 2 observes A and B in the evidence it obtains: E2 = {A : 0.6, B : 0.4}.
– Sensor 3 observes A, B, and C in the evidence it obtains: E3 = {A : 0.4, B :

0.4, C : 0.2}.
– Sensor 4 observes A, B, C and D in the evidence it obtains: E4 = {A : 0.3, B :

0.3, C : 0.35, D : 0.1}.

Now consider the case of Consistent evidence, as depicted in Figure 2(b). Here,
there is at least one element is common to all subsets. For example, if A,B,C,D ∈ L,
then a case in which the evidence is consistent is the case in which:

A ≡ A ∧B ∧ C ∧D

Namely, A is the common subset of each of the subsets of the frame of discernment.
Equally, we might have:

A ∧B ∧ C ∧D ` A
where A is a subset of the intersection of all the other sets. An example of this type of
situation is the following:

– Sensor 1 observes A in the evidence it obtains: E1 = {A : 1}.
– Sensor 2 observes A and B in the evidence it obtains: E2 = {A : 0.6, B : 0.4}.
– Sensor 3 observes A and C in the evidence it obtains: E3 = {A : .0.45, C : 0.55}.
– Sensor 4 observes A and D in the evidence it obtains: E4 = {A : 0.3, D : 0.7}.

In the case of Disjoint evidence, as illustrated in Figure 2(c), the observed subsets
in the evidence are disjoint and so do not intersect. As an example, consider the four
observations A,B,C and D, which are pair-wise disjoint, and so

A ∧B = ⊥
B ∧D = ⊥

...

A concrete example of this situation is as follows.



– Sensor 1 observes A in the evidence it obtains: E1 = {A : 1}.
– Sensor 2 observes B in the evidence it obtains: E2 = {B : 1}.
– Sensor 3 observes C in the evidence it obtains: E3 = {C : 1}.
– Sensor 4 observes D in the evidence it obtains: E4 = {D : 1}.

In the terminology of [21], Arbitrary evidence is the case where none of the above
structures appear in the evidence. For example, consider the case in which the sensors
observe the same evidence with A,B,C,D ∈ L as in the case of consistent evidence
above, but, as in Figure 2(d), we have:

C ` A
A ∧B = ⊥

In [21], these different situations are related to different rules for combining evi-
dence. We consider these rules in the next section.

3.2 Argument schemes for conflicting and uninformative evidence

In general, a scenario that contains multiple arguments, supported by different evidence,
will represent some form of conflict. That is, those different pieces of evidence will
point to somewhat different conclusions6. The way that this conflict is handled should
reflect the types of evidence being combined with respect to the various assumptions
made by those introducing their arguments, and their preferences. Argument schemes
provide a convenient way of encoding these factors.

In this section we discuss several ways of combining evidence that have been sug-
gested in the context of Dempster-Shafer theory, considering them all to fit into the
general pattern of:

– A rule pattern in ∆:
δ =

p1, ...., pn
c

– A Dempster-Shafer argument scheme specifying the
• the pattern of the evidence of the premises: 〈h1, E1〉, ..., 〈hn, En〉
• optional evidence for rule applicability Eδ
• an associated conclusion evidence derivation process: E(c) = f(E1, ..., En)

is the derivation process to compute E(c) from the evidence of the premises
E(p1), ..., E(pn); optionally, the conclusion evidence derivation process might
explicitly involve with the rule applicability evidence:E(c) = f(Eδ, E1, ..., En)

– Premise instances with evidence: 〈h1, E1〉, ..., 〈hn, En〉
– A conclusion instance with derived evidence 〈c, E〉 following the derivation pro-

cess.
– Critical questions: These are the questions whose answers will lead to either the

acceptance of the application of such a scheme, or the rejection of the application7

6 If this is not the case, the arguments and their evidence will be identical and one will arguably
not have multiple arguments so much as multiple copies of the same argument.

7 A third possibility exists, namely that critical questions can reduce the likelihood of a scheme’s
conclusion. We assume that a critical question must exceed some burden of proof to be applied,
and if so, the scheme’s application is rejected outright. Otherwise, the critical question does
not affect the scheme. We intend to investigate this third possibility in future work.



