Agent dialogues with conflicting preferences

Leila Amgoud! and Simon Parsons?
L IRIT-UPS, 118 route de Narbonne 31062
Toulouse Cedex, France.
amgoud@irit.fr
2 Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom.
s.d.parsons@csc.liv.ac.uk

Abstract. An increasing number of software applications are being con-
ceived, designed, and implemented using the notion of autonomous agents.
These agents need to communicate in order to resolve differences of opin-
ion and conflicts of interests, some of which result from differences in
preferences. Hence the agents need the ability to engage in dialogues
that can handle these communications while taking the differences in
preferences into account. In this paper we present a general framework
of dialogue where several agents can fulfill the above goals.

1 Introduction

An increasing number of software applications are being conceived, designed,
and implemented using the notion of autonomous agents. These applications
vary from email filtering, through electronic commerce, to large industrial appli-
cations. In all of these disparate cases, however, the notion of autonomy is used
to denote the fact that the software has the ability to decide for itself which goals
it should adopt and how these goals should be achieved. In most agent applica-
tions, the autonomous components need to interact. They need to communicate
in order to resolve differences of opinion and conflicts of interest, work together
to resolve dilemmas or find proofs, or simply to inform each other of pertinent
facts. Often these needs require agents to engage in dialogues.

As a result of this requirement, there has been much work! on providing
agents with the ability to hold dialogues. Typically these focus on one type of
dialogue, either negotiation [14,18,19], where agents try to reach agreement on
the division of some set of scarce resources, or persuasion [5,7,10,12,16,20],
where one agent is trying to change the opinion of another. In previous work [2,
3] we have presented a set of illocutions which can capture a number of different
types of dialogue, An important limitation of much of this existing work is the
fact that it either doesn’t take into account the preferences of the agents (eg [10,
12,16]), or, as in [2, 3], it assumes all agents have the same preferences. Another

! This is meant to be representative rather than an exhaustive survey. In particular, it
omits the literature on natural language dialogues because we are interested in the
much more restricted task of handling simple dialogues between software agents.

2 Leila Amgoud and Simon Parsons

limitation is that while the way that the argumentation is handled is considered
in great detail, much less attention is often paid to the way that arguments fit
into dialogues, the way that these dialogues are constructed, and the overall
context in which the dialogue takes place.

In this paper, we take some steps towards tackling these limitations. Firstly,
we extend the argumentation system of [2, 3] to give the agents the ability to en-
gage in dialogues while taking different sets of preferences into account. Secondly
we show how this extended system fits into the wider context of agent dialogues
by presenting a general framework which captures many of the essential features
of such dialogues, and provide an instantiation of this framework which brings
together elements of our previous work on this subject.

2 Arguing with conflicting preferences

Argumentation is an approach to handle reasoning about inconsistent informa-
tion, based on the justification of plausible conclusions by arguments. Broadly
speaking, any conclusion is initially entertained so long as an argument can be
constructed in favour of it. This results in a set of arguments which, in general,
conflict because they disagree about the truth of certain propositions. From this
set some subset of conclusions are identified as acceptable, based on the rela-
tionships between the conflicting arguments.

In previous work [2, 3], we have described in detail a particular formal system
for argumentation and shown how it can be used to underpin dialogues between
agents under the assumption that all agents have the same set of preferences.
Here we extend this system to take account of different sets of preferences,
adopting the approach we suggested in [4]. We take the different preferences
to be expressed as different preorderings over a set of propositions representing
beliefs, and consider that different preferences arise because the propositions are
considered from the viewpoint of different contexts. Thus the different preference
orderings can be considered as contextual preferences, and these can change as
agents update their knowledge.

We start with a single agent which has a possibly inconsistent knowledge base
XY’ with no deductive closure. We assume X contains formulae of a propositional
language R. F stands for classical inference and = for logical equivalence. The
agent’s beliefs are context-specific, and we denote this set of contexts by C =
{e1, ..., cp}. We assume that there is an order over these contexts, J, so that
for ¢1, ¢a € C, ¢4 O ¢ means that any proposition in context ¢; is preferred
over any proposition in context cz. In addition to the ordering over contexts,
there is also a set of preorderings >;,...,>, which give the preference over
propositions within every context, >, giving the preferences in context ¢;. We
have:

Definition 1. An argument is a pair A = (H, h) where h is a formula of R and
H a subset of X' such that:

1. H is consistent;

Agent dialogues with conflicting preferences 3

2. HF h; and
3. H is minimal, so no subset of H satisfying both 1. and 2. exists.

H is called the support of A, written H = Support(A4), and h is the conclusion
of A, written h = Conclusion(4).

