
Intention Reconsideration Reconsidered

Michael Wooldridge andSimon Parsons

Department of Electronic Engineering
Queen Mary and Westfield College

University of London
London E1 4NS, United KingdomfM.J.Wooldridge, S.D.Parsonsg@qmw.ac.uk

Abstract. In this paper, we consider the problem of designing agents that suc-
cessfully balance the amount of time spent in reconsideringtheir intentions against
the amount of time spent acting to achieve them. Following a brief review of
the various ways in which this problem has previously been analysed, we mo-
tivate and introduce a simple formal model of agents, which is closely related
to the well-known belief-desire-intention model. In this model, an agent is ex-
plicitly equipped with mechanisms for deliberation and action selection, as well
as a meta-level control strategy, which allows the agent to choose between de-
liberation and action. Using the formal model, we define whatit means for an
agent to be optimal with respect to a task environment, and explore how various
properties of an agent’s task environment can impose certain requirements on its
deliberation and meta-level control components. We then show how the model
can capture a number of interesting practical reasoning scenarios, and illustrate
how our notion of meta-level control can easily be extended to encompass higher-
order meta-level reasoning. We conclude with a discussion and pointers to future
work.

1 Introduction

Much of the research activity from the intelligent agent community in the mid-to-late
1980s was focussed around the problem of designing agents that could achieve an effec-
tive balance betweendeliberation(the process of decidingwhat to do) andmeans-ends
reasoning(the process of decidinghow to do it) [2]. One particularly successful ap-
proach that emerged at this time was thebelief-desire-intention(BDI) paradigm [5, 2, 9,
10]. The development of theBDI paradigm was to a great extent driven by Bratman’s
theory of (human) practical reasoning [1], in whichintentionsplay a central role. Put
crudely, since an agent cannot deliberate indefinitely about what courses of action to
pursue, the idea is it should eventuallycommitto achieving certain states of affairs, and
then devote resources to achieving them. These chosen states of affairs are intentions,
and once adopted, they play a central role in future practical reasoning [1, 3].

A major issue in the design of agents that are based upon models of intention is that
of when toreconsiderintentions. An agent cannot simply maintain an intention, once
adopted, without ever stopping to reconsider it. From time-to-time, it will be necessary
to check, (for example), whether the intention has been achieved, or whether it is be-
lieved to be no longer achievable [3]. In such situations, itis necessary for an agent



to deliberate over its intentions, and, if necessary, tochange focusby dropping exist-
ing intentions and adopting new ones. Kinny and Georgeff undertook an experimental
study of different intention reconsideration strategies [6]. They found that highly dy-
namic environments — environments in which the rate of worldchange was high —
tend to favourcautiousintention reconsideration strategies, i.e., strategies which fre-
quently stop to reconsider intentions. Intuitively, this is because although such agents
incur the costs of deliberation, they do not waste effort attempting to achieve intentions
that are no longer viable, and are able to exploit new opportunities as they arise. In con-
trast,staticenvironments — in which the rate of world change is low — tend to favour
bold intention reconsideration strategies, which only infrequently pause to reconsider
intentions.

Our aim in this paper is to consider the question of when to deliberate (i.e., to re-
consider intentions)versuswhen to act from a formal point of view, in contrast to the
experimental standpoint of Kinny and Georgeff [6]. We develop a simple formal model
of practical reasoning agents, and investigate the behaviour of this model in different
types of task environment. In this agent model, (which is very closely related to theBDI

model [5, 2, 9, 10]) an agent’s internal state is characterised by a set of beliefs (infor-
mation that the agent has about its environment) and a set of intentions (commitments
the agent has made about what states of the world to try and achieve). In addition, an
agent has a deliberation function, which allows it to reconsider and if necessary modify
its intentions, and an action function, which allow it to acttowards its current inten-
tions. These functions are mediated by ameta-level controlfunction. The purpose of
the meta-level control strategy is simply to choose betweendeliberation and action.
The meta-level control strategy thus acts somewhat like theinterpreter in thePRS [5],
but more closely resembles the meta-plans that are used to manage an agent’s intention
structures in thePRS.

The remainder of this paper is structured as follows. In section 2 we present our
formal model of agents, and we define what it means for an agentto be optimal with
respect to a particulartask environment. In section 3, we formally define what it means
for a task environment to bereal time, and we investigate the relationships that must
hold between an agent’s meta-level control and deliberation components in order for
an agent to act optimally in such task environments. In particular, we define notions
of soundness and completeness for meta-level control and deliberation strategies, and
show that an optimal meta-level control strategy must be sound and complete with re-
spect to a deliberation strategy in real-time task environments. In section 4, we show
how our formal framework can capture a number of typical practical reasoning sce-
narios (taken from [2]). In section 5, we generalise our model of meta-level control to
capturehigher-ordermeta-level reasoning strategies (intuitively, strategies to determine
what sort of meta-level reasoning strategy to use), and we integrate these with our agent
model. Finally, in section 6, we present some conclusions and issues for future work.
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Fig. 1. Meta-level control, deliberation, and action in an architecture for practical reasoning
agents.

