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Abstract. In this workshop paper, we share the design and on-going im-
plementation of our HRTeam framework, which is constructed to support
multiple robots working with a human operator in a dynamic environ-
ment. The team is comprised of one human plus a heterogeneous set of
inexpensive, limited-function robots. Although each individual robot has
restricted mobility and sensing capabilities, together the team members
constitute a multi-function, multi-robot facility. We describe low-level
system architecture details and explain how we have integrated a pop-
ular robotic control and simulation environment into our framework to
support application of multi-agent techniques in a hardware-based envi-
ronment. We highlight lessons learned regarding the integration of mul-
tiple varying robot platforms into our system, from both hardware and
software perspectives. Our aim is to generate discussion amongst multi-
robot researchers concerning issues that are of particular interest and
present particular difficulties to the multi-robot systems community.

1 Introduction

This paper reports on the design and on-going implementation of a framework to
support experimentation with mixed-initiative human/multi-robot teams. Our
HRTeam framework is constructed to support multiple robots working with a hu-
man operator in a dynamic, real-time environment. The team is comprised of one
human (the operator) plus a heterogeneous set of inexpensive, limited-function
robots. Although each individual robot has restricted mobility and sensing ca-
pabilities, together the team members constitute a multi-function, multi-robot
facility. The robots can be controlled directly by the human operator, or they can
operate autonomously, without needing to wait for tele-operator input. Control
of the robots is shared between the human operator and a software controller,
and the locus of control can switch during run-time. The research questions we
are investigating center around issues well-studied in the (virtual) Multi-Agent
Systems (MAS) community. We are interested in how to coordinate activity and



allocate tasks to team members in a real-time, dynamic environment. We are
also interested in how to integrate input from the human operator so that she
is neither overwhelmed (because too much input is required) or consulted too
rarely (so that overall task completion suffers). These issues present particu-
lar difficulties to the Multi-Robot Systems (MRS) community. Finding ways to
address them is the focus of discussion here.

Our research is motivated by two related application areas: urban search
and rescue [48, 67, 102] and humanitarian de-mining [38, 82]. In both instances,
teams of robots are deployed to explore terrain that is potentially unsafe for
humans and to locate targets of interest. In the first case, robots explore an
enclosed space, such as a collapsed building, and search for human victims who
may be physically trapped. The goal is to locate these victims and transmit their
positions to human operators, so that human first responders can remove the
victims to safety. In the second case, robots explore an open space, such as a
field in a war zone, to search for anti-personnel mines that may be hidden from
view. The goal is to locate these mines and transmit their positions to human
operators, so that the mines can be disarmed and the area rendered safe for
people to traverse.

Both application areas have a number of fundamental tasks in common. First,
a robot must be able to explore a region (traverse and maneuver in the physical
space) and localize (determine and track its position there). Second, a robot
must be able to recognize objects of interest, using on-board sensors and possibly
augmented intelligence to interpret sensor input. Third, a human operator must
be able to communicate with the robots remotely and strategize so that the
team can accomplish its overall task effectively. Ideally, in such a collaborative
system, the human operator should not be overloaded with tasks, and the robots
should not be idle. The team members should work together to accomplish the
team’s goal(s), taking advantage of members’ individual abilities and strengths
to complete tasks effectively and efficiently. Strategies to address these issues
often stem from the MAS solutions implemented in virtual environments—where
agents can have perfect and often complete information. Unfortunately, in a
multi-robot setting, most information is noisy, incomplete, and often out-of-
date. The challenge is to identify which MAS solutions can work in an MRS
environment and adapt them accordingly.

