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Abstract. In this paper, we consider the problem of designing ageratissic-
cessfully balance the amount of time spent in reconsidehieig intentions against
the amount of time spent acting to achieve them. Followingief beview of
the various ways in which this problem has previously beesysed, we mo-
tivate and introduce a simple formal model of agents, whichklosely related
to the well-known belief-desire-intention model. In thiodel, an agent is ex-
plicitly equipped with mechanisms for deliberation and@tiselection, as well
as a meta-level control strategy, which allows the agenhtse between de-
liberation and action. Using the formal model, we define whateans for an
agent to be optimal with respect to a task environment, aptbexhow various
properties of an agent’s task environment can impose oarguirements on its
deliberation and meta-level control components. We themvstow the model
can capture a number of interesting practical reasoningasites, and illustrate
how our notion of meta-level control can easily be extendeshtompass higher-
order meta-level reasoning. We conclude with a discussidrpainters to future
work.

1 Introduction

Much of the research activity from the intelligent agent counmity in the mid-to-late
1980s was focussed around the problem of designing agexttsahld achieve an effec-
tive balance betweetkeliberation(the process of decidinghat to dg andmeans-ends
reasoning(the process of decidinigow to do i} [2]. One particularly successful ap-
proach that emerged at this time was bedief-desire-intentiosb1) paradigm [5, 2,9,
10]. The development of theDI paradigm was to a great extent driven by Bratman’s
theory of (human) practical reasoning [1], in whictientionsplay a central role. Put
crudely, since an agent cannot deliberate indefinitely aitnnat courses of action to
pursue, the idea is it should eventuallymmitto achieving certain states of affairs, and
then devote resources to achieving them. These chosen efafairs are intentions,
and once adopted, they play a central role in future prdagesoning [1, 3].

A major issue in the design of agents that are based upon sofletention is that
of when toreconsiderintentions. An agent cannot simply maintain an intentiargeo
adopted, without ever stopping to reconsider it. From ttowime, it will be necessary
to check, (for example), whether the intention has beeneaehl, or whether it is be-
lieved to be no longer achievable [3]. In such situationss ihecessary for an agent



to deliberate over its intentions, and, if necessarghange focudy dropping exist-
ing intentions and adopting new ones. Kinny and Georgefeuiodk an experimental
study of different intention reconsideration strategigs They found that highly dy-
namic environments — environments in which the rate of weHdnge was high —
tend to favourcautiousintention reconsideration strategies, i.e., strategipghvfre-
guently stop to reconsider intentions. Intuitively, tréshiecause although such agents
incur the costs of deliberation, they do not waste effodratiting to achieve intentions
that are no longer viable, and are able to exploit new oppdiéis as they arise. In con-
trast,staticenvironments — in which the rate of world change is low — teméavour
bold intention reconsideration strategies, which only infrexly pause to reconsider
intentions.

Our aim in this paper is to consider the question of when tdbdsdte (i.e., to re-
consider intentionsyersuswhen to act from a formal point of view, in contrast to the
experimental standpoint of Kinny and Georgeff [6]. We deped simple formal model
of practical reasoning agents, and investigate the bebawiothis model in different
types of task environment. In this agent model, (which iy wbosely related to thepi
model [5, 2,9, 10]) an agent’s internal state is charaadrisy a set of beliefs (infor-
mation that the agent has about its environment) and a seteaftions (commitments
the agent has made about what states of the world to try aridvaghin addition, an
agent has a deliberation function, which allows it to redd@sand if necessary modify
its intentions, and an action function, which allow it to &mivards its current inten-
tions. These functions are mediated bynata-level controfunction. The purpose of
the meta-level control strategy is simply to choose betwaaliberation and action.
The meta-level control strategy thus acts somewhat likériteepreter in theerRs[5],
but more closely resembles the meta-plans that are usedtagaan agent’s intention
structures in th@rs

The remainder of this paper is structured as follows. Inise@@ we present our
formal model of agents, and we define what it means for an agedwm optimal with
respect to a particulaask environmentn section 3, we formally define what it means
for a task environment to beeal timg and we investigate the relationships that must
hold between an agent’s meta-level control and deliberat@mmponents in order for
an agent to act optimally in such task environments. In paldr, we define notions
of soundness and completeness for meta-level control diftbdaion strategies, and
show that an optimal meta-level control strategy must b&@d@und complete with re-
spect to a deliberation strategy in real-time task enviremts. In section 4, we show
how our formal framework can capture a number of typical ficat reasoning sce-
narios (taken from [2]). In section 5, we generalise our nhofleneta-level control to
capturehigher-ordemmeta-level reasoning strategies (intuitively, strate¢pedetermine
what sort of meta-level reasoning strategy to use), and tegiate these with our agent
model. Finally, in section 6, we present some conclusioddssues for future work.
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Fig. 1. Meta-level control, deliberation, and action in an arattitee for practical reasoning
agents.