Since X is inconsistent, A(X), the set of all arguments which can be made from
X, will contain arguments which undercut each other:

Definition 2. Let A; and As be two arguments of A(X). Ay undercuts A, iff
3h € Support(As) such that h = —Conclusion(A;).

In other words, an argument is undercut iff there exists an argument for the
negation of an element of its support.

Each preordering on the set X can be used to define a preordering on the
set of arguments A(X). We can thus define a preference relation Pref; over a
context ¢; based on the appropriate preordering ;. In [1] several preference
relations between arguments were proposed. Some of these assume that each
>, is a partial preordering and others take it to be a total ordering. In this
paper we adopt a preference relation which takes >; to be a total preordering.
This is equivalent to considering the knowledge base to be stratified into non-
overlapping sets X, ..., Y, such that facts in X; are all equally preferred and
are more preferred than those in X; where j > 4. The preference level of a
nonempty subset H of X', level(H), is the number of the highest numbered layer
which has a member in H.

Definition 3. Let A; and A, be two arguments in A(X). A; is preferred to Ay
according to Pref; iff level(Support(A;)) < level(Support(Az)).

We denote by Prefi, ..., Pref, the different preference relations between argu-
ments induced respectively from the preorderings >>1, ..., >,. Note that since
the preorderings on X may be conflicting, the preorderings on A(X') also may be
conflicting, so that for two arguments A; and As, A; may be preferred to A, in
a context ¢; and As may be preferred to A; in a context ¢; such that i # j. We
can now formally define the argumentation system we will use. We will denote
such a system by CPAS:

Definition 4. An argumentation system based on contextual preferences is a
tuple (A(X), Undercut, C, 1, >1, ..., >,) such that:

— A(X) is the set of arguments built from X;

— Undercut is a binary relation identifying which arguments undercut which
other arguments, Undercut C A(X) x A(X);

C is a set of contexts {c1,...,cn};

— s a (total or partial) preordering on C x C; and

>, is a (partial or total) preordering on X X X in the context ¢;.

4 Leila Amgoud and Simon Parsons

The preference orderings Prefi, ..., Pref, make it possible to distinguish dif-
ferent types of relations between arguments based on the way in which a set
of arguments mutually undercut one another. Broadly speaking, an argument
defends itself if it is stronger (in the sense of being based in a preferred con-
text) than those arguments which seek to undercut it, and a set of arguments
can defend a lone argument by undercutting all those arguments which the lone
argument cannot defend itself against:

Definition 5. Let Ay, As be two arguments of A(X).

— If Ay undercuts A; then A; defends itself against A, iff:
1. d¢; € C such that A; Pref; As and
2. V¢j such that Ay Pref; Ay then ¢; O ¢;.
Otherwise, A; does not defend itself.
— A set of arguments S defends A iff VB such that B undercuts A and A does
not defend itself against B then 3C € S such that C undercuts B and B
does not defend itself against C.

Henceforth, Cypdercut,7 Will refer to all non-undercut arguments and arguments
defending themselves against all their undercutting arguments. In [4], it was
shown that the set & of acceptable arguments of the argumentation system
(A(XY), Undercut, C, 1, >1, ..., >y) is the least fix-point of a function F:

S CAY)
F(S) ={A € A(X)|A is defended by S}

which then leads us to be able to define those arguments which are acceptable
in the sense of either defending themselves or being defended:

Definition 6. The set of acceptable arguments for an argumentation system
(A(X), Undercut, C, 3, >1, ..., >y,) is:

§ = U}—ZZO(Q) = CUndercut,j V) |:U fiZI(CUndercut,j)]

An argument is acceptable if it is a member of the acceptable set.

In practice we don’t need to calculate all the acceptable arguments from X in
order to know whether or not a given argument is acceptable [2].

We can use this argumentation system to straightforwardly extend our pre-
vious work on argumentation-based dialogues [2, 3] to deal with agents that have
different preferences.

3 A dialogue system

In this section we show how the system of argumentation introduced above may
be used in inter-agent dialogues. We start from an abstract notion of a dialogue
system which captures the basic elements required for such dialogues.

Agent dialogues with conflicting preferences 5

3.1 A general framework

One basic element in a dialogue system is the set of agents involved in a dialogue.
Dialogues are often considered to take place between two agents, but here we
deal with dialogues between arbitrary numbers of agents. Each agent has a name,
a role in the dialogue and a knowledge base. The knowledge-base may contain
information about other agents and we assume it is equipped with a (partial or
total) preordering representing the preferences of the agent. The knowledge-base
is written in some logic, and different agents can use different logics.