2 Agents and Environments

In this section, we formalise a simple model of practical reasoning agents and the envi-
ronments they occupy, and define what we mean by arun or historyof an agent in an
environment. An overview of our agent model is given in Figure 1.

Before discussing this model in detail, it is important to make several points clear.
First, the architecture is emphaticallynot intended to be a proposal for a new imple-
mentable agent architecture in the sense of thePRS, INTERRAP, and so on [14]. Rather,
it is intended to be anabstractionof the key functional components of theBDI architec-
ture, which we find to be useful for analysis purposes. Second, note that although the
architecture is closely related to theBDI model of agency, it also has some key differ-
ences. First, the reader will note thatdesiresare missing. This is because, in our view,
desires play a secondary role to that of intentions: they arenot a key component of the
intention reconsideration process, which is our primary object of study in this paper.

Returning to Figure 1, our agents have two main data structures: abelief setand an
intention set. An agent’s beliefs represent information that the agent has about its envi-
ronment. In implemented agent systems (such asPRS[5]), beliefs are often represented
symbolically, asPROLOG-like facts, but they may simply be variables of aPASCAL-like
programming language. However they are represented, beliefs correspond to an agent’s



information state. Let B be the set of all beliefs. For the most part, the contents ofB
will not be of concern to us here. However, it is often useful to suppose thatB con-
tains formulae of some logic, so that, for example, it is possible to determine whether
two beliefs are mutually consistent or not. An agent’s actions at any given moment are
guided by itsintention set, which represents itsfocus: the “direction” of its activities.
Intentions may be thought of as states of affairs that an agent has committed to bringing
about. Formally, letI be the set of all intentions. Again, we are not concerned herewith
the contents ofI . As with beliefs, however, it is often useful to assume that intentions
are expressed in some sort of logical language. An agent’slocal statewill then be a
pair (b; i), whereb � B is a set of beliefs, andi � I is a set of intentions. The local
state of an agent is its internal state: a snapshot of its information and focus at any given
instant. LetL = }(B)�}(I) be the set of all internal states. We usel (with annotations:
l0; l1; : : :) to stand for members ofL. If l = (b; i), then we denote the belief component
of l by bl , and the intention component ofl by i l .

Agents do not operate isolation: they are situated inenvironments; we can think of
an agent’s environment as being everything external to the agent. (This external com-
ponent may, of course, include other agents; we leave the exploration of this possibility
to future work.) We assume that the environment external to the agent may be in any of
a setE = fe; e0; : : :g of states.

Together, an agent and its environment make up asystem. The global state of a
system at any time is thus a pair containing the state of the agent and the state of the
environment. Formally, letG = E � L be the set of all such global states. We useg
(with annotations:g; g0; : : :) to stand for members ofG.

2.1 Choice, Deliberation, and Action

As Figure 1 illustrates, our agents have four main components, which together gener-
ate their behaviour: anext-state function, a meta-level control function, a deliberation
function, and anaction function. Thenext statefunction can be thought of as abelief
revision function. On the basis of the agent’s current state and the state of theenvi-
ronment, it determines a new set of beliefs for the agent, which will include any new
information that the agent has perceived. An agent’s next-state function thus realises
whateverperceptionthe agent is capable of. Formally, a next-state function is amap-
pingN : E� }(B)! }(B).

The next component in our agent architecture is meta-level control. The idea here is
that at any given instant, an agent has two choices availableto it. It can eitherdeliberate
(that is, it can expend computational resources deciding whether to change its focus),
or else it canact (that is, it can expend resources attempting to actually achieve its
current intentions). Note that we assume the only way an agent canchangeits focus
(i.e., modify its intentions) is through explicit deliberation. To represent the choices
(deliberation versus action) available to an agent, we willassume a setC = fd; ag,
whered denotes deliberation, andadenotes action. The purpose of an agent’smeta-level
control strategyit to choose between deliberation and action. If it chooses to deliberate,
then the agent subsequently deliberates; if its chooses to act, then the agent subsequently
acts. Formally, we can represent such strategies as functionsM : L ! C, which on the
basis of the agent’s internal state, decides whether to deliberate (d) or act (a).



Thedeliberationprocess of an agent is represented by a function which on the basis
of an agent’s internal state (i.e., its beliefs and intentions), determines a new set of
intentions. Formally, we can represent this deliberative process via a functionD : L !}(I). As an aside, note that we require the cost of an agent’s meta-level control strategy
to be insignificant in comparison to the cost of its deliberation strategy. The intuition
behind this requirement is discussed later.