2 Agentsand Environments

In this section, we formalise a simple model of practicaboeang agents and the envi-
ronments they occupy, and define what we mean hyneor history of an agent in an
environment. An overview of our agent model is given in Feglir

Before discussing this model in detail, it is important tok@aeveral points clear.
First, the architecture is emphaticalipt intended to be a proposal for a new imple-
mentable agent architecture in the sense oPtkg INTERRAP, and so on [14]. Rather,
it is intended to be aabstractionof the key functional components of tBe1 architec-
ture, which we find to be useful for analysis purposes. Secoot that although the
architecture is closely related to tB®1 model of agency, it also has some key differ-
ences. First, the reader will note thdsiresare missing. This is because, in our view,
desires play a secondary role to that of intentions: theynate key component of the
intention reconsideration process, which is our primafgctof study in this paper.

Returning to Figure 1, our agents have two main data strestabelief setand an
intention setAn agent’s beliefs represent information that the agesataimut its envi-
ronment. In implemented agent systems (suchre5]), beliefs are often represented
symbolically, assroLoGlike facts, but they may simply be variables afascAL-like
programming language. However they are representedfbetierespond to an agent’s



information state Let B be the set of all beliefs. For the most part, the content8 of
will not be of concern to us here. However, it is often usefustippose thaB con-
tains formulae of some logic, so that, for example, it is fmiego determine whether
two beliefs are mutually consistent or not. An agent’s axgiat any given moment are
guided by itsintention setwhich represents itlocus the “direction” of its activities.
Intentions may be thought of as states of affairs that antdgeencommitted to bringing
about. Formally, let be the set of all intentions. Again, we are not concernedwihe
the contents of. As with beliefs, however, it is often useful to assume th&tmtions
are expressed in some sort of logical language. An agkua statewill then be a
pair (b, i), whereb C B is a set of beliefs, antd C | is a set of intentions. The local
state of an agent s its internal state: a snapshot of itsrimdition and focus at any given
instant. Let. = p(B) x p(l) be the set of all internal states. We ligeith annotations:
I',11,...) to stand for members @f. If | = (b, i), then we denote the belief component
of | by by, and the intention component oy ;.

Agents do not operate isolation: they are situateernmironmentswe can think of
an agent’s environment as being everything external to geata (This external com-
ponent may, of course, include other agents; we leave tHeratjon of this possibility
to future work.) We assume that the environment externddeapgent may be in any of
asetE = {e ¢,...} of states.

Together, an agent and its environment make \gysiem The global state of a
system at any time is thus a pair containing the state of teataand the state of the
environment. Formally, leG = E x L be the set of all such global states. We gse
(with annotationsg, d', . . .) to stand for members @.

2.1 Choice, Deliberation, and Action

As Figure 1 illustrates, our agents have four main companevttich together gener-
ate their behaviour: aext-state functiona meta-level control functigra deliberation
function and anaction function Thenext statdunction can be thought of askelief
revision function On the basis of the agent’s current state and the state adrivie
ronment, it determines a new set of beliefs for the agentchvhiill include any new
information that the agent has perceived. An agent's netegunction thus realises
whatevemerceptionthe agent is capable of. Formally, a next-state functionrsag-
ping NV : E x p(B) — p(B).

The next componentin our agent architecture is meta-lergrol. The idea here is
that at any given instant, an agent has two choices avatialildt can eitheideliberate
(that is, it can expend computational resources decidinetirdr to change its focus),
or else it camact (that is, it can expend resources attempting to actuallyesehts
current intentions). Note that we assume the only way antag@nchangeits focus
(i.e., modify its intentions) is through explicit delibéi@. To represent the choices
(deliberation versus action) available to an agent, we agume a se€ = {d, a},
whered denotes deliberation, adlenotes action. The purpose of an agantta-level
control strategyit to choose between deliberation and action. If it chooseketiberate,
then the agent subsequently deliberates; if its chooses, tthan the agent subsequently
acts. Formally, we can represent such strategies as fmisctib: L — C, which on the
basis of the agent’s internal state, decides whether tbetealie ) or act @).



Thedeliberationprocess of an agent is represented by a function which oretie b
of an agent’s internal state (i.e., its beliefs and interg)o determines a new set of
intentions. Formally, we can represent this deliberativeess via a functio® : L —
p(1). As an aside, note that we require the cost of an agent’s leetheontrol strategy
to be insignificant in comparison to the cost of its deliberastrategy. The intuition
behind this requirement is discussed later.