As with any robotics research, a substantial effort must be made on the
engineering side before any of these research questions can be investigated fully
or satisfactorily. These efforts are more challenging in a multi-robot environment,
simply because there are more hardware issues to contend with. Further, in
a heterogeneous multi-robot environment, solving hardware problems for one
(class of) robot does not necessarily solve the same problems for another (class
of) robot; indeed, sometimes fixing one can break another. Finally, because we
restrict our choice of hardware to inexpensive, limited-function robot platforms,
additional constraints are presented. Note that this last aspect is not purely
a function of budgetary realities, but rather part of our philosophy. There are
always issues that arise when transferring results from a research environment



to a real-world setting. Often these issues are of a practical nature, for example,
network interference or uneven lighting conditions that did not occur in the lab
suddenly confront a system deployed in a new venue. Practicalities can render
elegant laboratory solutions useless outside the lab. By creating a less-than-
ideal lab environment, we hope to be address some of these practical issues in
our everyday setting.

In this workshop paper, we share the design of our HRTeam framework.
We describe low-level system architecture details and explain how we have in-
tegrated a popular robotic control and simulation environment (Player/Stage
[35, 97]) into our framework to support application of multi-agent techniques in
a hardware-based environment. We highlight lessons learned regarding the inte-
gration of multiple varying robot platforms into our system, from both hardware
and software perspectives. Our aim is to generate discussion amongst multi-robot
researchers concerning issues that are of particular interest and present partic-
ular difficulties to the MRS community. Finally, we close with a brief summary
and status report on our ongoing research investigations.

2 Related work

Research on Multi-Robot Systems, where more than one mobile robot is used,
considers challenges faced by individual robots and how a robot team might help
address these challenges. Areas of investigation include localization [23, 28, 71],
mapping and exploration [19, 89], and strategies to manage wireless connectivity
among robots [77]. With simultaneous localization and mapping (SLAM) [3,
39, 46, 94], additional information from several robots can simplify a problem
and speed the solution that would have been provided by a single robot [28];
although multi-robot SLAM can also lead to inconsistency in position estimates
[47, 58]. Other challenges for a multi-robot team are similar to those for one
robot, complicated by the need to merge or expand single-robot solutions to
incorporate other robots. Path planning [2, 11, 57, 93] is one well-studied example
of this. Another example is the learning of controllers for teams of robots [69,
70], which is more complex than learning for individual robots.

The largest category of work on multi-robot systems, however, cannot be
compared with work on single robots. Some tasks cannot be accomplished by
one robot, such as the transport of an object too large for a single robot to move
[24, 76, 91, 101]. Other issues, such as the dynamic allocation of tasks to robots
[4, 5, 16, 60, 64, 87, 96], simply do not arise with a single robot. Task allocation is
particularly challenging and has received substantial attention. The distribution
of responsibilities among a group of individuals is a complex optimization prob-
lem. It is made more difficult because robot team requirements change over time
[96], and because the abilities of individual robots to address particular tasks are
conditioned on their changing locations. Heterogeneous robot teams, where each
member has different capabilities, further complicate the optimization problem.

The task allocation literature for multi-robot teams includes a strong thread
on the use of auctions [32, 54, 56, 83] and market-based mechanisms in general



[20, 22, 33, 34, 103]. This work offers the various tasks for “sale” to robot team
members. Individual robots indicate how much they are willing to “pay” to ob-
tain tasks, and tasks are allocated based on bids for them—typically to the robot
that makes the best offer. For example, this approach has been used to orga-
nize robots for exploration tasks [50, 51, 104]. Areas to explore were offered “for
sale,” and robots bid based on their distance to the locations on offer. Allocation
favored lower bids, and thereby tended to allocate areas closer to robots. The
market was constructed, however, to ensure that robots did not remain idle when
several robots were initially close to the same unexplored area. Another example
is the use of simple auctions to allocate roles, and correspondingly, tasks asso-
ciated with those roles, to robots on a multi-robot soccer team [30, 31]. Robots
“bid” on roles based on their proximity to the ball and the goal. Roles changed
in real time, as the game progressed. The ability both to consider individuals’
changing abilities and to balance those against the performance of a team as a
whole makes market-based approaches attractive.

Early work on multi-robot systems [14, 73] included foraging, a standard task
that had robots systematically sweep an area as they searched for objects (e.g.,
[61, 59]). This has much in common with search and rescue, and with humanitar-
ian demining—our target areas of application. Techniques have been developed
to ensure that the entire boundary of a space is visited [99], that search finds
a specific target [6, 7, 41, 42, 80, 84], that a mobile target is kept under constant
observation [75, 68], and that a human-robot team can exchange search roles
flexibly and appropriately [43].