If an agent decides to act, rather than deliberate, then it isacting to achieve its
intentions. To do so, it must decidewhichaction to perform. The action selection com-
ponent of an agent is essentially a function that, on the basis of the agent’s current
state, returns an action, which represents that which the agent has chosen to perform.
Let Ac = f�; �0; : : :g be the set of actions. Formally, an action selection function is a
mappingA : L ! Ac.

Collecting these components together, we define an agent to be a 5-tuple(M;D;A;N ; l0),
whereM is a meta-level control strategy,D is a deliberation function,A is an action
selection function,N is a next-state function, andl0 2 L is aninitial state.

2.2 Runs

Recall that agents are situated in environments, and that such an environment may be
in any of a setE of states. In order to represent the effect that an agent’s actions have on
an environment, we introduce astate transformerfunction,� (cf. [4, p154]). The idea
is that� takes as input an environment statee 2 E and an action� 2 Ac, and returns
the environment state that would result from performing� in e. Thus� : E � Ac !
E. Note that we are implicitly assuming that environments aredeterministic: there is
no uncertainty about the result of performing an action in some state [11, p46]. In
addition, we assume that the only way an environment state can change is through
the performance of an action on the part of an agent (i.e., theenvironment isstatic [11,
p46]). Dropping these assumptions is not particularly problematic and does not alter
any of our results, although it does make the formalism somewhat more convoluted. We
leave the reader to make the required modifications. Formally, we define an environment
Envto be a triple(E; �; eo), whereE is a set of environment states as above,� is a state
transformer function, ande0 2 E is the initial state ofEnv.

A run of an agent/environment system can be thought of as an infinite sequence:

r : g0 c0�! g1 c1�! g2 c2�! g3 c3�! � � � cu�1�! gu
cu�! � � �

In such a run,g0 is the initial state of the system (comprised of the initial state of the
environment and the initial state of the agent) andc0 2 C is thechoicedictated by the
agent’s meta-level control strategy on the basis of it’s initial state. The stateg1 = (e1; l1)
is that which results after the agent has made its choicec0. If the agent chose toact (that
is, if c0 = a), thene1 = �(e0;A(l0)) andl1 = (N (e0; bl0); i l0), that is, the environment
statee1 is that which results from the agent performing its chosen action in the initial
state, and the internal statel1 is that which results from the agent updating its beliefs via
its belief revision function and not changing its intentions (since it did not deliberate).

If, however, the agent chose todeliberateat time 0 (i.e., ifc0 = d) then e1 =
e0 (i.e., the environment remains unchanged, since the agent did not act), andl1 =



(N (e0; bl0);D(l0)) (i.e., the agent’s beliefs are updated as in the previous case, and the
agent’s intentions are updated through its deliberation functionD.

Formally, an infinite sequence(g0; g1; g2; : : :) overG represents a run of an agent
Ag = (M;D;A;N ; l0) in an environmentEnv = (E; �; e0) iff g0 = (e0; l0) and8u 2 IN, we have

gu+1 = � (eu; (N (eu; blu);D(lu))) if M(lu) = d(�(eu;A(i lu)); (N (eu; blu); i lu)) if M(lu) = a.

We will denote byr(Ag;Env) the run of agentAg in environmentEnv, and letRunbe
the set of all possible runs.

2.3 Optimal Behaviour

In order to express thevalue, or utility of a run, we introduce a functionV : Run! IR,
which assigns real numbers indicating “payoffs” to runs. ThusV essentially captures a
standard decision-theoretic notion of utility. Atask environmentis defined to be a pair(Env;V), whereEnv is an environment, andV : Run! IR is a utility function. We say
an agentAg is optimalwith respect to a task environment(Env;V) if there is no agent
Ag0 such thatV(r(Ag0;Env)) > V(r(Ag;Env)). Again, this is in essence the by-now
standard notion of an optimal agent (cf. [12, p583]).

Ultimately, an agent is simply an elaborate action selection function. Thecompo-
nentsof an agent — its meta-level control strategy, deliberation, action, and next-state
function — are therein the serviceof this decision making. An obvious question is
therefore whether or not we can define what it means for such a component to be op-
timal. Let us consider the case of the meta-level control. Suppose that in some situa-
tion, the meta-level control strategy chose to deliberate rather than act, and as a con-
sequence, lost some utility. (Imagine that the agent was about to be hit by a speeding
car, and instead of choosing to jump, chose to deliberate about which way to jump.)
Then clearly, the meta-level control strategy was sub-optimal in this case; it would
have been better to have chosen differently. This leads us tothe following definition: a
meta-level control strategyM is sub-optimalif there is some other meta-level control
strategyM0 such that if the agent usedM0 instead ofM, it would obtain a higher
utility. Formally, if (M;D;A;N ; l0) is an agent, thenM if optimal (with respect to(Env;V), D, A, andN ) if there is noM0 such thatV(r(M0;D;A;N ; l0);Env) >
V(r(M;D;A;N ; l0);Env). In a similar way, we can define optimality forD,A, andN
— the details are left to the reader. Notice that optimality of a component is defined not
only with respect to a task environment, but also with respect to the other components
of an agent. The following theorem captures the relationship between optimality for an
agent and the optimality of its components.