If an agent decides to act, rather than deliberate, thendtiig to achieve its
intentions. To do so, it must decidéhichaction to perform. The action selection com-
ponent of an agent is essentially a function that, on theshafsthe agent’s current
state, returns an action, which represents that which teatdtas chosen to perform.
Let Ac = {a,d/,...} be the set of actions. Formally, an action selection funcisca
mappingA : L — Ac.

Collecting these components together, we define an agea&supld M, D, A, N, o),
where M is a meta-level control strateds, is a deliberation functiond is an action
selection function)\ is a next-state function, argl € L is aninitial state

2.2 Runs

Recall that agents are situated in environments, and tleat &u environment may be
in any of a sek of states. In order to represent the effect that an ageriisrschave on
an environment, we introducessate transformefunction,r (cf. [4, p154]). The idea
is thatr takes as input an environment state E and an actiomx € Ac, and returns
the environment state that would result from performing e. Thust : E x Ac —
E. Note that we are implicitly assuming that environmentsdeterministic there is
no uncertainty about the result of performing an action imscstate [11, p46]. In
addition, we assume that the only way an environment statechange is through
the performance of an action on the part of an agent (i.egthi#onment isstatic[11,
p46]). Dropping these assumptions is not particularly fwtatic and does not alter
any of our results, although it does make the formalism sdmaéwore convoluted. We
leave the reader to make the required modifications. Foynwedl define an environment
Envto be a triple(E, 7, &), whereE is a set of environment states as abaovis, a state
transformer function, ang, € E is the initial state oEnwv.

A run of an agent/environment system can be thought of as an anfiafjuence:

Co C1 Ca C3 Cu—1 C
rgo—01 — % —0s —> - —>0u—> "

In such a rungy is the initial state of the system (comprised of the initialts of the
environment and the initial state of the agent) and: C is thechoicedictated by the
agent's meta-level control strategy on the basis of it8ahstate. The statg, = (e, |;)
is that which results after the agent has made its chgidéthe agent chose tact (that
is, if o = a), thene; = 7(ey, A(lp)) andl; = (N (e, by,),i1,), thatis, the environment
statee; is that which results from the agent performing its chosdioadn the initial
state, and the internal stdteis that which results from the agent updating its beliefs via
its belief revision function and not changing its intensdsince it did not deliberate).

If, however, the agent chose teliberateat time 0 (i.e., ifcy = d) thene, =
& (i.e., the environment remains unchanged, since the ageémad act), and; =



(N (e, bi,), D(lp)) (i.e., the agent’s beliefs are updated as in the previous eas the
agent’s intentions are updated through its deliberatioctionD.

Formally, an infinite sequendgy, 91, g2, . - .) over G represents a run of an agent
Ag = (M,D, A,N,lp) in an environmenkEnv = (E, 7, &) iff go = (e&,lo) and
Yu € IN, we have

_ { (eU7 (N(eu,b|u),D(Iu))) if M(Iu) =d
W1 = (7w, i), (W ey, b)) if M(1) = 2

We will denote byr(Ag, Env) the run of agenf\g in environmen€&ny, and letRunbe
the set of all possible runs.

2.3 Optimal Behaviour

In order to express thealug or utility of a run, we introduce a functiovi : Run— IR,
which assigns real numbers indicating “payoffs” to runsud¥ essentially captures a
standard decision-theoretic notion of utility.tAsk environmeris defined to be a pair
(Env, V), whereEnvis an environment, and : Run— IR is a utility function. We say
an agen®\g is optimalwith respect to a task environme(finy, V) if there is no agent
Ag' such thatV(r(Ad,Env)) > V(r(Ag, Env)). Again, this is in essence the by-now
standard notion of an optimal agent (cf. [12, p583]).

Ultimately, an agent is simply an elaborate action selectimction. Thecompo-

nentsof an agent — its meta-level control strategy, deliberatamtion, and next-state
function — are therén the serviceof this decision making. An obvious question is
therefore whether or not we can define what it means for sucgonent to be op-
timal. Let us consider the case of the meta-level controbp®se that in some situa-
tion, the meta-level control strategy chose to deliberateer than act, and as a con-
sequence, lost some utility. (Imagine that the agent wastabde hit by a speeding
car, and instead of choosing to jump, chose to deliberatatakbich way to jump.)
Then clearly, the meta-level control strategy was subragitin this case; it would
have been better to have chosen differently. This leads thetfbllowing definition: a
meta-level control strategy1 is sub-optimalf there is some other meta-level control
strategy M’ such that if the agent usettt’ instead of M, it would obtain a higher
utility. Formally, if (M, D, A, N ,lp) is an agent, theoM if optimal (with respect to
(Env,V), D, A, andN) if there is noM' such thatv(r(M', D, A,N,ly),Env) >
V(r(M, D, A,N,lp),Env). In a similar way, we can define optimality fér, .4, and/\
— the details are left to the reader. Notice that optimalftg component is defined not
only with respect to a task environment, but also with resfrethe other components
of an agent. The following theorem captures the relatignbbiween optimality for an
agent and the optimality of its components.