Following Hamblin [9] and Mackenzie [10], we suppose that the dialogue takes
place using commitment stores that hold all the statements to which an agent
has committed during the dialogue (broadly speaking all the propositions it has
agreed are true). The different commitment stores are empty at the beginning
of a dialogue and the rules for carrying out dialogues define how the commit-
ment stores are updated. Thus the union of all the commitment stores can be
viewed as the state of the dialogue at a particular time. Furthermore, the com-
mitment stores provide additional knowledge, over and above that in an agent’s
knowledge-base, which an agent can use as the basis for its utterances.

We bring these ideas together in the notion of a dialogical agent:

Definition 7. A dialogical agent is a tuple (A;, Rolea,,La,,Xa,,>4,, CSa,)
where:

— A; is the name of the agent;

Roley, denotes the role of agent Aj;;

— L4, denotes the logic used by agent Aj;;

X4, is the knowledge base available to the agent A;;
> 4, represents the preference order over Y4,; and
CS4, stands for the commitment store of agent A;.

We denote a single dialogical agent by A; and define a set of dialogical agents
as A = J,{A:}.

The role of an agent may affect the kind of logic used by that agent. In dia-
logues where a judge determines the outcome, some agents may use classical
logic whereas the judge requires a more sophisticated non-classical logic in or-
der to handle the contradictory arguments presented. In some applications, the
strength of arguments are determined by roles. As discussed in [17], the hierar-
chy of a company may be reflected in the weight accorded to arguments made
by agents playing certain roles. Hence, the set of agents may be equipped with
a (partial or total) preordering > to capture these differences in the strength of
argument that an agent derives from its role.

Now, a dialogue may be viewed as a sequence of speech acts made by agents:

Definition 8.

A move in a dialogue is a tuple: M = (S, H, Act). S is the agent providing the
act, written S = Speaker(M). H is the agent or set of agents to whom the
act is addressed, written H = Hearer(M). When the act is addressed to all
the agents, we denote Ap. Act = Act(M) is the act itself.

6 Leila Amgoud and Simon Parsons

A dialogue is a non-empty sequence of moves M, ..., M, such that:
— Speaker(M;) # Hearer(M;)
— C0Sy4,(0) =0, Vi =1,...n. Note that CS4,(0) is the commitment store
of agent A; at step O.
— For any two moves M;, My, if j # k then Act(M;) # Act(My,)
— For any j < p: Speaker(M;) # Speaker(Mji1).

The first condition prevents an agent from addressing a move to itself. The
second says that commitment stores are empty at the beginning of the dialogue.
The third prevents an agent from repeating an act already provided by another
agent or by the agent itself (in other words, for example, it prevents the an agent
repeatedly asking the same question). This guarantees non circular dialogues.
The last condition prevents an agent from providing several moves at the same
time and guarantees that there are no monologues.

Note the formal distinction between dialogue moves and dialogue acts. An
act is a locution (assert(p), challenge(q) and so on), and makes up part of a
move along with the agent generating the act and the agent receiving the act.
When there is no chance of confusing the terms (or, as in most situations, it is
possible to correctly use either), we will use “act” and “move” interchangeably
and we frequently use M to denote a set of acts.

Agents are not free to make any move at any time—their moves are governed
by a protocol, a set of rules governing the high-level behavior of interacting
agents. A given protocol specifies the kinds of moves or acts the agents can
make (assertions, requests, and so on) at any point in the dialogue.

Definition 9. A dialogue protocol is defined as a function 7 : M — 2M, where
M is a set of dialogue acts.

A dialogue protocol specifies the rules for interactions between agents and the
different replies that are possible after a given move. In general there will be
several such moves possible, and the exact way that an agent responds is the
result of the agent’s strategy. We can therefore think of a given strategy for an
agent as being a function from the set of moves identified by the protocol to a
single move which is then uttered by an agent:

Definition 10. A dialogue strategy is defined as a function S : 2M +— M, where
M is a set of dialogue acts, such that for T C M, S(T) € T.

Given these definitions, we can define a dialogue system. Such a system will
consist of a set of dialogical agents with an ordering over them, a protocol (which
includes a set of speech acts), a set of strategies (one strategy for each agent),
and a dialogue (which can be thought of as a tape recording of everything that
has been said in the dialogue). Formally:

Definition 11. A dialogue system is a tuple (A, =, M, 7w, S, D) where A is a set
of dialogical agents, > is a preordering over the elements of A, M is a set of acts,
7 is a dialogue protocol, S is a set of strategies, and D is a dialogue.

In the rest of this section we will illustrate the idea of a dialogue system by
instantiating each of these elements with a specific example.

