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Abstract. In the area of agent-based computing there are many proposals for
specific system architectures, and a number of proposals forgeneral approaches
to building agents. As yet, however, there are comparatively few attempts to relate
these together, and even fewer attempts to provide methodologies which relate
designs to architectures and then to executable agents. This paper provides a first
attempt to address this shortcoming; we propose a general method of defining
architectures for logic-based agents which can be directlyexecuted. Our approach
is based upon the use of multi-context systems and we illustrate its use through
the specification of a simple agent.

1 Introduction

Agent-based computing is fast emerging as a new paradigm forengineering complex,
distributed systems [15, 28]. An important aspect of this trend is the use of agent ar-
chitectures as a means of delivering agent-based functionality (cf. work on agent pro-
gramming languages [16, 24, 26]). In this context, an architecture can be viewed as a
separation of concerns—it identifies the main functions that ultimately give rise to the
agent’s behaviour and defines the interdependencies that exist between them. As agent
architectures become more widely used, there is an increasing demand for unambiguous
specifications of them and there is a greater need to verify implementations of them. To
this end, a range of techniques have been used to formally specify agent architectures
(eg Concurrent MetateM [9, 27], DESIRE [3, 25] and Z [6]). However, these techniques
typically fall short in at least one of the following ways: (i) they enforce a particu-
lar view of architecture upon the specification; (ii) they offer no explicit structures for
modelling the components of an architecture or the relationships between them; (iii)
they leave a gap between the specification of an architectureand its implementation.

To rectify these shortcomings, we have proposed [20] the useof multi-context sys-
tems[12] as a means of specifying and implementing agent architectures. Multi-context
systems provide an overarching framework that allows distinct theoretical components
to be defined and interrelated. Such systems consist of a set of contexts, each of which



can informally be considered to be a logic and a set of formulae written in that logic,
and a set of bridge rules for transferring information between contexts. Thus, differ-
ent contexts can be used to represent different components of the architecture and the
interactions between these components can be specified by means of the bridge rules
between the contexts. We believe multi-context systems arewell suited to specifying
and modelling agent architectures for two main types of reason: (i) from asoftware en-
gineering perspectivethey support modular decomposition and encapsulation; and(ii)
from a logical modelling perspectivethey provide an efficient means of specifying and
executing complex logics. Each of these broad areas will nowbe dealt with in turn.

Let us first consider the advantages from a software engineering perspective. Firstly,
multi-context systems support the development of modular architectures. Each architec-
tural component—be it a functional component (responsiblefor assessing the agent’s
current situation, say) or a data structure component (the agent’s beliefs, say)—can
be represented as a separate context. The links between the components can then be
made explicit by writing bridge rules to link the contexts. This ability to directly sup-
port component decomposition offers a clean route from the high level specification
of the architecture through to its detailed design. Moreover, this basic philosophy can
be applied no matter how the architectural components are decomposed or how many
architectural components exist. Secondly, since multi-context systems encapsulate ar-
chitectural components and enable flexible interrelationships to be specified, they are
ideally suited to supporting re-use (both of designs and implementations). Thus, con-
texts that represent particular aspects of the architecture can be packaged as software
components (in the component-ware sense [23]) or they can beused as the basis for
specialisation of new contexts (inheritance in the object-oriented sense [2]).

Moving onto the logical modelling perspective, there are four main advantages of
adopting a multi-context approach. The first is an extensionof the software engineer-
ing advantages which specifically applies to logical systems. By breaking the logical
description of an agent into a set of contexts, each of which holds a set of related for-
mulae, we effectively get a form of many-sorted logic (all the formulae in one context
are a single sort) with the concomitant advantages of scalability and efficiency. The sec-
ond advantage follows on from this. Using multi-context systems makes it possible to
build agents which use several different logics in a way thatkeeps the logics neatly sep-
arated (all the formulae in one logic are gathered together in one context). This either
makes it possible to increase the representational power oflogical agents (compared
with those which use a single logic) or simplify agents conceptually (compared with
those which use several logics in one global context). This latter advantage is illustrated
in [20] where we use multi-context systems to simplify the construction of a BDI agent.