Theorem 1. If an agent is optimal with respect to some task environmibety the
components of that agent are mutually optimal.

Proof. Suppose thadg = (M, D, A, N, o) is globally optimal with respect ttEnv, V),
but that one component is sub-optimal. Assume this compasgv (the cases foD,
A, or N are identical). TheN (r(M', D, A, N, lp),EnV) > V(r(M, D, A, N, lg), EnV)



for someM’ such thatM’ # M. But in this caseAg is not optimal with respect to
(Env, V), which is a contradiction.

Notice that the implication in this theorem cannot be stthaged to a biconditional:
the fact that the components of an agent are mutually optilmed imply that the agent
is itself optimal. We can think of agents that have mutuafifimal components but that
are globally sub-optimal as having achieved a kind of locakima: an optimality of
sorts, but not the best that could be achieved.

For the remainder of this paper, we will be particularly cemed with the relation-
ship between just two of the components of an agent: its teetd-control strategy
and deliberation component. We shall therefore assume frer@a on that an agent's
next-state function and action function are fixed and ogtima

3 Real-Time Task Environments

It should be clear that the performance of an agent is veryhndependent on the na-
ture of the task environmentin which it is situated. An agbat performs badly in one
task environment may do well in one that has different prigerAn understanding
of the relationship between agents and the task enviroretieey occupy is therefore
likely to be of benefit when we come to actually building agethtat will operate in
real environments. For this reason, we now turn our attaribtdhese relationships. In
particular, we consider how various environmental prapsrtan correspond to prop-
erties of agents and their components. Although typologiesvironment properties
have appeared in the literature (e.g., [11, p46]), the nmpbrtant single environment
property is that of beingeal-time A real-time task environmentis simply one in which
time is significant [12, p585]. In a real-time task enviromn@n agent cannot afford to
deliberate indefinitely — it must make decisions in time fogge decisions to be use-
ful (cf. the notion of reactivity in [14]). Real-time task wronments are problematic
simply because if an agent is to operate successfully in ancenvironment, then it
must achieve the successful trade-off between deliberatid action that we discussed
above.

How are we to define what it means for a task-environment tecebktime? Intu-
itively, a real-time task environmentis one in which an agepenalised for any wasted
effort. How might an agent waste effort? There are esséntiab possibilities. First,
an agent is wasting effort if it is expending resources gttémg to achieve the “wrong”
intentions. To see what we mean by this, consider the Tillelsmenario, introduced by
Pollack and Ringuette [8], and used by Kinny and Georgefhairtinvestigation into
agent commitment strategies [6]. In this environment, anags attempting to shove
blocks into various holes that appear in a two-dimensiondhgorld. Unfortunately,
the holes themselves arbitrarily appear and disappear. iNaw agent is attempting
to achieve an intention to shove a block into a particulaelesen when that hole has
vanished, then it is wasting effort — it would intuitively dietter to reconsider its in-
tentions. A similar waste of effort occurs if an agent fadseixploit a serendipitous
situation (for example when a hole appears to the side of antas it pushes a block).
A second type of wasted effort occurs if an agent has “cdriatgéntions, but is not
acting on them — in such a situation, an agent is engagingniecessary deliberation.



Situation Optimal Choseto Changed M D
number intentions? deliberate? focus? optimal? optimal?

1 No No — No —

2 No Yes No Yes No
3 No Yes Yes Yes Yes?
4 Yes No — Yes —

5 Yes Yes No No Yes
6 Yes Yes Yes No No

Table 1. Practical Reasoning Situations (cf. [2])

In order to formally define what we mean by a real-time taskrenvnent, we need
to define what it means for an agent to hayimal intentionsIntuitively, an agent
has optimal intentions if there is no good reason for chapd¢fiem — if, given the
information available to the agent, an optimal deliberafimction would not choose to
change them. Formally, fM, D, A, N, ly) is an agent that is currently in state, i),
and that is situated in task environmégny, V), then its intention seitis optimal if
D'((b,i)) = i for a deliberation strateg’ that is optimal fof M, D, A, N, lo).

Given this, we say a task environméginy, V) is real-time iff for any optimal run
(Qo, 91, - - -) of an agen{ M, D, A, N, lp) in this task environment, there is o IN
such that eithei;, is optimal andc, = d or elseij, is not optimal anat, = a.