Agent dialogues with conflicting preferences 7

3.2 The set of agents

We consider a set of agents A = {44, ..., A}, n > 2, where A; is the name of
the ith agent. For now we make no explicit use of the agent roles, noting only
that, as in [17], roles can play a part in the formation of the preference order
> over the agents. Note that we only consider dialogues between at least two
agents. As in [14], we assume that each agent has a set of beliefs, B, a set of
desires, D, and a set of intentions, I. However, for the moment we deal with
propositional knowledge and take each agent to use only classical propositional
logic, modelling beliefs, desires and intentions by partitioning the knowledge
base of each agent appropriately. In particular, we take the basic knowledge base
of an agent A; to be:
Y8 =Ba, UDy, Uly,

and assume that we know that a particular proposition p is, for example, one of
A;’s intentions because it resides in I4,, not because it is explicitly denoted as
such. We work under this restriction for notational simplicity, bearing in mind
that the problem of how to deal with first-order argumentation in which beliefs,
desires and intentions are explicitly denoted is considered in depth in [14].

In addition, the propositional language can usefully be extended to represent
the type of information exchanged between agents in negotiation. As discussed
in [17], negotiations often involve trade-offs with one agent accepting a request
from a second agent provided that the second accepts its request. For example:
“If you let me use your laptop, I'll let use my printer”. To make it easier to
represent this kind of information a new connective = was introduced in [3].
Thus we have a new language £ which contains propositional formulae and
formulae p = ¢ such that p and ¢ are propositional formulae. Note that for this
instantiation of our general framework, all agents are assumed to have the same
logic. As real multi-agent systems employ different logics, in [11] a formalism
allowing reasoning with different rules of inference has been defined.

As described above, each agent A; uses a commitment store CS4, in order
to keep track of its dialogue commitments. At the beginning of the dialogue
the different commitment stores are empty, and agents are assumed to have free
access to any information stored in them. Since agents have to exchange two
kinds of information—knowledge and preferences—the commitment stores will
have two parts. The first part, denoted by CS.Prefa,, will contain preferences,
and the second part, denoted by CS.Kby,, will contain knowledge:

CS4a, = CS.Prefa, U CS.Kba,

Agent A; knows everything in the commitment stores of all the agents in the
dialogue, Uj"_; C'S. Kby, and also has some information about the beliefs of each

agent, U#,-Efj’ with Efj’ C X7 . Thus the overall knowledge available to 4; is:

Sa, =5 UlUj%i D5 1 UUL, CS.Kby]

Each agent also has preferences over its knowledge base, and so is equipped with
a (total or partial) preordering on Efi, denoted by >>f?{i. These preferences are
given as pairs (a, b) which denotes «a is preferred to b.

8 Leila Amgoud and Simon Parsons

A; also knows some of the preferences of other agents A;. These preferences,
a subset of those in >>§j, will be denoted by >>§;. A; also knows the preferences
that the other agents have stated, and are thus in commitment stores. Hence it
knows >;—1 , CS.Prefa,. So the overall set of preferences that A; knows about
are:

>a,= 25 UlUjzi >510Uj=1,0 CS.Prefa)]

Each agent is equipped with an argumentation framework of the kind discussed
above as its inference mechanism?. Using X 4., 4; can build arguments concern-
ing beliefs, desires and intentions as discussed above. We adopt the system from
Section 2 treating agents as contexts, so the set of contexts C is replaced by
the set of agents A and the preordering 1 on the contexts replaced by the pre-
ordering > on the set of agents. Thus each agent A; will use the argumentation
system:

(A(X4,), Undercut, A, >, (>>Z UCS.Prefa,),- .-, (>>§:l UCS.Prefa,))

The argumentation frameworks are used to help the agents to maintain the
coherence of their beliefs, and ensure that they only assert justified arguments.
In this sense the argumentation systems help to operationalize the rationality of
the agents, and, as in [2], this in turn ensures that if dialogues end, they end with
agents agreeing on arguments which are acceptable to all agents in the dialogue.

3.3 Dialogue acts and protocol

A set of dialogue acts and a protocol together these define the full set of legal
moves available to an agent at any given time, and the mapping from one move
in dialogue to the set of possible next moves. In this paper we combine these,
as in [3], by giving each act an associated set of rules for using it—update
rules, dialogue rules and rationality rules. The update rules simply say how the
commitment stores of all the agents are updated as a result of the act. The
rationality rules and the dialogue rules are more complex. The rationality rules
are preconditions for an act, for instance saying that the act can only be made
if the agent can build a certain argument. The dialogue rules define the acts
which can be used to respond to a given act. Thus the rationality and dialogue
rules together identify the set of possible next moves, and hence make up a
protocol. Given a particular move, the dialogue rules for that move identify a
set of possible replies and the rationality rules for these possible replies then
identify which can be legally used.

In the following descriptions, we suppose that agent A; addresses an act to
the other agents. The CPAS is therefore:

(A(X4,), Undercut, A, =, (>>§; UCS.Prefa,),- .-, (>>§; UCS.Prefa,)).