Theorem 1. If an agent is optimal with respect to some task environment,then the
components of that agent are mutually optimal.

Proof. Suppose thatAg= (M;D;A;N ; l0) is globally optimal with respect to(Env;V),
but that one component is sub-optimal. Assume this component isM (the cases forD,A, orN are identical). ThenV(r(M0;D;A;N ; l0);Env) > V(r(M;D;A;N ; l0);Env)



for someM0 such thatM0 6= M. But in this case,Ag is not optimal with respect to(Env;V), which is a contradiction.

Notice that the implication in this theorem cannot be strengthened to a biconditional:
the fact that the components of an agent are mutually optimaldoes imply that the agent
is itself optimal. We can think of agents that have mutually optimal components but that
are globally sub-optimal as having achieved a kind of local maxima: an optimality of
sorts, but not the best that could be achieved.

For the remainder of this paper, we will be particularly concerned with the relation-
ship between just two of the components of an agent: its meta-level control strategy
and deliberation component. We shall therefore assume fromhere on that an agent’s
next-state function and action function are fixed and optimal.

3 Real-Time Task Environments

It should be clear that the performance of an agent is very much dependent on the na-
ture of the task environment in which it is situated. An agentthat performs badly in one
task environment may do well in one that has different properties. An understanding
of the relationship between agents and the task environments they occupy is therefore
likely to be of benefit when we come to actually building agents that will operate in
real environments. For this reason, we now turn our attention to these relationships. In
particular, we consider how various environmental properties can correspond to prop-
erties of agents and their components. Although typologiesof environment properties
have appeared in the literature (e.g., [11, p46]), the most important single environment
property is that of beingreal-time. A real-time task environment is simply one in which
time is significant [12, p585]. In a real-time task environment, an agent cannot afford to
deliberate indefinitely — it must make decisions in time for these decisions to be use-
ful (cf. the notion of reactivity in [14]). Real-time task environments are problematic
simply because if an agent is to operate successfully in suchan environment, then it
must achieve the successful trade-off between deliberation and action that we discussed
above.

How are we to define what it means for a task-environment to be real-time? Intu-
itively, a real-time task environment is one in which an agent is penalised for any wasted
effort. How might an agent waste effort? There are essentially two possibilities. First,
an agent is wasting effort if it is expending resources attempting to achieve the “wrong”
intentions. To see what we mean by this, consider the Tileworld scenario, introduced by
Pollack and Ringuette [8], and used by Kinny and Georgeff in their investigation into
agent commitment strategies [6]. In this environment, an agent is attempting to shove
blocks into various holes that appear in a two-dimensional grid-world. Unfortunately,
the holes themselves arbitrarily appear and disappear. Nowif an agent is attempting
to achieve an intention to shove a block into a particular hole even when that hole has
vanished, then it is wasting effort — it would intuitively dobetter to reconsider its in-
tentions. A similar waste of effort occurs if an agent fails to exploit a serendipitous
situation (for example when a hole appears to the side of an agent as it pushes a block).
A second type of wasted effort occurs if an agent has “correct” intentions, but is not
acting on them — in such a situation, an agent is engaging in unnecessary deliberation.



Situation Optimal Chose to ChangedM D
number intentions? deliberate? focus? optimal? optimal?

1 No No — No —
2 No Yes No Yes No
3 No Yes Yes Yes Yes?
4 Yes No — Yes —
5 Yes Yes No No Yes
6 Yes Yes Yes No No

Table 1. Practical Reasoning Situations (cf. [2])

In order to formally define what we mean by a real-time task environment, we need
to define what it means for an agent to haveoptimal intentions. Intuitively, an agent
has optimal intentions if there is no good reason for changing them — if, given the
information available to the agent, an optimal deliberation function would not choose to
change them. Formally, if(M;D;A;N ; l0) is an agent that is currently in state(b; i),
and that is situated in task environment(Env;V), then its intention seti is optimal ifD0((b; i)) = i for a deliberation strategyD0 that is optimal for(M;D;A;N ; l0).

Given this, we say a task environment(Env;V) is real-time iff for any optimal run(go; g1; : : :) of an agent(M;D;A;N ; l0) in this task environment, there is nou 2 IN
such that eitheri lu is optimal andcu = d or elsei lu is not optimal andcu = a.