Finally, given our focus on the deployment of many small robots, we should
mention work on swarm robotics [88, 61]. Though recent work on swarms has
looked at more focused task allocation to different robots [63] and on ensuring
that the swarm spreads across different target sites [40], work in this area differs
from ours in by being less deliberative, relying on numbers and randomness to
get coverage rather than thoughtful deployment of resources and in only dealing
with homogeneous collections of robots.

Human-Robot Interaction (HRI) supports collaborative activities by humans
and robots to achieve shared goals. Typical HRI research concentrates on the de-
velopment of software and/or hardware to facilitate a wide range of tasks. These
include robots maneuvering in physical spaces, both those designed for humans
(e.g., [53]) or unfit for humans (e.g., [66]); people programming complex robots
(e.g., [81]) or different types of simple robots (e.g., [8]); robots cooperating with
human partners (e.g., [12, 25, 86, 98, 100]) and with other robots (e.g., [21, 55, 62,
92]); and user interfaces for communicating with robots (e.g., [49, 79]). Deployed
HRI applications include cleaning [78], helping the elderly [95], assisting first
responders in search and rescue tasks [17], demining in military settings [29],
and teaching [52].

There are three main categories of control architectures for human-robot
systems [37]: fully autonomous, where robots make decisions and control their
actions on their own; directly controlled, where robots are driven by human op-
erators; and mixed-initiative [15, 45], where robots share decision making with



(a) view of test arena (b) schematic of arena landmarks

Fig. 1. Robots’ physical environment

human users. Mixed-initiative systems reflect recent trends within the HRI com-
munity toward socially intelligent interfaces [9, 10, 26, 18] in which the aim is
for robots and humans to respond to each other naturally. We highlight several
mixed-initiative approaches here. Adjustable autonomy in a human-robot sys-
tem permits dynamic transfer of control from human to robot and vice versa
(e.g., [36, 85]). Collaborative control offers a dialog-based architecture in which
decisions are “discussed” and made in real-time (e.g., [27]). Other examples of
mixed-initiative systems include an affect-based architecture [1], and statistical
techniques to infer missing information in human-robot communication [44].

We see our work as being within adjustable autonomy. Our first major re-
search goal is to establish how best to transition control of a robot from a human
to the robot and, especially, back again. (With a large robot team the human
operator must be used sparingly to avoid overload). Our second major researcg
goal is to investigate how best to coordinate the robot team when it is operating
autonomously. With regard to this latter aim, we plan to test a range of coordi-
nation techniques from the multiagent systems literature, taking techniques that
have been tested theoretically and in simulation, and seeing how they perform
in the rough-and-ready world of robotics.

3 Physical Environment

Our test arena, shown in Figure 1a, is a physical environment that is divided
into seven regions: six rooms and a hallway. Each region contains color-coded
landmarks to guide the robots using vision-based localization. Figure 1b contains
a schematic of the landmarks1. These are composed of vertically-aligned markers

1 Note that the landmarks are a proxy for more sophisticated vision processing that
would allow us to recognise unique features of the test arena. Using the landmarks
allows us to test other aspects of our environment as we develop this vision capability.



(a) perfect match (b) faulty match

Fig. 2. Landmark identification

with stacked bands of one, two, or three colors. The entire color palette consists
of four colors: yellow, pink, orange, and purple. On the northeast corner of
each of the six rooms, a “purple-over-yellow” landmark is placed. The northwest
corner contains a “yellow-over-purple” landmark; the southwest corner contains
“yellow-over-pink”; and the southeast corner contains “pink-over-yellow”. Inside
each room, a unique 3-color marker distinguishes that room from the others;
each of the room markers includes a purple band. In the hallway, a set of 3-color
markers (without purple bands), using four unique color band permutations,
mark the north, west, south and east walls of the hallway. Inside the hallway,
the entrance to each room is marked with a single-colored purple landmark on
the right side of the “doorway”, and an orange landmark on the left.