2 We view the meta-level inference provided by the argumentation system, along with
the underlying propositional logic to be the £4; of an agent.

Agent dialogues with conflicting preferences 9

Basic dialogue acts

assert(p) where p is any formula in £. This allows the exchange of information,
such as “the weather is beautiful” or “It is my intention to hang a picture”.

rationality The agent uses the CPAS to check if there is an acceptable
argument A such that p = Conclusion(A).
dialogue The other agents can respond with:
1. accept(p),
2. assert(—p),
3. challenge(p).
update CS.Kby,(t) = CS.Kba,(t — 1)U {p} and
CS.Kba,(t) = CS.Kba,(t — 1), Vj # i.

This assertion is added to the CS of the agent making the assertion. Note that
an agent A; can only make a response if the rationality rule for that response
is satisfied. Thus it can only respond to assert(p) with assert(—p) if it has
an acceptable argument for —p. assert(S) where S is a set of formulae in £
representing the support of an argument, is handled in a similar manner [3].

An agent is also allowed to present its preferences, requiring a new locution
in addition to those in [3]:

prefer((ai, b1),...,(an,b,)) where a;, b; are formulae in L.

rationality There is no rationality condition.
dialogue The other agents can play:
L. prefer((a;,b1),. .-, (aj, b])),
2. assert(S),
3. question(q),
4. request(q), where ¢ = b;,
5. promise(x = a;)-
update CS.Prefa,(t) = CS.Prefa,(t —1) U {(a1,b1), ..., (aj,b;)} and
CS.Prefa,(t) = CS.Prefa,(t — 1), Vj # i.

Informally, this means that the responding agent can present its preferences, give
an argument, ask a question, request something not preferred by the original
agent, or simply promise something preferred by the other agent in exchange for
another element. The next two moves allow an agent to ask questions.

challenge(p) where p is a formula in L.

rationality There is no rationality condition.

dialogue The other agents can only assert(S) where S is the support
of the argument (S, p), or S is the support of the argument (5, h)
such that p belongs to S and h is one of A;’s intentions.

update CS.Kby,(t) = CS.Kba,(t — 1) and
CS.Kba,(t) = CS.Kba,(t —1),Vj #i.

question(p) [3] allows A; to ask if p is the case. The other agents can answer
either affirmatively (if they can show it to be the case) or negatively, if they can
show it is not the case, or by asking another question, or by making a request.

10 Leila Amgoud and Simon Parsons

Negotiation acts

The following acts are negotiation specific—while not strictly necessary for ne-
gotiation, they make it easier to capture some of the statements we wish our
agents to make.

request(p) where p is any formula in L.

rationality A; uses the CPAS to identify a p in some Z]E; such that p €
H and (H,h) is an acceptable argument for one of A;’s intentions.
dialogue The agent A; can:
1. accept(p),
2. refuse(p),
3. challenge(p),
4. promise(q = p).
update CS.Kby,(t) = CS.Kba,(t — 1) and
CS.Kbya,(t) = CS.Kba,(t — 1)U {p}.

A request is stored in the CS of the receiving agent because, if accepted, it
becomes a commitment on that agent. A request locution is invoked when an
agent cannot, or prefers not to, achieve its intentions alone. The proposition
requested differs from an asserted proposition in that it cannot be proved true
or false—the decision on whether to accept it or not hinges upon the relation it
has to other agents’ intentions (see below).

promise(p = q) where p and ¢ are formulae in L.

rationality A; uses the CPAS to identify a p in some Z]E; such that p €
H and (H,h) is an acceptable argument for one of A;’s intentions,
and to check that there is no acceptable argument (H', h') for one
of its intentions A’ such that ¢ € H'.
dialogue The agent A; can:
1. accept(p = q),
2. refuse(p = q),
3. promise(s = p),
4. challenge(p),
5. prefer((z, q)).
update CS.Kby,(t) = CS.Kba,(t — 1)U {q} and
CS.Kbya,(t) = CS.Kba,(t — 1)U {p}.

Broadly speaking, an agent will make a promise when it needs to request some-
thing, p, from another, and has something it does not need (because the thing is
not needed to achieve any intentions), ¢, which it can offer in return. In replying
to a promise, an agent can accept, refuse, question why the requested thing is
required, or suggest an alternative trade (A4; replying with s = p is equivalent
to A; retracting its initial promise and replacing it with p = s).