The possible interactions between meta-level control alitberation in real-time
task environments are summarised in Table 1 (adapted aadded from [2, p353]).
Consider situation (1). In this situation, the agent dodsawe optimal intentions, and
would hence do well to deliberate. However, it does not chdosleliberate and hence
the meta-level reasoning strategy that chose to act wagstiial. In situation (2),
the agent again has sub-optimal intentions, but this tinumshbs to deliberate, rather
than act. Unfortunately, the agent’s deliberation funtfiddoes not change focus, and
is hence sub-optimal. Situation (3) is essentially the samsituation (2), with the
exception that this time, the deliberation functidmeschange focus. While it is clear
that the meta-level reasoning strategy is optimal in thisasion, it is not absolutely
certain that the deliberation strategy is optimal, sincedwenot know what the old
intentions were replaced with. However, it would certaindysub-optimahotto change
intentions.

In situation (4), the agent has optimal intentions, and am¢g€hoose to deliberate.
Since the intentions are optimal, the meta-level contratsgy is obviously correct not
to deliberate in this situation, and is hence optimal. lnagibn (5), the agent has optimal
intentions, but this time chooses to deliberate; the dedifien strategy, however, does
not change focus. Hence while the meta-level control gjyeiteclearly sub-optimal, the
deliberation strategy is optimal. Situation (6) is as ditwa(5), except that this time,
the deliberation function changes focus. In this case, bathmeta-level control and
deliberation components must be sub-optimal, since thetaggsted time deliberating,
and then modified its intentions despite the fact that thremireason to do so.

From the discussion above, we can extract the following Erppnciple: in real-
time environments, a meta-level control strategy shoutibsk to deliberate rather than



actonlywhen an optimal deliberation strategy would change focueswill say a meta-
level control strategyM is soundwith respect to an optimal deliberation strateQyff
wheneverM chooses to deliberat®, chooses to change focus (i.e Mfl) = dimplies
D(l) # iy). Similarly, we sayM is completewith respect taD iff wheneverD would
change focusM chooses to deliberate (i.e..Tif() # ij impliesM(l) = d).

Given this situation, one might wonder what is the point ofihg both meta-level
control and deliberation components, as an optimal meta-level costrategy need
only run the deliberation function as a subroutine to seevifould change focus, and
choose to deliberate just in case the deliberation strateggchange focus. This would
indeed be a successful strategy if the cost of running theestl control strategy
was roughly equal to the cost of deliberation. However, agpuiated out earlier, we
require that the cost of meta-level controldignificantly lesgshan that of deliberation.
Under this assumption, running the deliberation compoimeotder to decide whether
to deliberate is not a realistic option.

We can easily establish the following theorem, which ralaeund and complete
meta-level control strategies to real-time environments.

Theorem 2. For real-time task environments, a meta-level controdigtgy is optimal
with respect to an optimal deliberation strategy iff it isusl and complete with respect
to this deliberation strategy.

Proof. For the left to right implication, assume! is optimal. Then we need to show
that M is sound and complete. For soundness, assumeMt{fit = d (the meta-level
control strategy says deliberate) but tfiyi) = i, (the deliberation function does not
choose to change focus). Then since this is a real-time tagkomment, M is not
optimal. This is a contradiction, so i#1 is optimal, it is sound. For completeness,
assumeD(l) # ij but thatM(l) = a. Then since the task environment is real-time,
M is not optimal. This is a contradiction, soM is optimal, it is complete. For the
right to left implication, assum@ is sound and complete with respectl® but that

it is not optimal. If it is not optimal, then it must be makingveong decision at some
point, i.e., it must be choosing to deliberate when it wowddbtter to act, or else to act
when it would be better to deliberate. Consider the first cabere M(I) = d. Since
M is sound, we know thaD(l) # ij. SinceD is optimal, the agent’s intentions In
must be sub-optimal, hence acting on them would be sub-aptiience deliberation
must be the optimal choice. For the second case, supptige = a. As M is sound
and complete, we know that1(l) = diff D(l) # i|. SinceM(l) = a, this means that
D(l) =i, hence the agent’s intentions are optimal, and since thiecemaent is real-
time, deliberating on them would be sub-optimal. Hencengcis the optimal choice,
soM is optimal.

In this same way, we say a deliberation stratéyys sound (with respect to optimal
meta-level control strateg) iff it changes focus when the meta-level control strategy
chooses to deliberate, (i.e.,Tif(I) # ij impliesM(l) = d), andcompleteff whenever
the meta-level control strategy chooses to deliberaténahges focus (i.eM(l) = d
impliesD(l) # iy).