Each argument scheme has, associated with it, a set of critical questions which control
the application of the scheme. For notational simplicity, in this paper we will focus on
schemes regarding how the conclusion evidence can be derived: Given E1, ..., En for
the premises, how E(c) can be derived for the conclusion.

Dempster’s rule of combination: This is the basic rule used in Dempster-Shafer the-
ory [19], and as [21] reminds us, is a generalization of Bayes’ rule which concentrates
on the consensus between pieces of evidence:

m(E1 ⊗D E2, A) =
ΣA=B∧Cm(E1, B)m(E2, C)

1−ΣB∧C=⊥m(E1, B)m(E2, C)

The effect of this rule is to keep only the consensus between two pieces of evidence, and
to reject all the conflicts. This is achieved by the normalization — having all the mass
that would have been assigned to ∅ within the frame of discernment be reassigned to the
those parts of the frame of discernment that are supported by both pieces of evidence.

We can cast the use of Dempster’s rule as being the application of the following
argument scheme:

– Premises: evidence E1, ..., En
– Conclusion: new evidence E1 ⊗D ...⊗D En where ⊗D is defined as above.

Following the discussion of the applicability of Dempster’s rule (such as those men-
tioned in [21]), the critical questions for this scheme can be as follows. As with all the
schemes we assume that the critical questions have to be answered “yes” for the rule to
be applicable:

1. Is the evidence for consonant, consistent or arbitrary focal subsets of the frame of
discernment?

– Sub-question: In the case of consonant and consistent evidence, is the conso-
nant or consistent piece of evidence effectively providing evidence (both posi-
tive and negative) for the conclusion of interest?

2. Is each piece of evidence equally reliable?
3. Is each piece of evidence independent?
4. Should conflict between evidence be ignored in the mass assignments that result

from combination?
5. Is there a restricted stochastic process behind the evidence which can be exploited

to obtain a more accurate combination?
6. Is the evidence all informative (i.e. no Ei in the premises contains the totally un-

certain focal element Ω with m(Ei, Ω) > 0 ) ?

In the example depicted in Figure 2(a), let us assume that knowledge base Σ and rule
base ∆ are as follows:

Σ = {〈A, {A}〉, 〈A, {A,B}〉, 〈A, {A,B,C}〉, 〈A, {A,B,C,D}〉}

∆ = { 〈p,E1〉, ..., 〈p,En〉
〈p,E1 ⊗D ...⊗D En〉

}



Following Dempster’s rule of combination, as every conjunction constructed from a
representative element from each evidence E1, E2, E3 and E4 is A, we will have

E = E1 ⊗D ...⊗D En = {A}
m(E,A) = 1× (0.6 + 0.4)× (0.4 + 0.4 + 0.2)× (0.3 + 0.35 + 0.25 + 0.1) = 1.

For the example depicted in Figure 2(b), as every conjunction constructed from a rep-
resentative element from each evidence E1, E2, E3 and E4 is A, we will again have:

E = {A}
m(E,A) = 1.

However, for the examples depicted in Figure 2(c) and Figure 2(d), as as every conjunc-
tion constructed from a representative element from each evidence E1, E2, E3 and E4

is ⊥, we will have

E = E1 ⊗D ...⊗D En = {}
m(E, ·) = UNDEFINED.

We now turn our attention to the scheme’s critical questions. We will detail the dis-
cussion of critical question 1 with examples as follows. For the examples in Figure 2(a),
Figure 2(b) and for the examples in Figure 2(d), the answer to critical question 1 is “yes”
and this scheme applies; for the example in Figure 2(c), the answer to critical question
1 is “no”, this scheme doesn’t apply unless further justification is available. For the ex-
amples in Figure 2(a), Figure 2(b), the answers to the sub-question of 1 are “yes” so this
scheme applies: E = {A} can effectively support the conclusion A resulting in belief
b(E,A) = 1, disbelief d(E,A) = 0 and uncertainty u(E,A) = 0. However, for the
example in Figure 2(d), evidence {} can not effectively support A, and so this scheme
does not apply.