The lighting conditions in the arena vary from one room to another. This
means that it is not possible to have a single, non-overlapping color map with
which to calibrate the colored landmarks; e.g., the orange and yellow color ranges
tend to bleed together in some parts of the arena. The process of identifying
landmarks involves first capturing images with robots’ cameras and analyzing
the images for “blobs” of color, then the color blobs are matched with landmarks
from a dictionary of known objects. An example is shown in Figure 2. The figure
on the left shows a perfect match between a robot’s image and the markers that
were identified. The figure on the right, however, has missed one blob of color
(a purple band at the top of the second marker from the left), which makes it
difficult to identify that marker correctly. Some of our research involves applying
machine learning techniques to a participatory human/robot process in which
the system learns a reliability metric for the images with help from the human
operator. While the system can recognize that problems exist without the help

The large number of landmarks are required because of the fixed cameras used by
most of the robot platforms.



(a) AIBO (b) Create (c) Fribbler (d) NXT (e) SRV-1

Fig. 3. Robot gallery

of a human, having a human in the loop can speed the learning process. In the
example shown in Figure 2b, the system can quickly detect a problem with the
image simply because there are no markers in its dictionary that consist of only
an orange band above a pink band.

As mentioned earlier, the robots on our team are inexpensive, limited-function
platforms. These are pictured in Figure 3. We have been experimenting with five
different platforms, spanning a range of sensing and locomotion capabilities and
communication technologies. Table 1 lists the hardware differences. Only the
AIBO has a powerful enough on-board processor to function as a stand-alone
platform. The Create is mounted with a Hokuyo URG-04LX Scanning Laser
Rangefinder and a Dell laptop that communicates, via USB, to the robot and
the laser device. The Fribbler and the SRV-1 have minimal on-board memory
and so are controlled by off-board laptops with dedicated communication chan-
nels. The NXT has limited on-board memory and processing capabilities—more
than the Fribbler and SRV-1, but substantially less than the AIBO. Currently,
we operate the NXT in the same way as the Fribbler and SRV-1: via off-board
laptop with dedicated communication channel. All of the devices listed as “wire-
less” in Table 1 use 802.11. The SRV-1 platform was originally built using an
XBee radio device. Newer “Blackfin” models are now available with 802.11. We
have found that the XBee radio suffers greatly from interference with the 802.11,
particularly when the two types of communicating devices are in close proxim-
ity with one another. We have also found that we must make judicious use of
802.11 communication, otherwise it is quite easy to flood our local network—for
example, when multiple robots try to transmit high-frame-rate video feeds.

platform sensing locomotion communication

AIBO ERS-7 (www.sonyaibo.net) camera legged wireless

Create (www.irobot.com) laser wheeled wireless
(with external laser device mounted on top)

“Fribbler” camera wheeled bluetooth
( = Scribbler: www.parallax.com + Fluke: www.roboteducation.org)

Mindstorms NXT (mindstorms.lego.com) sonar wheeled bluetooth

SRV-1/ARM (www.surveyor.com) camera tracked radio/wireless
Table 1. Robot platform capabilities



The human team member—the operator—is positioned physically away from
the test arena so that her only view of the space is via camera images sent to her
by the robots. The operator’ interface is shown in Figure 4. The right half of the
window shows a bird’s eye view that indicates the position of each robot in the
arena. The system uses vision-based localization (albeit somewhat unreliable due
to the landmark identification problems mentioned above) and a particle filter
to estimate the (x, y) location and orientation of each robot in the arena. The
origin (0, 0) of the robot’s environment is defined as the middle of the arena
(in the middle of the hallway), with positive x moving north and positive y

moving east. Orientation (θ) is measured in degrees, with 0◦ facing east, 90◦

facing north, 180◦ facing west and 270◦ facing east. Returning to the operator
interface in Figure 4, the upper left region contains a “robot’s eye view” of the
environment, from the perspective of one robot selected by the operator. The
lower left region contains manual controls that the human can use to drive one
robot at a time. Depending on the experimental conditions, the other robots are
either idle when the human operator is not driving them (primarily this mode
is used for taking experimental control measurements), or they are operating
autonomously (most of the time).