Both of the above advantages apply to any logical agent builtusing multi-context
systems. The remaining two advantages apply to specific types of logical agent—those
which reason about their beliefs and those of other agents. The first is that multi-context
systems make it possible [12] to build agents which reason ina way which conforms
to the use of modal logics like KD45 (the standard modal logicfor handling belief)
but which obviates the difficulties usually inherent in theorem proving in such logics.
Again this is illustrated in [20]. Thus the use of multi-context systems makes it easy
to directly execute agent specifications where those specifications deal with modal no-



tions. The final advantage is related to this. Agents which reason about beliefs are often
confronted with the problem of modelling the beliefs of other agents, and this can be
hard, especially when those other agents reason about beliefs in a different way (be-
cause, for instance, they use a different logic). Multi-context systems provide a neat
solution to this problem [1, 5].

When the software engineering and the logical modelling perspectives are com-
bined, it can be seen that the multi-context approach offersa clear path from specifi-
cation through to implementation. By providing a clear set of mappings from concept
to design, and from design to implementation, the multi-context approach offers a way
of tackling the gap (gulf!) that currently exists between the theory and the practice of
agent-based systems. This paper extends the suggestion made in [20] by further re-
fining the approach, extending the representation and providing additional support for
building complex agents.

2 Multi-context agents

As discussed above, we believe that the use of multi-contextsystems offers a number of
advantages when engineering agent architectures. However, multi-context systems are
not a panacea. We believe that they are most appropriate whenbuilding agents which
are logic-based and are therefore largely deliberative1.

2.1 The basic model

Using a multi-context approach, an agent architecture consists of four basic types of
component. These components were first identified in the context of building theorem
provers for modal logic [12], before being identified as a methodology for constructing
agent architectures [17]. The components are2 :

– Units: Structural entities representing the main components of the architecture.
– Logics: Declarative languages, each with a set of axioms and a number of rules of

inference. Each unit has a single logic associated with it.
– Theories: Sets of formulae written in the logic associated with a unit.
– Bridge rules: Rules of inference which relate formulae in different units.

Units represent the various components of the architecture. They contain the bulk of
an agent’s problem solving knowledge, and this knowledge isencoded in the specific
theory that the unit encapsulates. In general, the nature ofthe units will vary between
architectures. For example, a BDI agent may have units whichrepresent theories of
beliefs, desires and intentions (as in [20]), whereas an architecture based on a functional
separation of concerns may have units which encode theoriesof cooperation, situation
assessment and plan execution. In either case, each unit hasa suitable logic associated
with it. Thus the belief unit of a BDI agent has a logic of belief associated with it, and

1 See [29] for a discussion of the relative merits of logic-based and non logic-based approaches
to specifying and building agent architectures.

2 For more detail see [17].



the intention unit has a logic of intention. The logic associated with each unit provides
the language in which the information in that unit is encoded, and the bridge rules
provide the mechanism by which information is transferred between units.

Bridge rules can be understood as rules of inference with premises and conclusions
in different units. For instance: u1 :  ; u2 : 'u3 : �
means that formula� may be deduced in unitu3 if formulae and' are deduced in
unitsu1 andu2 respectively.

When used as a means of specifying agent architectures [17, 20], all the elements
of the model, both units and bridge rules, are taken to work concurrently. In practice
this means that the execution of each unit is a non-terminating, deductive process3. The
bridge rules continuously examine the theories of the unitsthat appear in their premises
for new sets of formulae that match them. This means that all the components of the
architecture are always ready to react to any change (external or internal) and that there
are no central control elements.

2.2 The extended model

The model as outlined above is that introduced in [17] and used in [20]. However,
this model has proved deficient in a couple of ways, both connected to the dynamics
of reasoning. In particular we have found it useful to extendthe basic idea of multi-
context systems by associating two control elements with the bridge rules:consumption
andtime-outs. A consuming condition means the bridge rule removes the formula from
the theory which contains the premise (remember that a theory is considered to be a
set of formulae). Thus in bridge rules with consuming conditions, formulae “move”
between units. To distinguish between a consuming condition and a non-consuming
condition, we will use the notationui >  for consuming andui :  for non-consuming
conditions. Thus: u1 >  ; u2 : 'u3 : �
means that when the bridge rule is executed, is removed fromu1 but' is not removed
from u2.