The possible interactions between meta-level control and deliberation in real-time
task environments are summarised in Table 1 (adapted and extended from [2, p353]).
Consider situation (1). In this situation, the agent does not have optimal intentions, and
would hence do well to deliberate. However, it does not choose to deliberate and hence
the meta-level reasoning strategy that chose to act was sub-optimal. In situation (2),
the agent again has sub-optimal intentions, but this time chooses to deliberate, rather
than act. Unfortunately, the agent’s deliberation functionD does not change focus, and
is hence sub-optimal. Situation (3) is essentially the sameas situation (2), with the
exception that this time, the deliberation functiondoeschange focus. While it is clear
that the meta-level reasoning strategy is optimal in this situation, it is not absolutely
certain that the deliberation strategy is optimal, since wedo not know what the old
intentions were replaced with. However, it would certainlybe sub-optimalnot to change
intentions.

In situation (4), the agent has optimal intentions, and doesnot choose to deliberate.
Since the intentions are optimal, the meta-level control strategy is obviously correct not
to deliberate in this situation, and is hence optimal. In situation (5), the agent has optimal
intentions, but this time chooses to deliberate; the deliberation strategy, however, does
not change focus. Hence while the meta-level control strategy is clearly sub-optimal, the
deliberation strategy is optimal. Situation (6) is as situation (5), except that this time,
the deliberation function changes focus. In this case, boththe meta-level control and
deliberation components must be sub-optimal, since the agent wasted time deliberating,
and then modified its intentions despite the fact that there is no reason to do so.

From the discussion above, we can extract the following simple principle: in real-
time environments, a meta-level control strategy should choose to deliberate rather than



actonlywhen an optimal deliberation strategy would change focus. We will say a meta-
level control strategyM is soundwith respect to an optimal deliberation strategyD iff
wheneverM chooses to deliberate,D chooses to change focus (i.e., ifM(l) = d impliesD(l) 6= i l). Similarly, we sayM is completewith respect toD iff wheneverD would
change focus,M chooses to deliberate (i.e., ifD(l) 6= i l impliesM(l) = d).

Given this situation, one might wonder what is the point of having both meta-level
control and deliberation components, as an optimal meta-level controlstrategy need
only run the deliberation function as a subroutine to see if it would change focus, and
choose to deliberate just in case the deliberation strategydoeschange focus. This would
indeed be a successful strategy if the cost of running the meta-level control strategy
was roughly equal to the cost of deliberation. However, as wepointed out earlier, we
require that the cost of meta-level control besignificantly lessthan that of deliberation.
Under this assumption, running the deliberation componentin order to decide whether
to deliberate is not a realistic option.

We can easily establish the following theorem, which relates sound and complete
meta-level control strategies to real-time environments.

Theorem 2. For real-time task environments, a meta-level control-strategy is optimal
with respect to an optimal deliberation strategy iff it is sound and complete with respect
to this deliberation strategy.

Proof. For the left to right implication, assumeM is optimal. Then we need to show
thatM is sound and complete. For soundness, assume thatM(l) = d (the meta-level
control strategy says deliberate) but thatD(l) = i l (the deliberation function does not
choose to change focus). Then since this is a real-time task environment,M is not
optimal. This is a contradiction, so ifM is optimal, it is sound. For completeness,
assumeD(l) 6= i l but thatM(l) = a. Then since the task environment is real-time,M is not optimal. This is a contradiction, so ifM is optimal, it is complete. For the
right to left implication, assumeM is sound and complete with respect toD, but that
it is not optimal. If it is not optimal, then it must be making awrong decision at some
point, i.e., it must be choosing to deliberate when it would be better to act, or else to act
when it would be better to deliberate. Consider the first case, whereM(l) = d. SinceM is sound, we know thatD(l) 6= i l . SinceD is optimal, the agent’s intentions inl
must be sub-optimal, hence acting on them would be sub-optimal. Hence deliberation
must be the optimal choice. For the second case, supposeM(l) = a. AsM is sound
and complete, we know thatM(l) = d iff D(l) 6= i l . SinceM(l) = a, this means thatD(l) = i l , hence the agent’s intentions are optimal, and since the environment is real-
time, deliberating on them would be sub-optimal. Hence acting is the optimal choice,
soM is optimal.

In this same way, we say a deliberation strategyD is sound (with respect to optimal
meta-level control strategyM) iff it changes focus when the meta-level control strategy
chooses to deliberate, (i.e., ifD(l) 6= i l impliesM(l) = d), andcompleteiff whenever
the meta-level control strategy chooses to deliberate, it changes focus (i.e.,M(l) = d
impliesD(l) 6= i l).