4 An Example

In the previous section, we discussed the notion of a re@-task environment, and
investigated the relationship between meta-level comtnal deliberation in such task
environments. In this section, we show how four illustratpractical reasoning sce-
narios (introduced in [2]) can be represented within oumigavork. (More accurately,
Bratman and colleagues give six scenarios, since therevaredriants each of scenar-
ios one and four. However, as we discuss below, these vam@@atmeaningless in our
framework.)

4.1 ScenarioOne

All four scenarios are based on the following basic storysiRds an agent that has
been assigned the task of repairing a malfunctioning. As a result of some task
analysis, she has decided that this might best be done bacieglthecrT (which
she believes is burnt out), and so she has adopted the orisrdf going to the/bu
armed with a replacemenRrT, and then using this new tube to fix theu. In the first
scenario, Rosie arrives at theu to find that thecrT is not burnt out: the contrast has
just been turned way down. She therefore has the option offfitkievbu by adjusting
the contrast. This information is sufficient for her metaeelecontrol strategy to decide
that it is worth deliberating, and in so doing, Rosie findst #djusting the contrast
is cheaper than replacing tlswT. She thus adopts the new intention of adjusting the
contrast. She then acts, adjusting the contrast and coasgiet initial task.

In this, and all other scenarios, we represent Rosie’s vawld set of propositions.
The propositions of interest to us are summarised in TabiHle the intended in-
terpretation for most of these is self-evident, some regaitditional explanatiors is
intended to capture the presence of the additiamal in scenarios three and fous;
is intended to capture the fact that Rosie knows that if itdsgible to fix thevbu by
just adjusting the contrast then this is a better option thsimg thecRT she carries with
her;b, is intended to capture the fact that rewiring the fadgyr is the best option, and
bs is intended to capture the fact that the additionat in scenarios three and four is
superior to thecRT she carries with her.

In addition, we will also represent Rosie’s possible int@m as propositions: see
Table 2. Again, most of these are self-explanatory,ipig needed to capture Rosie’s
initial progress from wherever she picks up the firetr to wherever the brokevbu is.
For simplicity we will assume that each of these intenticens lbe achieved by a single
action (though each of these could equally well be a seriestidns). Thus the action
to achieve intention is a;, the action to achieve intentiapis oy, and so on.

We can now formalise Rosie’s reasoning. Initially the statéhe world isey =
{-w, —c, d} (thevDu is not working, thecrT is not burnt out, and the contrast is turned
down). Rosie’s initial internal statg is thus:({—~w, ¢, =d, b, }, {iv, 0} ). She thus begins
scenario one with false beliefs, since she wrongly beli¢wasthecRT is burned out.
Note that Rosie’s beliefs also include the preference m#dionb,. She initially has
two intentions: to fix theszDu using the originaCRrT, and to go to the/Du.

The first part of Rosie’s operation is to decide whether tabéehte or act. She
chooses to act, and executes the actipthat achieves her intentiop and thus arrives



Beliefs

w VDU working

C CRTburnt out

d Contrast turned down

b; Adjust contrast is better

r CRTcan be fixed by re-wiring
b, Re-wiring is better

S SparevDu

bs Sparevbu is better

Intentions

o Fix vDU using originalcRT

¢ Fix vDu by adjusting contrast

r Fix vDu by re-wiring

ia Fix VDU by using alternativeRT

iy Gotovbu

Table 2. Rosie’s Possible Beliefs and Intentions

at thevDu. At this point she deliberates, and removes the now-actiguention of
moving to thevbu from her intention set, so that the previously adopted imenof
fixing the vbDu using thecRT she brought with her becomes the main focus. At this
point she can identify the real state of the world, and het-s&ate function\V" updates
her beliefs to reflect this. Her internal state becomes: ({-w, —c,d, b, }, {io}). The
state of the external world is unchanged= g,.

Rosie again applies her meta-level control strategy:

M) = dif {-c,d,b;} C b or{=c,r,be} Chor{csbs} Ch
| a otherwise.

Thus there are three situations in which she will choose libe®te, all of which can
be glossed as “there is now some reason to suspect that sheiteeitter alternative to
repair thevbu”. Clearly this is just an illustrative fragment of the coratd meta-level
control function which is appropriate to this example. 8ifosie now believesc,
she chooses to deliberate. ThatAd,(l;) = d since thecrT is known to not be burnt
out, the contrast is known to be turned down, and it is known dljusting the contrast
gives a better means of fixing thebu than replacing theRrT. To find the result of
deliberation, we need to defiriz We have:

{ic} if {—=c,d,b;} Chby
{|r} if {_'CarabZ} c bl
{ia} if {c,s,b3} C Iy
li  otherwise.