If instead of having the general rule on a sentence p 〈p,E1〉,...,〈p,En〉
〈p,E1⊗D...⊗DEn〉 , we have a

more concrete syntactic rule 〈A,E1〉,...,〈A,En〉
〈¬A,E1⊗D...⊗DEn〉 , then the answer to the sub-question

of critical question 1 will still be “yes” since it provides negative evidence to the con-
clusion, leading to the rejection of the conclusion with no uncertainty: b(E,¬A) = 0,
d(E,¬A) = 1 and u(E,¬A) = 0. On the other hand, if we have a rule 〈A,E1〉,...,〈A,En〉

〈F,E1⊗D...⊗DEn〉
where neither A ` F nor A 6` F , then the derived evidence will provide totally
uncertain information regarding the conclusion F : b(E,F ) = 0, d(E,F ) = 0 and
u(E,F ) = 1. This would prevent the application of the scheme.

Critical question 2 tells us that if the evidence is not all equally reliable then Demp-
ster’s rule might not be applicable (we might, for example, have to discount some ev-
idence). Critical question 3 is about the independence assumption behind Dempster’s
rule. If the evidence is not independent, this rule might double-count the evidence. Crit-
ical question 4 is about conflict handling. In many cases, instead of ignoring conflicts
when doing the combination, the conflicting evidence might be useful to help to judge
the conclusion by some means, e.g. by identifying how much weight these conflicts
should play and count them as a form of uncertainty with discounts. Critical question 5
is a refinement question. Even if the scheme is determined as applicable given its inputs,



it might be case that we can do better. For example, knowing that the underlying distri-
bution of the basic mass function of the consonant evidence conforms with the Gaussian
distribution, we might be able to obtain a more accurate estimation of the conclusion
by estimating the parameters of Gaussian distribution from the evidence, and use this
estimate to obtain a probabilistic mass function for the evidence of the conclusion.

Finally, note that as is normal within argumentation, if this — or any other —
scheme is rejected due to a negative answer to one of the critical questions regarding
the applicability, the scheme can be reinstated through better justifications.

Discount and combine rule: Here each piece of evidence Ei is characterized by a
reliability factor αi and the combination of evidences occurs through an operation on
the beliefs:

b̄i(A) = αibi(A)

The result of this is that information from less reliable sources is discounted (i.e. is
associated with a lower belief value). This can be contrasted with Dempster’s rule which
assumes that all the sources of evidence are equally good. The combination of all the
evidence is then:

b̄(E1 ⊗DC E2 ⊗DC ...⊗DC En, A) =
1

n
(b̄1 + b̄2 + ...+ b̄n(A)).

As the name implies, this approach averages out the evidence during the combination.
Since this operation utilises beliefs rather than probability masses (as in the case of
Dempster’s rule), Definition 2 must be applied prior to applying this rule.

We can consider this approach to be the application of an argument scheme charac-
terised as follows.

– Premises: E1, ..., En
– Conclusion: new evidence E1 ⊗DC ...⊗DC En where ⊗DC is as defined above.

The critical questions for this scheme are:

1. Does the evidence indicate that the frame of discernment is made up of consonant,
consistent or arbitrary focal subsets?

2. Should conflict between evidence be ignored in the mass assignments that result
from combination?

3. Is there a restricted stochastic process behind the evidence which can be exploited
to obtain a more accurate combination?

It should be clear that this discount and combine rule applies in a more general context
than Dempster’s rule by allowing for sources of different reliability. The associated
argument scheme can be used in cases where critical question 2 for Dempster’s rule
cannot be answered positively.

Yager’s rule: This is a modified version of Dempster’s rule [31, 32] which treats con-
flicting evidence as uncertainty. A new notion, the combined ground probability assign-
ment, is defined as

q(E1 ⊗Y ...⊗Y En, A) = ΣA=
∧n

i=1 Ai
Πn
i=1m(Ei, Ai)



This allows q(⊥) ≥ 0 and assigns probability mass to the full frame of discernment in
the combined evidence as:

m(E1 ⊗Y . . .⊗Y En, Ω) = q(E1 ⊗Y ...⊗Y En, Ω) + q(E1 ⊗Y ...⊗Y En,⊥).