Consuming conditions increase expressiveness in the communication between units.
With this facility, we can model the movement of a formula from one theory to another
(from one unit to another), changes in the theory of one unit that cause the removal
of a formula from another one, and so on. This mechanism also makes it possible to
model the concept of state since having a concrete formula inone unit or another might
represent a different agent state. For example, later in thepaper we use the presence of
a formula in a particular unit to indicate the availability of a resource.

A time-out in a bridge rule means there is a delay between the instant in time at
which the conditions of the bridge rule are satisfied and the effective activation of the
rule. A time-out is denoted by a label on the right of the rule;for instance:u1 :  u2 : ' [t]

3 For more detail on exactly how this is achieved, see [21].



means thatt units of time after the theory in unitu1 gets formula , the theory in unitu2 will be extended by formula'. If during this time period formula is removed from
the theory in unitu1, this rule will not be applied. In a similar way to consuming con-
ditions, time-outs increase expressiveness in the communication between units. This
is important when actions performed by bridge rules need to be retracted if a specific
event does not happen after a given period of time. In particular, it enables us to repre-
sent situations where silence during a period of time may mean failure (in this case the
bridge rules can then be used to re-establish a previous state)4.

3 Modular agents

Using units and bridge rules as the only structural elementsis cumbersome when build-
ing complex agents (as can be seen from the model we developedin [20]). As the
complexity of the agent increases, it rapidly becomes very difficult to deal with the nec-
essary number of units and their interconnections using bridge rules alone. Adding new
capabilities to the agent becomes a complex task in itself. To solve this problem we
suggest adding another level of abstraction to the model—themodule.

3.1 Introducing modules

A module is a set of units and bridge rules that together modela particular capability or
facet of an agent. For example, planning agents must be capable of managing resources,
and such an agent might have a module modeling this ability. Similarly, such an agent
might have a module for generating plans, a module for handling communication, and
so on. Thus modules capture exactly the same idea as the “capabilities” discussed by
Busettaet al. [4]. Unlike Busettaet al., we do not currently allow modules to be nested
inside one another, largely because we have not yet found it necessary to do so. How-
ever, it seems likely that we will need to develop a means of handling nested hierachies
of modules in order to build more complex agents than we are currently constructing.

Each module must have a communication unit. This unit is the module’s unique
point of contact with the other modules and it knows what kindof messages its module
can deal with. All of an agent’s communication units are inter-connected with the others
usingmulticast bridge rules(MBRs) as in Figure 1. This figure shows three MBRs (the
rectangles in the middle of the diagram) each of which has a single premise in module
a and a single conclusion in each of the modulesni.

Since the MBRs send messages to more than one module, a singlemessage can pro-
voke more than one answer and, hence, contradictory information may appear. There
are many possible ways of dealing with this problem, howeverhere we consider just one
of them as an example. We associate a weight with each message. This value is assigned

4 Both of these extensions to the standard multi-context system incur a cost. This is that in-
cluding them in the model means that the model departs somewhat from first order predicate
calculus, and so does not have a fully-defined semantics. We are currently looking at using
linear logic, in which individual propositions can only be used once in any given proof, as a
means of giving a semantics to consuming conditions, and various temporal logics as a means
of giving a semantics to time-outs.
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Fig. 1. The inter-connection of modules (froma’s perspective only)

to the message by the communication unit of the module that sends it out. Weights be-
long to [0; 1] (maximum importance is 1 and minimum is 0), and their meaningis the
strength of the opinion given in the message, and this can be used to resolve contradic-
tory messages. For instance, the message with highest weight might be preferred, or the
different weights of incoming messages could be combined bya communication unit
receiving them to take a final decision (for instance using the belief revision mechanism
described in [18]). Note that weights are used only ininter-modulemessages.