D(l) =

The deliberation functiorD thus decides to adjust the contraBtl,) = {ic}. Note
thatD should really check that the agent has a means of adoptingttion before
it decides to adopt it — if Rosie is unable to adjust the cattfhecause she has the



wrong kind of gripper for instance) then however good a sotuthis might be, there
is no point in changing focus to try and achieve it. For oupmses, we can ignore this
subtlety, however.

After deliberation, Rosie’s internal state becomis:= ({-w,—c,d,b;}, {ic}),
while the external world remains unchangeg:= e, = €. This time M chooses
to act, and sinced(l.) = a, the contrast is adjusted, which repairs thsu. This
change in the world causes Rosie to revise her beliefs aheudtate of the/bu and
the contrast control. The final state of the environmentis &y = {w, —~c, —d}, while
Rosie’s internal state is = ({w, —c,—d, b, }, 0).

The complete run for scenario one is thus:

. a d a
f1:9 —01 —02 —03

4.2 Scenario Two

In this scenario, Rosie arrives at thiieu to find that thecrT is not burnt out and can
be fixed by re-wiring. However, this fix will only be short teyand thecrT will soon
burn out anyway. This information is sufficient for Rosie'eta-level control strategy
to decide it is not worth deliberating to see if she is ablexatie vbDu by rewiring,
and so she acts, replacing theT in line with her unchanged intention. The start this
scenario is described by:

e = {—~w,—c,r}
|0 = ({ﬂW, C,r, —|b2}, {IV})

So, although theRT is not burnt out and thebu can be fixed by re-wiring (facts that
Rosie initially does not know), Rosioesknow that re-wiring is a worse option than
replacing thecrT. After moving to thevbu, popping the intention stack, and revising
beliefs, just as in the previous scenario, the environm@ité semains unchanged but
Rosie’s internal sate is = ({—w, —c,r, =bs}, {io}).

Rosie then applies her meta-level control strategy, anditdethe fact that there is
reason for her to suspect that deliberation might lead tdtamative means of repairing
thevbu (a situation which is actually truejyt returnsa because Rosie also knows that
fixing the CRT by re-wiring is a worse option than the one she has alreadys $he can
reject the idea of changing her focus without going as fastabdishing whether or not
she can build a new plan in order to fix tieu. Having decided to act, Rosie performs
Al(is) = a, and the situation becomes:

& = {w,~c,r}
|2 = ({Wa Cvraﬁb2}7@)

The complete run for Scenario Two is thus:

ay ao
f2:0o — 01 — O2



4.3 Scenario Three

In Scenario Three, Rosie arrives at theu to find a spare (and therefore freeRT
sitting by the terminal, but notes that the spare is infeigathe tube she brought with
her. Her meta-level control mechanism therefore realisasthere is no advantage to
seeing if the new tube can be used, and so chooses to act.tResieeplaces therT

in line with her original intention. Scenario Three thus insgvith the following state
of affairs:

& = {-w,c,s}
I0 = ({_'W7 C, S, _'b3}7 {IV})

As before, Rosie proceeds to thieu and this time finds the spare tube. After belief
revision, the environment state remains unchanged bueRasiernal state becomes
I, = ({-w,c,s,—bs},ip). This timeM tells her to act, because the newly visiieT

is worse than the one she is carrying with her. She ats,) = «, by replacing the
CRT and the situation becomes:

e = {—-w,-c,s}
ly = ({_'W7 -GS, _'b3}7 0)

The complete run for Scenario Three is thus:

ay a
f3:90 — 01 — O2

4.4 Scenario Four

In Scenario Four, Rosie arrives at theu to again find a spareRrT sitting by the ter-
minal, and this time notes that the spare is superior to the $he brought with her. Her
meta-level control mechanism therefore realises thaetiseronsiderable advantage to
seeing if the new tube can be used since the saving in the tds¢ dube is greater
than the cost of deliberation. So she chooses to delibeéDalderation results in the
adoption of the intention to use the new tube, and Rosie teplaces theRT in line
with this new intention. This scenario is almost the saméhaghird, except that this
time the “new”CRT is superior to the one that Rosie brings with her. Thus thi&lni
situation is:

e = {—w,c,s}
I0 = ({_‘W7 C, 7S, b3}7 {IV})

After moving to thevbu and revising beliefs, the environment is unchanged< e,)

but Rosie’s internal state is = ({-w,c,s,bs}, {io}). This time M(l;) = d and
D(ly) = {ia}. After this, the environment state again remains unchaigédRosie’s
internal state i$, = ({—w, c,s,bs}, {ia}), and Rosie proceeds to adfl.) = a4 giving

the following global state:



e; = {—w,c,s}
I3 = ({_'W7 -G, S, b3}7 w)