This can be cast as an argument scheme in which:

– Premises: E1, ..., En
– Conclusion: new evidence E1 ⊗Y ...⊗Y En where ⊗Y is as defined above

The critical questions for this scheme are then:

1. Does the evidence indicate that the frame of discernment is made up of consonant,
consistent or arbitrary focal subsets?

2. Should conflict between evidence be explicitly represented in the mass assignments
that result from combination?

3. Is there a restricted stochastic process behind the evidence which can be exploited
to obtain a more accurate combination?

This scheme can be used in cases where critical question 4 for Dempster’s rule cannot
be answered positively.

Inagaki’s rule: This rule, described in [7], extends Yager’s rule by distributing the
probability assigned to conflicting evidence in a way that is similar to Dempster’s rule8.
The combination of evidence according to this rule is then:

m(E1 ⊗I ...⊗I En, C)

= q(E1 ⊗Y ...⊗Y En, C) + f(E1 ⊗I ...⊗I En, C)q(E1 ⊗Y ...⊗Y En,⊥)

where C 6= ⊥ and ΣC⊆Ω,C 6=⊥f(E1 ⊗I ... ⊗I En, C) = 1 and the corresponding
argument scheme is:

– Premises: E1, ..., En
– Conclusion: new evidence E1 ⊗I . . .⊗I En where ⊗I is as defined above.

The critical questions for this scheme are:

1. Does the evidence indicate that the frame of discernment is made up of consonant,
consistent or arbitrary focal subsets?

2. Should conflict between evidence be ignored in the mass assignments that result
from combination?

3. Is there a restricted stochastic process behind the evidence which can be exploited
to obtain a more accurate combination?

This scheme can be used in cases where critical questions 4 and 5 for Dempster’s rule
cannot be answered positively.

8 The most general case of Inagaki’s rule allows the redistribution to be controlled by a param-
eter, thus including both Dempster’s rule and Yager’s rule as special cases. This case is more
general than the situation described here.



Rule of uninformative evidence: This is our modified Dempster’s rule to handle un-
informative evidence9. It preserves uninformative evidence and propagates it to the re-
sulting combined evidence:

– For A 6= Ω:

m(E1 ⊗UI ...⊗UI En, A) = [Πn
i=1(1−m(Ei, Ω))]m(E1 ⊗D ...⊗D En, A)

– For A = Ω:

m(E1 ⊗UI ...⊗UI En, A) = 1−ΣB 6=Ωm(E1 ⊗UI ...⊗UI En, B).

It only takes into account the informative evidence in the combination and discounts
the combined evidence with informative mass in both pieces of evidence. This can be
cast as an argument scheme in which:

– Premises: E1, ..., En
– Conclusion: new evidence E1 ⊗UI ...⊗UI En where ⊗UI is as defined above

The critical questions for this scheme are then:

1. Does the evidence contain uninformative evidence on Ω?
2. Should uninformative evidence be explicitly removed in the mass assignments that

result from combination?
3. Should conflict between evidence be explicitly represented in the mass assignments

that result from combination?
4. Is there a restricted stochastic process behind the evidence which can be exploited

to obtain a more accurate combination?
5. Can any of the input evidence complement the uncertainty?

Zhang’s center combination rule: We adapt the rule of [33] based on two frames of
discernment S and T from two disjoint sub-language LS (based on predicate symbols
PS ⊂ P) and LT (based on predicate symbols PT ⊂ P) of L. It assumes that we are
concerned with the truth of sentences in LT but we only have evidence expresed in LS
and in LS ∪ LT . For AT ∈ LT , we are given two pieces of evidence E1 in LS and E2

in LS ∪ LT . We combine these using:

b(E1 ⊗Z E2, AT ) = ΣBS∈E1 such thatBS∧AT∈E2k ·m(E1, BS) ·m(E2, BS ∧AT )

where k is a re-normalization factor independent of m(E1, ·) and m(E2, ·), which is
used to re-normalize m(E1 ⊗Z E2, ·) into a valid mass assignment. Here the evidence
in E2 acts as the logical constraint of the two frames in the original Zhang’s rule. The
corresponding argument scheme is:

– Premises: E1 and E2

– Conclusion: new evidence E1 ⊗Z E2 where ⊗Z is as defined above.
9 Uninformative evidence is probability mass assigned to Ω, the most general element in the

frame of discernment.