4 An Example

In the previous section, we discussed the notion of a real-time task environment, and
investigated the relationship between meta-level controland deliberation in such task
environments. In this section, we show how four illustrative practical reasoning sce-
narios (introduced in [2]) can be represented within our framework. (More accurately,
Bratman and colleagues give six scenarios, since there are two variants each of scenar-
ios one and four. However, as we discuss below, these variants are meaningless in our
framework.)

4.1 Scenario One

All four scenarios are based on the following basic story: Rosie is an agent that has
been assigned the task of repairing a malfunctioningVDU. As a result of some task
analysis, she has decided that this might best be done by replacing theCRT (which
she believes is burnt out), and so she has adopted the intentions of going to theVDU

armed with a replacementCRT, and then using this new tube to fix theVDU. In the first
scenario, Rosie arrives at theVDU to find that theCRT is not burnt out: the contrast has
just been turned way down. She therefore has the option of fixing theVDU by adjusting
the contrast. This information is sufficient for her meta-level control strategy to decide
that it is worth deliberating, and in so doing, Rosie finds that adjusting the contrast
is cheaper than replacing theCRT. She thus adopts the new intention of adjusting the
contrast. She then acts, adjusting the contrast and completes her initial task.

In this, and all other scenarios, we represent Rosie’s worldas a set of propositions.
The propositions of interest to us are summarised in Table 2.While the intended in-
terpretation for most of these is self-evident, some require additional explanation:s is
intended to capture the presence of the additionalCRT in scenarios three and four;b1
is intended to capture the fact that Rosie knows that if it is possible to fix theVDU by
just adjusting the contrast then this is a better option thanusing theCRT she carries with
her;b2 is intended to capture the fact that rewiring the faultyCRT is the best option, and
b3 is intended to capture the fact that the additionalCRT in scenarios three and four is
superior to theCRT she carries with her.

In addition, we will also represent Rosie’s possible intentions as propositions: see
Table 2. Again, most of these are self-explanatory, butiv is needed to capture Rosie’s
initial progress from wherever she picks up the firstCRT to wherever the brokenVDU is.
For simplicity we will assume that each of these intentions can be achieved by a single
action (though each of these could equally well be a series ofactions). Thus the action
to achieve intentionir is �r , the action to achieve intentioniv is �v, and so on.

We can now formalise Rosie’s reasoning. Initially the stateof the world ise0 =f:w;:c; dg (theVDU is not working, theCRT is not burnt out, and the contrast is turned
down). Rosie’s initial internal statel0 is thus:(f:w; c;:d; b1g; fiv; iog). She thus begins
scenario one with false beliefs, since she wrongly believesthat theCRT is burned out.
Note that Rosie’s beliefs also include the preference informationb1. She initially has
two intentions: to fix theVDU using the originalCRT, and to go to theVDU.

The first part of Rosie’s operation is to decide whether to deliberate or act. She
chooses to act, and executes the action�v that achieves her intentioniv, and thus arrives



Beliefs
w VDU working
c CRT burnt out
d Contrast turned down
b1 Adjust contrast is better
r CRT can be fixed by re-wiring
b2 Re-wiring is better
s SpareVDU

b3 SpareVDU is better

Intentions
io Fix VDU using originalCRT

ic Fix VDU by adjusting contrast
ir Fix VDU by re-wiring
ia Fix VDU by using alternativeCRT

iv Go toVDU

Table 2. Rosie’s Possible Beliefs and Intentions

at theVDU. At this point she deliberates, and removes the now-achieved intention of
moving to theVDU from her intention set, so that the previously adopted intention of
fixing the VDU using theCRT she brought with her becomes the main focus. At this
point she can identify the real state of the world, and her next-state functionN updates
her beliefs to reflect this. Her internal state becomes:l1 = (f:w;:c; d; b1g; fiog). The
state of the external world is unchanged:e1 = e0.

Rosie again applies her meta-level control strategy:M(l) = �
d if f:c; d; b1g � bl or f:c; r; b2g � bl or fc; s; b3g � bl

a otherwise.

Thus there are three situations in which she will choose to deliberate, all of which can
be glossed as “there is now some reason to suspect that there is a better alternative to
repair theVDU”. Clearly this is just an illustrative fragment of the complete meta-level
control function which is appropriate to this example. Since Rosie now believes:c,
she chooses to deliberate. That is,M(l1) = d since theCRT is known to not be burnt
out, the contrast is known to be turned down, and it is known that adjusting the contrast
gives a better means of fixing theVDU than replacing theCRT. To find the result of
deliberation, we need to defineD. We have:D(l) = 8>><>>:ficg if f:c; d; b1g � blfirg if f:c; r; b2g � blfiag if fc; s; b3g � bl

l i otherwise.