Agent dialogues with conflicting preferences 11

Responding acts

The following are acts which are made in response to requests and assertions.

accept(p) where p is a formula in £. After an assertion or request, an agent can
respond with an explicit acceptance.

rationality In response to an assertion, A; uses its CPAS to check if
there is an acceptable argument for p. If so, the move can be played.
In response to a request, A; has to check that there is no acceptable
argument (H, h) for one of its intentions A, such that p € H. In other
words, it is only possible to accept a request if it doesn’t invalidate
the supporting argument for one of its intentions®.

dialogue The other agents can make any move except refuse.

update CS.Kby,(t) = CS.Kba,(t — 1)U {p} and
CS.KbAJ.(t) = CS.KbAJ.(t —1),Vj # 1.

Note that in case of a response to a request, p is already in the commitment store
of the agent. An agent can also accept a set of formulae S, accept(S), dealing
with each member s of S as for accept(s). An agent can also accept a promise,
using accept(p = q) [3].

refuse(p) where p is any formula in L.

rationality A; uses the CPAS to check if there is an acceptable argu-
ment (H,h) for one of its intentions h such that p € H.

dialogue The other agents can make any move except refuse.

update CS.Kby,(t) = CS.Kba,(t — 1)\{p} and
CS.KbAJ.(t) = CS.KbAJ.(t —1),Vj # 1.

Thus A; will refuse requests which are necessary to achieve its intentions. There
is also a refuse for promises [3] which reverses the effect of the previous locution
on the commitment stores. As discussed in [2,3], these acts are sufficient to
capture many types of dialogue, making the system more general than others
which concentrate on just persuasion or negotiation. In addition, the acts closely
relate the moves to the argumentation performed by an agent and hence, through
the rationality conditions, to the information it has available to it.

This complete set of dialogue acts we denote /\/l;, after those developed in
(2, 3], both of which are subsets of M},. Mpc from [2] contains assert, accept,
challenge and question, and M’ from [3] contains all the acts from Mp¢ along
with request, promise and refuse.

3.4 Dialogue strategy

Once the protocol has determined the set of legal moves available to an agent,
the strategy selects one move from that set. For the moves we have here, we can
identify a number of strategies which reflect broad classes of agent types:

% As in [14], an argument for an intention is essentially a plan for achieving it, so
allowing p would invalidate this plan.

12 Leila Amgoud and Simon Parsons

Agreeable: accept whenever possible.
Disagreeable: only accept when no reason not to.
Open-minded: only challenge when necessary.
Argumentative: challenge whenever possible.
Elephant’s Child [8]: question whenever possible.

Although we have termed these “strategies” each is only a partial definition of
S—a full definition would have to take into account the nature of the previous
move and hence the overall protocol for the dialogue. For example, the agreeable
strategy defines how to respond to assert(p) when the agent does not have
an argument against p. If the agent does have an argument, then a complete
strategy would have to choose between assert(—p) and challenge(p). More work
is required to define such complete strategies, and to work out the interaction
between the strategies and rationality rules and their impact, and one approach
to this is explored in [15].

The choice of strategy can have a big impact on the properties of the di-
alogue, especially on those related to length and termination. For example, as
discussed below agents using the Elephant’s Child strategy can cause a dialogue
to spiral into an endless round of questions, while an argumentative agent has
the potential to prolong any dialogue by constantly requiring other agents to
assert arguments unnecessarily. Some initial work on this question is reported
in [15] showing that termination is guaranteed in some kinds of dialogue using
a subset of the dialogue moves discussed here.

3.5 Properties

Consider dialogues which start with one agent asserting some proposition (a
typical start for dialogues which involve one agent trying to persuade another
of the truth of a proposition). For such assertion-led dialogues we have [2]* the
following:

Theorem 12. Given two agents P and C, equipped with argumentation systems
ASp and AS¢ respectively, which hold an assertion-led dialogue using the set of
dialogue acts Mpc in which P mowves first, then if S is the set of all arguments
which the game can possibly generate,

— Vx € S, x is in the set of acceptable arguments of either ASp or AS¢;
— If x € S is in the set of acceptable arguments of ASp, it is in the set of
acceptable arguments of ASc.

This theorem follows directly from the definition of the rationality conditions of
the set of dialogue acts. As a result, it extends directly to M’and M;:

* In [2], the wording of the theorem is in terms of “justified arguments” which under
the proof theory we use for constructing arguments (see [2] for details) are just
the same as acceptable arguments, and the dialogues, though assertion-led, are not
explicitly stated as such.

Agent dialogues with conflicting preferences 13

Theorem 13. Given two agents P and C, equipped with argumentation systems
ASp and AS¢ respectively, which hold an assertion-led dialogue using the set of
dialogue acts M' or M;, in which P moves first, then if S is the set of all
arguments which the game can possibly generate,

— Vz € 5, x is in the set of acceptable arguments of either ASp or AS¢;
— If x € S is in the set of acceptable arguments of ASp, it is in the set of
acceptable arqguments of AS¢.