Fig. 4. Operator interface

4 Software Framework

Our software system employs a multi-layer architecture that combines multiple
clients and multiple types of servers. A high-level overview of the system is shown
in Figure 5. In the agent layer, the Central Server acts as the communication hub
for all the components in the system, and is discussed separately, below. The
Intelligence Engine supports system learning, task allocation and multi-robot co-
ordination, as well as collaborative decision making with the human operator.



This component is not discussed in detail here; for further description, see [90].
The Database Manager logs system activity. It collects experimental data and
maintains a database of known objects and other shared data structures (e.g.,
a map). The Object Recognizer identifies objects in the environment, by using
the Open Source Computer Vision Library (OpenCV) [72] to perform feature
extraction on robot imagery. Colored “blobs” are segmented and Canny edge
detection [13] is applied to outline object shapes. A Näıve Bayes classifier [65]
matches input images with previously tagged images from our database. The
Operator Interface comprises the human layer, and was described in the previous
section. The robot layer is detailed below (Section 4.1). Then, Section 4.2 dis-
cusses the overall system architecture and focuses on multi-server/multi-client
aspects.
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Fig. 5. The HRTeam system architecture. Each box is a process. The boxes outlined
with thick borders are servers; the remaining boxes are clients.

4.1 Robot Layer

The robot layer is built on Player/Stage2 [35, 97], a popular robot control and
simulation environment. Player/Stage provides an open-source, modular client/-
server framework for robotics programming that allows for unified control of

2 http://playerstage.sourceforge.net/



multiple robot platforms. An abstract client class contains high-level robot con-
trol functionalities or behaviors (e.g., wall-following) and is extended to support
the needs of a particular application. Hardware-specific drivers, implemented
as servers, contain low-level sensor and actuator control functions (e.g., move
forward or capture an image). In our framework, the client implements robot
behaviors, such as perception, including some image processing, and low-level
decision making for each robot. A platform-specific server, or driver, communi-
cates directly with the robot hardware.

The advantage of Player/Stage is that, for each hardware platform we intro-
duce onto our team, we need to write only one driver, and for each set of robot
behaviors, we only need to write one behavior client, no matter how many differ-
ent types of robot we want to run that behavior. We have adapted Player drivers
for each of the five different robot platforms listed in Table 1. We have written
one behavior client program that can control each of the robots in our system.
A different behavior client process is instantiated for each robot, as explained
below.

The use of Player/Stage presents an interesting system architecture ques-
tion. It is possible to implement a system having a one-to-one correspondence
between the robot behavior module, the hardware driver, and the physical robot
(see Figure 6a). There may also be a one-to-many correspondence between the
hardware driver and multiple physical robots (Figure 6b). In order to maintain
the individuality of our robot team members, we always employ a one-to-one
correspondence between robot behavior modules and physical robots.

SRV−1

hardware
server

player

behavior
client

robot

SRV−1:3

hardware
server

player

behavior
client

robot:1
behavior

client

robot:2
behavior

client

robot:3

SRV−1: 1 SRV−1:2

(a) one robot, (b) three robots
one hardware abstraction, one hardware abstraction,

one agent controller three agent controllers

Fig. 6. Player Framework

4.2 Central Server

An unusual aspect of our architecture is that there are multiple servers: the
Central Server plus one Player hardware server for each (class of) robot platform.