The critical questions are:

1. Does the assumed structure on LS ,LT and LS ∪ LT exist in E1 and E2

2. Are we sure that E2 is not disjoint from E1 thus giving no further information
regarding the focal sets in LS from the evidence in ET

3. Is there a restricted stochastic process behind the evidence which can be exploited
to obtain a more accurate combination.

This scheme can be used in cases where critical question 1 for Dempster’s rule cannot be
answered positively. It has a more detailed structural accounting of the focal elements.
Zhang’s rule is especially useful in transforming the evidence from a source domain LS
into a targeting domainLT with the connection evidence in their super domainLS∪LT .

Dubois and Prade’s disjunctive consensus rule: This rule, as the name suggests,
performs a combination that determines the consensus from disjunctive evidence:

m(E1 ⊗DP E2, C) = ΣC=A∨Bm(E1, A)m(E2, B).

The corresponding argument scheme is:

– Premises: E1 and E2

– Conclusion: new evidence E1 ⊗DP E2 where ⊗DP is as defined above.

The critical questions are then:

1. Is it the case that double counting of the focal sets of the evidence occurs?
2. Is there a restricted stochastic process behind the evidence which can be exploited

to obtain a more accurate combination?

This scheme can be used in cases where critical question 4 for Dempster’s rule cannot
be answered positively.

Mixing-or-average rule: When the Dempster-Shafer structure underlying the evi-
dence of the premises is equivalent to the probability structure that can be obtained
by averaging the probability structures corresponding to the evidence of individual
premises, the combination is:

m(E1 ⊗M ...⊗M En, A) =
1

n
Σn
i=1wi ·m(Ei, A).

where A ∈ E1 ∪ E2 ∪ ... ∪ En and wi is the weight assigned to reliability of the
corresponding piece of evidence. The corresponding argument scheme is:

– Premises: E1, ..., En
– Conclusion: new evidence E1 ⊗M ... ⊗M En with the combination rule ⊗M as

defined above

The critical questions are:

1. Do the assigned weights not reflect the nature of the input evidence?
2. Is there a restricted stochastic process behind the evidence which can be exploited

to obtain a more accurate combination?

This scheme can also be used in cases where critical question 4 for Dempster’s rule
cannot be answered positively.



Recon team
UAV

HVT

Combat team

Fig. 3. The example scenario

4 Example

To demonstrate the use of the argument schemes identified above, we present the fol-
lowing example which is loosely based on Operation Anaconda [11] and depicted in
Figure 3. In this example, a decision is being made about whether to carry out an oper-
ation in which a combat team will move into a mountainous region to try to apprehend
a high value target (HVT) believed to be in a village in the mountains.

We have the following information. If there are enemy fighters in the area, then an
HVT is likely to be in the area. If there is a HVT in the area, and the mission will be
safe, then the mission should go ahead. If the number of enemy fighters in the area
is too large, the mission will not be safe. UAVs that have flown over the area have
provided images that appear to show the presence of a significant number of camp fires,
indicating the presence of enemy fighters. The quality of the images from the UAV is not
very good, so they are not highly trusted. A reconnaissance team that infiltrated the area
saw a large number of vehicles in the village that the HVT is thought to be inhabiting.
Since enemy fighters invariably use vehicles to move around, this is evidence for the
presence of many enemy fighters. Informants near the combat team base claim that
they have been to the area in question and that a large number of fighters are present.
In addition we have the default assumption that missions will be safe, because in the
absence of information to the contrary we believe that the combat team will be safe.

Thus there is evidence from UAV imaging that sufficient enemy are in the right lo-
cation to suggest the presence of an HVT. There is also some evidence from informants
that there are too many enemy fighters in the area for the mission to be safe. Since in-
formants are paid, their incentive is often to make up what they think will be interesting
information and so they are not greatly trusted. However, this conclusion is supported
by the findings of the reconnaissance team who are highly trusted.