The deliberation functionD thus decides to adjust the contrast:D(l1) = ficg. Note
thatD should really check that the agent has a means of adopting theintention before
it decides to adopt it — if Rosie is unable to adjust the contrast (because she has the



wrong kind of gripper for instance) then however good a solution this might be, there
is no point in changing focus to try and achieve it. For our purposes, we can ignore this
subtlety, however.

After deliberation, Rosie’s internal state becomes:l2 = (f:w;:c; d; b1g; ficg),
while the external world remains unchanged:e2 = e1 = e0. This timeM chooses
to act, and sinceA(l2) = �c, the contrast is adjusted, which repairs theVDU. This
change in the world causes Rosie to revise her beliefs about the state of theVDU and
the contrast control. The final state of the environment is thuse3 = fw;:c;:dg, while
Rosie’s internal state isl3 = (fw;:c;:d; b1g; ;).

The complete run for scenario one is thus:

r1 : g0 av�! g1 d�! g2 ac�! g3
4.2 Scenario Two

In this scenario, Rosie arrives at theVDU to find that theCRT is not burnt out and can
be fixed by re-wiring. However, this fix will only be short term, and theCRT will soon
burn out anyway. This information is sufficient for Rosie’s meta-level control strategy
to decide it is not worth deliberating to see if she is able to fix the VDU by rewiring,
and so she acts, replacing theCRT in line with her unchanged intention. The start this
scenario is described by:

e0 = f:w;:c; rg
l0 = (f:w; c;:r;:b2g; fivg)

So, although theCRT is not burnt out and theVDU can be fixed by re-wiring (facts that
Rosie initially does not know), Rosiedoesknow that re-wiring is a worse option than
replacing theCRT. After moving to theVDU, popping the intention stack, and revising
beliefs, just as in the previous scenario, the environment state remains unchanged but
Rosie’s internal sate isl1 = (f:w;:c; r;:b2g; fiog).

Rosie then applies her meta-level control strategy, and despite the fact that there is
reason for her to suspect that deliberation might lead to an alternative means of repairing
theVDU (a situation which is actually true),M returnsa because Rosie also knows that
fixing theCRT by re-wiring is a worse option than the one she has already. Thus she can
reject the idea of changing her focus without going as far as establishing whether or not
she can build a new plan in order to fix theVDU. Having decided to act, Rosie performsA(io) = �o and the situation becomes:

e2 = fw;:c; rg
l2 = (fw; c; r;:b2g; ;)

The complete run for Scenario Two is thus:

r2 : g0 av�! g1 ao�! g2



4.3 Scenario Three

In Scenario Three, Rosie arrives at theVDU to find a spare (and therefore free)CRT

sitting by the terminal, but notes that the spare is inferiorto the tube she brought with
her. Her meta-level control mechanism therefore realises that there is no advantage to
seeing if the new tube can be used, and so chooses to act. Rosiethen replaces theCRT

in line with her original intention. Scenario Three thus begins with the following state
of affairs:

e0 = f:w; c; sg
l0 = (f:w; c;:s;:b3g; fivg)

As before, Rosie proceeds to theVDU and this time finds the spare tube. After belief
revision, the environment state remains unchanged but Rosie’s internal state becomes
l1 = (f:w; c; s;:b3g; i0). This timeM tells her to act, because the newly visibleCRT

is worse than the one she is carrying with her. She acts,A(l1) = �o by replacing the
CRT and the situation becomes:

e2 = f:w;:c; sg
l2 = (f:w;:c; s;:b3g; ;)

The complete run for Scenario Three is thus:

r3 : g0 av�! g1 ao�! g2
4.4 Scenario Four

In Scenario Four, Rosie arrives at theVDU to again find a spareCRT sitting by the ter-
minal, and this time notes that the spare is superior to the tube she brought with her. Her
meta-level control mechanism therefore realises that there is considerable advantage to
seeing if the new tube can be used since the saving in the cost of the tube is greater
than the cost of deliberation. So she chooses to deliberate.Deliberation results in the
adoption of the intention to use the new tube, and Rosie then replaces theCRT in line
with this new intention. This scenario is almost the same as the third, except that this
time the “new”CRT is superior to the one that Rosie brings with her. Thus the initial
situation is:

e0 = f:w; c; sg
l0 = (f:w; c;:s; b3g; fivg)

After moving to theVDU and revising beliefs, the environment is unchanged (e1 = e0)
but Rosie’s internal state isl1 = (f:w; c; s; b3g; fi0g). This timeM(l1) = d andD(l1) = fiag. After this, the environment state again remains unchangedbut Rosie’s
internal state isl2 = (f:w; c; s; b3g; fiag), and Rosie proceeds to actA(l2) = �a giving
the following global state:



e3 = f:w;:c; sg
l3 = (f:w;:c; s; b3g; ;)