The Central Server must be started up first, because it handles message passing
and bookkeeping for the whole system. The Central Server keeps track of the
instantiated components and of the robots that are connected to the system at
any given time. All inter-process communication is handled asynchronously. All
components have their own state machines; an example for the robot behavior
client is shown in Figure 7. The components are designed to handle unexpected
messages, as well as normal operations. The Central Server is written in C++ and
establishes a server socket that binds to a particular host name and port number,
establishing a point of communication for the entire system; then it listens for
clients to connect. All of the processes in the system are multi-threaded, in
order to handle communication asynchronously, independent of the process’s
primary functionality. For example, the Central Server creates a thread for each
new client that connects to it, to allow asynchronous processing of messages
between the Central Server and each client. Table 2 contains sample messages
passed between the Central Server (CS) and a robot behavior client (RB). Table
3 contains sample messages that are passed between the Central Server (CS) and
the operator interface (OI).

Fig. 7. State diagram for Robot Behavior client



RB → CS: init 〈uds〉
An RB sends this command to CS when it first logs in.
〈uds〉 stands for “unified data structure” that contains a string that identifies
the type of robot (e.g., “aibo”); a string containing the name of the robot (e.g., “rosie”);
a unique numeric identifier, which is treated like a session id in the system and is
determined by the server when a client first connects; and a list of the services that
this robot provides, such as: “position2d”, “camera”, “distance”, “contact”.

RB ← CS: ack 〈id〉
Upon receiving the ack command, the RB will set the value of the id field in its local
copy of the unified data structure. 〈id〉 is a unique identifier (integer) that that CS sends
to the RB to acknowledge its registration. It returns a unique ID number that the robot
will need to use for all further communication, to identify itself in the system. This value is
treated like a session id.

RB ← CS: askpose
The CS sends an “askpose” message to the RB requesting information about its pose
(location and heading).

RB → CS: pose 〈x〉 〈y〉 〈θ〉[〈ρ〉]
The RB sends back its (x, y) location and θ heading (degrees) within its
environment. The last argument is confidence value, 0 ≤ ρ ≤ 1, indicating the
RB ’s confidence in its location.

RB → CS: broadcast found 〈color〉
The RB sends this message whenever it finds an object of interest.
CS strips “broadcast” part of the message and passes “found” 〈color〉
message to all connected clients, both robots and the OI.

RB ← CS:move 〈id〉 〈x velocity〉 〈y velocity〉 〈angular velocity〉
The CS sends a “move” message to the robot requesting it to set its x, y
and angular speeds to 〈x velocity〉, 〈y velocity〉 and 〈angular velocity〉.
If the 〈id〉 of the message does not match robots own id, the message is disregarded.

RB ← CS: goto 〈id〉 〈map x〉 〈map y〉
The CS sends a “goto” message to the robot requesting it to move to a
particular location, (〈map x〉, 〈map y〉), on the field. If the 〈id〉 of the
message does not match robot’s own id, the message is disregarded.

RB → CS: moving
The RB sends back an acknowledgment that it has received the “move”
command and is executing the command. OI does not need this confirmation,
it will be used for data logging.

Table 2. Sample commands that flow between Central Server (CS) and Robot Behavior
client (RB).



OI → CS init uds

where uds is defined as in Table 2.

OI ← CS ack 〈id〉
where 〈id〉 is defined as in Table 2.

OI → CS askpose 〈id〉
The OI sends “askpose” to CS to retreive the (x, y) location and
θ heading of a particular robot, by attaching its 〈id〉. To retrieve pose
information for all robots, 〈id〉 is set to −1.

OI ← CS pose 〈num robots〉[〈robot pose info〉]
The CS sends back the number of robot pose information the message contains.
Each pose information consists of robot’s id, (x, y) location, θ heading (degrees)
and confidence value, 0 ≤ ρ ≤ 1, indicating the OI’s confidence in its location.

OI → CS askplayer 〈id〉
The OI requests for player CS information that a particular robot is using.
This information is needed to communicate directly with player CS to receive camera
feed of the robot.

OI ← CS player 〈id〉 〈player ip〉 〈player port〉
The CS sends back the player server information, 〈player ip〉, 〈player port〉 of the
robot with id=〈id〉.

OI ← CS found
The OI receives this message from the CS when a robot finds the object that the
team is searching for. Currently it is used to stop the clock for the experiment.