The complete run for Scenario Four is thus:
d
Qo —5 01— O — g

There are several points to note about this example. Theditsat both M and D
are optimal for the cases given. There is no set of actionsiwtould be chosen to
give a better result. The second is that it is easy to alteethenple so that Rosie is not
optimal. Consider what would happen in Scenario Four if siterio means of using the
additionalcrT (which would mean that there was no intentigyor, worse no action,
for achieving ). M would choose to deliberate since thrT is superior, but either this
deliberation would not change the intentions (if there wag)) or when Rosie came to
act on the changed intention, she would be unable to achiexéntention and would
have to revert ta,. The final point to note is that it is this consideration okimions
and actions which justifies our assumption that the timeafost is less than that ab.
Deliberation will typically involve an expensive activisyich as building and evaluating
the quality of plans to achieve some set of alternative ties. Although that activity
might be as simple as looking to see if there is some altemnattention which can be
adopted, as here, it is still an overhead.

5 Generalised Meta-L evel Reasoning

In this section, we will sketch out how an agent might h$gher-order meta-level
control strategies in its architecture, and what role stictegies might play. What do
we mean by a higher-order meta-level control strategy? kaeter to the meta-level
control strategies as described abovdim$-order meta-level strategies. Such strate-
gies merely choose whether to deliberate or to acteéond-ordemeta-level control
strategy can be thought of aslectingwhich first-order meta-level control strategy to
use. For example, a second-order meta-level control giraiéght examine the agent’s
beliefs to see how dynamic the agent’s environmentis. ifednines that the environ-
ment is highly dynamic (i.e., the rate of world change is Higj, then it might select

a cautious first-order meta-level control strategy — onecttirequently causes the
agent to deliberate. If, in contrast, the environment iatietly static (the rate of world
change is low), then it might selecbald meta-level control strategy (one that favours
action over deliberation).

It is easy to imagine an agent with a “tower” of such metadleemtrol strategies,
with nth-order strategy selecting which strategy to use at levell. The idea is very
similar to the use of meta-language hierarchies in meta-[@g13].

We can incorporate such higher-order meta-level reasantogour formal model
with ease. First, [eMLC;, = L — C be the set of alfirst-order meta-level control
strategies. These are the meta-level control stratega¢svihdiscussed above. Then de-
fineMLC, = L — MLC,_1, for allu € IN such thau > 1. ThusMLGC, is the set of all



second-order meta-level control strateg&C; is the set of all third-order meta-level
control strategies, and so on. An agent becomes a 5-tuplg, D, A, NV, o), where
My is annth order meta-level control strategy and the agent’s otbeponents are as
before. Given this, we can redefine what it means for a rungesent a history of an
agent in an environment. Formally, an infinite sequefwed;, gz, . . .) overG repre-
sents a run of an ageAg = (Mpn, D, A, N, lg) in an environmenEnv= (E, 7, &) iff

do = (&, lp) andVu € IN, we have

n—1 times
—
(e, (N (eu, b1,), D(1u))) if Mn(lu) (lo) -+ (lu) = d
G =) (r(ey, AGiL,), (N (8, b)) if Ma(lu) (o) -+ (o) = a
N—————
n—1 times

Notice that agents which make use of higher-order metd-teverol are strictly speak-
ing no more powerful than “ordinary” agents, as defined earfior every higher-order
agent there is an “ordinary” agent that behaves in exactysdime way. The point is
that from the point of view of an agent designer, it may makessdo divide the func-
tionality of the agent up into different levels of meta-re@isng.

6 Conclusions

In this paper, we have investigated the relationship betvitke deliberation, action,
and meta-level control components of a practical reasoansgitecture. While this
relationship has previously been investigated from an exmamtal perspective (partic-
ularly by Kinny [6]), we have in contrast attempted a mathgcahanalysis. We have
demonstrated how it is possible to construct a simple butakgee, realistic model
of practical reasoning agents of the type investigated mniKiand Georgeff, and we
have established some basic properties of such agents Wdwedjn different types of
task environment. We have focussed in particular on rea-task environments, since
these are, we believe, the most common class of real-waldeavironment that one
encounters.

This work was originally instigated in an attempt to reldte work of Russell and
Subramanian on bounded-optimal agents (agents that pea®mvell as any agent can
do under certain architectural constraints [12]) to theaeasingly large literature on
BDI agents [5, 2,9, 10]. While this initial investigate led umisome areas we had not
initially anticipated visiting, we believe that investigeg the implications of bounded-
optimal agents foeDI model will be an interesting research issue, and one thabpe h
to investigate in future work. Another issue that we hopeoiasider is the moving from
individual agents to multi-agent systems.
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