These results give us some guarantees about the soundness of the dialogues (they
only involve arguments that at least one agent finds acceptable) and about the
way the dialogue can terminate (if the dialogue ends with an argument being
acceptable to P, then it is also acceptable to C, so that P can be considered to
have “persuaded” C). They can readily be extended to multi-party dialogues.

We can also give results relating to termination (supplementing those in [15]).
For instance:

Theorem 14. Given two agents P and C that both use the Elephant’s Child
strategy, any dialogue between the two agents using the set of dialogue acts Mpc,
M'" or M;, will not terminate.

Proof. Let us assume that P starts the dialogue. By definition P will question
if possible, and since there are no dialogue conditions in force at the start of a
dialogue will do so. The protocol allows C' to respond with another question, and
so, as an Elephant’s Child, it will. By the same reasoning, P will then respond
with a question, as will C, and so on. Even with a finite set of propositions
available to them, each agent can generate an infinite number of questions, and
the dialogue will never terminate. O

Thus, as we might expect, agents which follow the Elephant’s Child strategy
can disrupt dialogues, but the following result seems to suggest that it takes two
such agents to cause non-termination:

Theorem 15. Given two agents P, which uses the Elephant’s Child strategy,
and C, any dialogue using the set of dialogue acts Mpc can be made to terminate
if C chooses appropriate acts.

Proof. Consider that P moves first, as above issuing a question. For P to be
able to issue another question, and so keep the dialogue running, C' must issue a
question or an accept. For this proof it is sufficient to consider ways in which C'
can prevent this happening. Initially, therefore C' will respond to the question
with an assert rather than a question. Considering the dialogue conditions on
assert, and those on every legal act that may follow assert, there is no way that
C can follow its assertion with an accept and thus no way that P can force
itself into a position in which it can question. Similarly, if C' starts the dialogue,
provided it does not question or challenge, there is no sequence of moves P can
make in response to C’s initial move (which with Mp¢ has to be an assert)
which will mean that P is in a position to ask even one question. O

It is currently an open question whether this latter result translates to M’ and

M,

14 Leila Amgoud and Simon Parsons
Xp Yo
1{—agr,pri, min min,min — Tpri
2|\pri A —~agr — —pub|pri
3|min — —pri
Table 1. The knowledge bases for the example
Move CS
(P, C, CS.Kbp = {—pub},
assert(—pub)) CS.Prefp =0
CS.Kbe = 0,
CS.Prefc =0
(C, P, CS.Kbp = {—pub},
challenge(—pub)) CS.Kbe =0
(P, C, CS.Kbp = {—pub, pri, —~agr, pri A —agr — —pub}

assert({pri, magr,
pri A —agr — —pub}))

CS.Kbo =0

<C7 P7
assert({min, min — -pri}))

CS.Kbp = {—pub, pri, —~agr, pri A —agr — —pub}
CS.Kbc = {min, min — —pri}

<P7 C7
prefer((pri, min — —pri)))

CS.Prefp = {(pri, min — —pri)}
CS.Prefc =0

<C7 P7
prefer((min — —pri, pri)))

CS.Kbp = {—pub, pri, —agr, pri A ~agr — —pub}
CS.Prefp = {(prt, min — —pri)}

CS.Kbe = {min, min — —pri}

CS.Prefc = {(min — —pri, min)}

Table 2. The way the commitment stores change during the privacy dialogue

4 An example

In this section we present an example of a persuasion dialogue between two
software agents P and C both of which use the instantiation of our general
framework which was presented in the previous section. In this dialogue C is
regarded as knowing more about the subject than P and so C > P.

: Why?

QATQTQT

Newspapers can’t publish the information X.

Because it’s about A’s private life and A doesn’t agree.

: But A is a minister, and any information concerning a minister is public.
I know, but that is less important than the private life of a person.

: No, in politics the occupation is more important than anything else.

To handle this dialogue formally, we give the agents the knowledge-bases in
Table 1 where agr denotes “A agrees”, pri denotes “private”, min denotes “A
is a minister”, and pub denotes “Newspapers can publish X”).

This formal dialogue proceeds as in Table 2. The dialogue begins when P

Agent dialogues with conflicting preferences 15

presents an argument, A = ({pri, -agr, pri A ~agr — —pub}, ~pub), in favour
of not publishing. That argument is initially acceptable in P’s argumentation
framework since it defends itself against the unique undercutting argument, B
= ({min, min — —pri}, —pri). Later C gives its preferences and these conflict
with P’s. Since C is regarded as more reliable than P in this domain, P’s ar-
gumentation framework will find that the argument A is not longer acceptable
since in the most preferred context (that of agent C'), B is preferred to A.