To capture the scenario, P includes the predicates described in Table 1. We also
assume the following constants. VLM denotes the specific village in the mountain;
HVT denotes the specific high value target.

From the scenario, we can extract the following facts in Σ



Predicate Meaning
apprehend(TargetX ,LocY ) Apprehend target TargetX at location LocY .
at(ObjectX ,LocY ) ObjectX is at location LocY .
campFire(LocX ) A significant number of camp fires at location LocX .
enemyFighters(LocX ) A group of enemy fighters appear at location LocX .
largeNumEnemyFighters(LocX ) A large number of enemy fighters appear at location LocX .
largeNumVehicles(LocX ) A large number of vehicles appear at location LocX .
safe(LocX ) LocX is safe.

Table 1. The predicates used in our example, together with their meaning.

– Fact 1 from an UAV:
〈campFire(VLM ), EUAV 〉

EUAV = {campFile(VLM ) : 0.2, campFile(VLM )∨¬campFile(VLM ) : 0.8}.
– Fact 2 from a reconnaissance team:

〈largeNumVehicles(VLM ), ERECON 〉

ERECON = {largeNumVehicles(VLM ) : 1}
– Fact 3 from an informant:

〈largeNumEnemyFighters(VLM ), EINFORM 〉

EINFORM = {largeNumEnemyFighters(VLM ) : 0.2,

largeNumEnemyFighters(VLM )

∨ ¬largeNumEnemyFighters(VLM ) : 0.8}

– Assumption fact 4 encodes the default assumption by indicating total uncertainty
about the safety of the mission.

〈safe(VLM ), EASSUM 〉

EASSUM = {safe(VLM ) ∨ ¬safe(VLM ) : 1}

We also have the following rules in ∆:

– Rule δ1:
campFire(LocX )

enemyFighters(LocX )

Eδ1 = {campFire(LocX ) ∧ enemyFighters(LocX ) : 0.80,

campFire(LocX ) ∧ ¬enemyFighters(LocX ) : 0.2}

– Rule δ2:
enemyFighters(LocX )

at(HVT ,LocX )

Eδ2 = {enemyFighters(LocX ) ∧ at(HVT ,LocX ) : 1}



– Rule δ3:
at(HVT ,LocX ), safe(LocX )

apprehend(HVT ,LocX )

Eδ3 = {safe(LocX ) ∧ apprehend(HVT ,LocX ) : 1}

– Rule δ4:
largeNumEnemyFighters(LocX )

¬safe(LocX )

Eδ4 = {largeNumEnemyFighters(LocX ) ∧ ¬safe(LocX ) : 1}

– Rule δ5:
largeNumEnemyFighters(LocX )

enemyFighters(LocX )

Eδ5 = {largeNumEnemyFighters(LocX ) ∧ enemyFighters(LocX ) : 1}

– Rule δ6:
largeNumVehicles(LocX )

largeNumEnemyFighters(LocX )

Eδ6 = {largeNumVehicles(LocX ) ∧ largeNumEnemyFighters(LocX ) : 0.7,

largeNumVehicles(LocX ) ∧ ¬largeNumEnemyFighters(LocX ) : 0.3}

From the UAV evidence campFire(VLM ) and the rule campFire(LocX )
enemyFighters(LocX ) as-

sociated with the specific evidence regarding the UAV’s accuracy, we can derive the
evidence for enemyFighters(VLM ) using Dempster’s rule:

ED1 = {campFire(VLM )∧enemyFighters(VLM ) : 0.8,¬enemyFighters(VLM ) : 0.2}.

which results in a belief, disbelief and uncertainty of b(ED,EnemyFighters(VLM )) =
0.8, d(ED,EnemyFighters(VLM )) = 0.2, and u(ED,EnemyFighters(VLM )) = 0
respectively. Alternatively, we can apply Zhang’s rule to obtain the same result, ignoring
the concerns with regards to campFire(VLM ):

EZ1 = {enemyFighters(VLM ) : 0.8,¬enemyFighters(VLM ) : 0.2}.