OI → CS move 〈id〉 〈x velocity〉 〈y velocity〉 〈angular velocity〉
The OI sends a “move” message to the CS to pass it to robot with id=〈id〉,
requesting it to set its x, y and angular speeds to 〈x velocity〉, 〈y velocity〉
and 〈angular velocity〉.

OI → CS goto 〈id〉 〈x〉 〈y〉
The OI sends a “goto” message to the CS to pass it to robot with id=〈id〉,
requesting it to move to a particular location, (x, y), on the field.

OI → CS lock 〈id〉
The OI sends a “lock” message to the OI, requesting to take control of the
robot with id=〈id〉.

OI → CS unlock 〈id〉
The OI sends an “unlock” message to the OI, requesting to release control
of the robot with id=〈id〉.

Table 3. Sample commands that flow between Central Server (CS) and Operator
Interface (OI).



5 Lessons Learned

In this section, we describe some of the main lessons that we have learned from
our work so far, largely in the form of problems we have had to contend with.

The main problem that we have faced has been getting the robots to localize
while engaged in their exploration tasks. As mentioned above, we are using
vision-based localization. The underlying approach is a standard particle filter,
and the particular implementation we are using is one we developed for our
Aibo-based RoboCup soccer team [74]. The main difference, as far as vision is
concerned, between the Aibo, the Surveyor and the Fribbler—the robots that
we have been using most often in our experiments—is that the last two have
fixed cameras. It turns out that this has a large effect on their ability to see
landmarks. When the robots start up, and move to maximize the number of
landmarks they see, they localize relatively quickly. When they are carrying out
their assigned task, however, which typically involves navigation through the test
arena to explore a designated room, they often go for several minutes without
seeing more than a single landmark clearly enough to recognize it. As a result,
they rapidly become unsure of their location and have to spend time specifically
relocalizing. This is in contrast to the Aibo, which can track its position quite
effectively even with far fewer landmarks in the environment.

A subsidiary problem has been the wireless control of the robots. Several
of our robots do not have sufficient on-board processing to run a controller (as
mentioned in the previous section). Rather, they are controlled over a wireless
connection, either 802.11, radio or Bluetooth. The first issue with wireless was
mentioned above: 802.11 and radio interfere, and so if we are using the two
modes of communication, we have to keep the robots physically separate. This,
of course, adds another layer of complexity to control of the team. However,
even if all the robots on the team use 802.11, there can still be issues. Even in
the lab, where we have excellent wireless coverage, and little interference from
other networks, it is easy to overload the bandwidth. With off-board processing,
it is tempting to pull video off the robots at full-speed, but with more than two
or three robots, this amount of traffic floods our local network. As a result we
throttle the video feeds, though this naturally limits the use that both the robots
and the human operator can make of the feeds. On the robot side, of course,
this only makes the localization problem worse.

Finally, a more positive note. Despite the problems noted above, which could
be eliminated if we used robots with multiple camera angles and more on-board
processing3, we have found our experience of using sub-$1000 robots to be a
positive one. With the Player drivers we have developed, it is possible to use
such robots for serious research purposes, and their cost means that with even
a modest budget, it is possible to deploy a fleet of robots.

3 Our future work will explore building cheap custom robots with Gumstix or Arduino
controllers and multiple cameras to explore this option.



6 Summary

We have described the design and on-going implementation of our HRTeam
framework, which we have developed to support studies in human/robot team-
work. Our philosophy has been to deploy multiple low-cost, limited-function
robots, to force the necessity of collaboration in order to complete tasks. Our
rough-and-ready laboratory environment offers special challenges, ranging from
lighting variations and network interference to managing a suite of software
components to control a heterogenous collection of hardware platforms. Several
research activities are underway using the HRTeam framework. First, we are
investigating ways to coordinate activity and allocate tasks to team members in
a real-time, dynamic environment, concentrating on market-based mechanisms.
Second, we are examining ways to incorporate real-time, dynamic input from
the human operator into the multi-robot system. Finally, we are developing a
participatory human/machine learning process to obtain reliability measures for
the imaging data used in the localization process.
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