The complete run for Scenario Four is thus:

r1 : g0 av�! g1 d�! g2 aa�! g3
There are several points to note about this example. The firstis that bothM andD
are optimal for the cases given. There is no set of actions which could be chosen to
give a better result. The second is that it is easy to alter theexample so that Rosie is not
optimal. Consider what would happen in Scenario Four if she had no means of using the
additionalCRT (which would mean that there was no intentionia, or, worse no action�a

for achievingia).Mwould choose to deliberate since theCRT is superior, but either this
deliberation would not change the intentions (if there was no ia), or when Rosie came to
act on the changed intention, she would be unable to achieve that intention and would
have to revert toio. The final point to note is that it is this consideration of intentions
and actions which justifies our assumption that the time costofM is less than that ofD.
Deliberation will typically involve an expensive activitysuch as building and evaluating
the quality of plans to achieve some set of alternative intentions. Although that activity
might be as simple as looking to see if there is some alternative intention which can be
adopted, as here, it is still an overhead.

5 Generalised Meta-Level Reasoning

In this section, we will sketch out how an agent might usehigher-ordermeta-level
control strategies in its architecture, and what role such strategies might play. What do
we mean by a higher-order meta-level control strategy? Let us refer to the meta-level
control strategies as described above asfirst-order meta-level strategies. Such strate-
gies merely choose whether to deliberate or to act. Asecond-ordermeta-level control
strategy can be thought of asselectingwhich first-order meta-level control strategy to
use. For example, a second-order meta-level control strategy might examine the agent’s
beliefs to see how dynamic the agent’s environment is. If it determines that the environ-
ment is highly dynamic (i.e., the rate of world change is high[6]), then it might select
a cautious first-order meta-level control strategy — one which frequently causes the
agent to deliberate. If, in contrast, the environment is relatively static (the rate of world
change is low), then it might select abold meta-level control strategy (one that favours
action over deliberation).

It is easy to imagine an agent with a “tower” of such meta-level control strategies,
with nth-order strategy selecting which strategy to use at leveln� 1. The idea is very
similar to the use of meta-language hierarchies in meta-logic [7, 13].

We can incorporate such higher-order meta-level reasoninginto our formal model
with ease. First, letMLC1 = L ! C be the set of allfirst-order meta-level control
strategies. These are the meta-level control strategies that we discussed above. Then de-
fineMLCu = L ! MLCu�1, for all u 2 IN such thatu > 1. ThusMLC2 is the set of all



second-order meta-level control strategies,MLC3 is the set of all third-order meta-level
control strategies, and so on. An agent becomes a 5-tuple,(Mn;D;A;N ; l0), whereMn is annth order meta-level control strategy and the agent’s other components are as
before. Given this, we can redefine what it means for a run to represent a history of an
agent in an environment. Formally, an infinite sequence(g0; g1; g2; : : :) overG repre-
sents a run of an agentAg= (Mn;D;A;N ; l0) in an environmentEnv= (E; �; e0) iff
g0 = (e0; l0) and8u 2 IN, we have

gu+1 =8>>><>>>: (eu; (N (eu; blu);D(lu))) if Mn(lu) n�1 timesz }| {(lu) � � � (lu) = d(�(eu;A(i lu)); (N (eu; blu); i lu)) if Mn(lu) (lu) � � � (lu)| {z }
n�1 times

= a.

Notice that agents which make use of higher-order meta-level control are strictly speak-
ing no more powerful than “ordinary” agents, as defined earlier. For every higher-order
agent there is an “ordinary” agent that behaves in exactly the same way. The point is
that from the point of view of an agent designer, it may make sense to divide the func-
tionality of the agent up into different levels of meta-reasoning.

6 Conclusions

In this paper, we have investigated the relationship between the deliberation, action,
and meta-level control components of a practical reasoningarchitecture. While this
relationship has previously been investigated from an experimental perspective (partic-
ularly by Kinny [6]), we have in contrast attempted a mathematical analysis. We have
demonstrated how it is possible to construct a simple but, weargue, realistic model
of practical reasoning agents of the type investigated by Kinny and Georgeff, and we
have established some basic properties of such agents when placed in different types of
task environment. We have focussed in particular on real-time task environments, since
these are, we believe, the most common class of real-world task environment that one
encounters.

This work was originally instigated in an attempt to relate the work of Russell and
Subramanian on bounded-optimal agents (agents that perform as well as any agent can
do under certain architectural constraints [12]) to the increasingly large literature on
BDI agents [5, 2, 9, 10]. While this initial investigate led us into some areas we had not
initially anticipated visiting, we believe that investigating the implications of bounded-
optimal agents forBDI model will be an interesting research issue, and one that we hope
to investigate in future work. Another issue that we hope to consider is the moving from
individual agents to multi-agent systems.
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