However, doing so runs counter to intuition. Since there is uninformative evidence in
the evidence from the UAV, the answer to critical question 6 is “no”. This leads us to
the use of the argument scheme built on the rule of uninformative information, resulting
in the following refinement of the combined evidence:

EUI1 = {campFire(VLM ) ∧ enemyFighters(VLM ) : 0.16,

campFire(VLM ) ∧ ¬enemyFighters(VLM ) : 0.02,

enemyFigthers(VLM ) ∨ ¬enemyFighters(VLM ) : 0.82}

This results in a belief, disbelief and uncertainty of b(EUI , enemyFighters(VLM )) =
0.16, d(EUI , enemyFighters(VLM )) = 0.02, and u(EUI , enemyFighters(VLM )) =
0.82.



Let us assume that the rule of uninformative evidence is accepted at this point. By
rule δ2, again using the rule of uninformative information, we will further combine
evidence for at(HVT ,VLM ):

EUI2 = {campFire(VLM ) ∧ enemyFighters(VLM ) ∧ at(HVT ,VLM ) : 0.16,

at(HVT ,VLM ) ∨ ¬at(HVT ,VLM ) : 0.84}

If we assume that this is deemed acceptable, then by including the safety assump-
tion, we obtain the combined evidence for predicate apprehend(HVT ,VLM ) through
rule δ3 and Dempster’s rule:

ED3 = {campFire(VLM ) ∧ enemyFighters(VLM )∧
at(HVT ,VLM ) ∧ apprehend(HVT ,VLM ) : 0.16,

apprehend(HVT ,VLM ) ∨ ¬apprehend(HVT ,VLM ) : 0.84}

Note that as the assumption of safety assigns all the mass to the universe Ω, and so by
Dempster’s rule the conclusion of previous step is preserved. Assume, again, that this
is deemed acceptable. We now can conclude that

b(ED3 , apprehend(HVT ,VLM )) = 0.16

d(ED3 , apprehend(HVT ,VLM )) = 0

u(ED3 , apprehend(HVT ,VLM )) = 0.84.

This gives us a belief of 0.16 regarding the success of carrying out the apprehend mis-
sion at the site, but with a relatively very high level of uncertainty 0.84.

Following the same procedure as above, we can introduce the information provided
by the reconnaissance team and the informant. From the reconnaissance team’s input,
we can obtain the following evidence for ¬safe(V LM) using Dempster’s rule (the
probabilistic mass is intentionally set to 1 to simplify the example; other values could
be obtained through reasoning over the applicability of the different schemes).

ED4,RECON = {largeNumVehicles(VLM )

∧ largeNumEnemyFighters(VLM ) ∧ ¬safe(VLM ) : 1}.

We can therefore conclude that

b(ED4 ,¬safe(VLM )) = 1

d(ED4 ,¬safe(VLM )) = 0

u(ED4 ,¬safe(VLM )) = 0.

We assume that no critical questions are applicable, and can now apply standard pref-
erence-based argumentation semantics [1] (see [24] for a more formal notion of pref-
erence-based argumentation semantics with preferences derived from Dempster-Shafer
belief, disbelief and uncertainty) to identify valid conclusions. We define these prefer-
ences by comparing the belief of ¬safe(VLM ) from the reconnaissance team’s conclu-
sions with the belief of safe(VLM ) from the assumption. As the assumption assigns



the probability mass totally to the universe (the uncertainty), the belief in safe(VLM )
is 0. The argument for ¬safe(VLM ) from the reconnaissance team clearly defeats the
assumption, and this undercuts the argument for apprehend(HVT ,VLM ), defeating
this conclusion.

Another line of argumentation towards the conclusion ¬safe(VLM ) is from the
information provided by the informant. With the rule of uninformative information, we
obtain the following evidence:

ED4,INFORM = {largeNumEnemyFighters(VLM ) ∧ ¬safe(VLM ) : 0.2,

safe(VLM ) ∨ ¬safe(VLM ) : 0.8}

After investigating the appropriate critical questions, this is accepted. Even though the
belief over ¬safe(VLM ) is just 0.2, it can still be used to defeat the safe(VLM ) ob-
tained from the assumption. This can therefore not reverse the decision that the action
apprehend(HVT ,VLM ) should be rejected.