5 Conclusion

This paper makes two main contributions to the study of inter-agent dialogues.
First, it presents a way of handling dialogues between agents with different
preferences, which relaxes one of the more restrictive constraints imposed by
much previous work in this area ([5] being an honourable exception). Second,
it presents both a general framework which identifies and defines some of the
important components in any agent dialogue, and a detailed description of an
instantiation of this framework. This work is also novel, going further than pre-
vious attempts (including the work which underpins much of this paper [2, 3]) in
identifying all the parts of the computational framework necessary to generate
dialogues between agents. We note that it leaves unresolved the way in which the
illocutions we use relate to agent communication languages, and this something
we aim to clarify in the future.

In some respects the work presented here follows on from the dialogical frame-
work of Noriega and Sierra [13] and the framework for argumentation-based
negotiation of Sierra et al. [17]. This paper starts at the same high level of ab-
straction, but goes into much greater detail about the precise way in which the
agents carry out the argumentation which underpins the dialogue. This is not
to say that the current work subsumes the ideas of dialogical frameworks and,
especially, the related notion of electronic institutions [6]. Indeed, relating what
we have here to the notion of institutions is the subject of ongoing work.

Acknowledgments This work was funded by the EU SLIE Project (IST-1999-
10948). Many thanks to Peter McBurney for helpful comments.

References

1. L. Amgoud, C. Cayrol, and D. LeBerre. Comparing arguments using preference
orderings for argument-based reasoning. In Proceedings of the 8th International
Conference on Tools with Artificial Intelligence, pages 400-403, 1996.

2. L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation.
In Proceedings of the International Conference on Multi-Agent Systems, pages 31—
38, Boston, MA, 2000.

3. L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue, and negotiation.
In Proceedings of the Fourteenth European Conference on Artificial Intelligence,
pages 338-342, Berlin, Germany, 2000.

16

12.

13.

14.

15.

16.

17.

18.

19.

20.

Leila Amgoud and Simon Parsons

L. Amgoud, S. Parsons, and L. Perrussel. An argumentation framework based on
contextual preferences. In Proceedings of the International Conference on Formal
and Applied and Practical Reasoning, pages 59-67, 2000.

G. Brewka. Dynamic argument systems: a formal model of argumentation process
based on situation calculus. Journal of Logic and Computation, 11(2):257-282,
2001.

. M. Esteva, J. A. Rodriguez-Augilar, J. L. Arcos, C. Sierra, and P. Garcia. In-

stitutionalising open multi-agent systems. In Proceedings of the 4th International
Conference on Multi Agent Systems, pages 381-382, 2000.

T. F. Gordon. The pleadings game. Artificial Intelligence and Law, 2:239-292,
1993.

R. Kipling. Just So Stories. Everyman Library, 1992.

C. L.Hamblin. Fallacies. Methuen, London, 1970.

J. MacKenzie. Question-begging in non-cumulative systems. Journal of Philosoph-
tcal Logic, 8:117-133, 1979.

. P. McBurney and S.Parsons. Tenacious tortoises: A formalism for argument over

rules of inference. In Worshop of Computational Dialectics: Models of argumen-
tation, Negotiation, and Decision Making. 14th European Conference on Artificial
Intelligence, 2000.

R. McConachy and I. Zukerman. Dialogue requirements for argumentation sys-
tems. In Proceedings of IJCAI’99 Workshop on Knowledge and Reasoning in Prac-
tical Dialogue Systems, 1999.

P. Noriega and C. Sierra. Towards layered dialogical agents. In J. P. Muller, M. J.
Wooldridge, and N. R. Jennings, editors, Intelligent Agents III, pages 173-188,
Berlin, Germany, 1997. Springer Verlag.

S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261—292, 1998.

S. Parsons, M. Wooldridge, and L. Amgoud. An analysis of formal inter-agent
dialogues. Technical report, Department of Computer Science, University of Liv-
erpool, 2001.

H. Prakken. On dialogue systems with speech acts, arguments, and counterar-
guments. In 7th European Workshop on Logic for Artificial Intelligence, Malaga,
2000.

C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for
argumentation-based negotiation. In Proceedings of the 4th International Work-
shop on Agent Theories, Architectures and Languages, 1997.

K. Sycara. Persuasive argumentation in negotiation. Theory and Decision, 28:203—
242, 1990.

F. Tohmé. Negotiation and defeasible reasons for choice. In Proceedings of the
Stanford Spring Symposium on Qualitative Preferences in Deliberation and Prac-
tical Reasoning, pages 95-102, 1997.

S. Zabala, I. Lara, and H. Geffner. Beliefs, reasons and moves in a model for
argumentation dialogues. In Proceedings of the Latino-American Conference on
Computer Science, 1999.