Note that the conclusions on largeNumEnemyFighters(VLM ) can be propagated
by rule δ5 to also conclude on apprehend(HVT ,VLM ). However, as the rule of unin-
formative information will be more appropriate to combine with the safety assumption
with the location of the HVT, it will lead to total uncertain about whether to take the
action apprehend(HVT ,VLM ). This will still lead to the rejection of the action.

5 Related work

There are two areas of related work that are relevant to this paper, namely work on ar-
gument schemes and work on argumentation that makes use of Dempster-Shafer theory
to represent uncertainty.

Argument schemes were born out of the literature on informal logic, and the most
influential work in this area, at least as far as work on computational argument is con-
cerned, is the work of Walton et al. [27]. This provides a solid introduction to the use of
argument schemes, and catalogues a large number of them. We consider these schemes
to be very general in that they are not fitted to a specific domain. There are also a number
of works which, like this paper, identify argument schemes for specific domains. For
example, [3] and [29] consider argument schemes for legal reasoning, [18] discusses
arguments schemes for agent communication, [13] considers argument schemes for de-
cision support, and [25] looks at argument schemes for deliberation in the sense of [28],
that is the process by which several entities reach a combined plan for action. Following
this line, [15] presents the case for using argument schemes as an alternative to using
logic as a means of knowledge representation (again focussing on the legal domain). In
addition, we [14] have presented several argument schemes for reasoning about trust.

More recently, researchers have become interested in transforming argument schemes
into computational versions to enable them to be used in systems that perform auto-
mated reasoning. For example, [2] gives a scheme for practical reasoning that has been
widely used to facilitate reasoning about what to do in a number of different problem
scenarios. Schemes concerning witness testimony and expert opinion have also been



used in computational argument (e.g. [6]), and there have been several attempts to cap-
ture argument schemes from legal reasoning in various forms of logic[4, 17, 26]. Most
recently, [30] described a functional language for a computational analysis of schemes.

This work also connects to approaches that combine deductive reasoning and Dempster-
Shafer, a connection that goes back to [5, 20]. For example, [9] showed that it was possi-
ble to associate probability mass with formulae, reason with the formulae, and compute
measures like belief in the conclusions of the reasoning. However, this approach has a
limited notion of an argument — an argument is just a conjunction of literals — and
the work is only concerned with the construction of arguments and the computation of
belief. Our notion of an argument is closer to that in the argumentation literature. A
more recent approach to combining argumentation and Dempster-Shafer theory is [12],
which builds on subjective logic [8], a logic that incorporates measures from Dempster-
Shafer theory. [12] established argumentation semantics solely based on the evidence
and belief/disbelief/uncertainty measures we also use.

6 Conclusions and Future Work

This paper presented several argument schemes for performing information fusion in
the presence of uncertainty, with critical questions aimed at identifying appropriate sit-
uations for the application of specific fusion rules. All of our schemes build on top of
Dempster-Shafer theory, whose basic rule of combination, is a generalisation of Bayes’
rule. This rule is not appropriate in a variety of situations, and we therefore utilize addi-
tional rules which allow us to deal with varying beliefs in the reliability of information
and different ways of handling uncertainty, based on the context of the situation. By rep-
resenting these rules within argument schemes, we allow a meta-argument process to
decide which of the schemes is most appropriate in some specific situation. In doing so,
we aim towards constructing a framework for reasoning about, and with, uncertainty.

We intend to extend this work in several ways. First, we intend to describe additional
argument schemes with regards to uncertainty, and to investigate links with other for-
malisms such as Subjective Logic. We also intend to formalise the meta-argument level,
formalising the critical questions in such a way so as to enable us to identify the most
appropriate scheme(s) to use when reasoning about information. Finally, we intend to
incorporate this work with our previous work [10, 22] on revising beliefs in response to
external events, observations and inter-agent communication during argumentation.
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