3.2 Messages between modules

Given a setAN of agent names and a setMN of module names, an inter-module
message has the form: I(S;R; ';G;  )
where

– I is an illocutionary particle that specifies the kind of message.
– S andR both have the formA[=m]�5 whereA 2 AN or A = Self (Self refers

to the agent that owns the module) andm 2 MN , orm = all (all denotes all the
modules within that agent).S reflects who is sending the message andR indicates
to whom it is directed.

5 As elsewhere we use BNF syntax, so thatA[=m]� meansA followed by one or more occur-
rences of=m.



– ' is the content of the message.
– G is a record of the derivation of'. It has the form:ff�1 ` '1g : : :f�n ` 'ngg

where� is a set of formulae and'i is a formula with'n = ' 6.
–  2 [0; 1] is the weight associated with the message.

To see how this works in practice, consider the following. Suppose that an agent (namedB) has four modules (a, b, c, d). Modulea sends the message:Ask(Self =a;Self =all; Give(B;A;Nail);  1; 0:5)
This means that modulea of agentB is asking all its modules whetherB should giveA a nail. The reason for doing this is 1 and the weighta puts on this request is 0.5.
Assume modulesc andd send the answerAnswer(Self =c;Self =a; not(Give(B;A;Nail));  2; 0:6)
and Answer(Self =d;Self =a; not(Give(B;A;Nail));  3; 0:7)
while moduleb sendsAnswer(Self =b;Self =a;Give(B;A;Nail);  4; 0:3)
Currently we treat the weights of the messages as possibility measures [7], and so com-
bine the disjunctive support fornot(Give(B;A;Nail)) using max. As this combined
weight is higher than the weight of the positive literal, thecommunication unit of mod-
ulea will accept the opinionnot(Give(B;A;Nail)).

The messages we have discussed so far are those which are passed around the agent
itself in order to exchange information between the moduleswhich compose it. Our
approach also admits the more common idea of messages between agents. Such inter-
agent messages have the same basic form, but they have two minor differences:

– S andR are agent names (i.e.S;R 2 AN ), no modules are specified.
– there is no degree of importance (because it is internal to a particular agent—

however inter-agent messages could be augmented with a degree of belief [18]
which could be based upon the weight of the relevant intra-agent messages.)

With this machinery in place, we are in a position to specify realistic agent architectures.

4 Specifying a simple agent

This section gives a specification of a simple agent using theapproach outlined above.
The agent in question is a simple version of the home improvement agents first dis-
cussed in [19], which is supposed to roam the authors’ homes making small changes

6 In other words,G is exactly the set of grounds of the argument for' [20]. Where the agent does
not need to be able to justify its statements, this componentof the message can be discarded.
Note that, as argued by Gabbay [10] this approach is a generalisation of classical logic—there
is nothing to stop the same approach being used when messagesare just formulae in classical
logic.
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to their environment. In particular the agent we discuss here attempts to hang pictures.
As mentioned, the agent is rather simpler than those originally introduced, the simplifi-
cation being intended to filter out unnecessary detail that might confuse the reader. As
a result, compared with the more complex versions of the homeimprovement agents
described in [20], the agent is not quite solipsistic (sinceit has some awareness of its
environment) but it is certainly autistic (since it has no mechanisms for interacting with
other agents). For an example of the specification of a more complex agent, see [21].

4.1 A high-level description

The basic structure of the agent is that of Figure 2. There arethree modules connected
by multicast bridge rules. These are the plan library (PL), the resource manager (RM),
and the goal manager (GM). Broadly speaking, the plan library stores plans for the
tasks that the agent knows how to complete, the resource manager keeps track of the
resources available to the agent, and the goal manager relates the goals of the agent to
the selection of appropriate plans.

There are two types of message which get passed along the multicast bridge rules.
These are the following:

– Ask: a request to another module.
– Answer: an answer to an inter-module request.

Thus all the modules can do is to make requests on one another and answer those re-
quests. We also need to define the predicates which form the content of such messages.
Given a set of agent namesAN , and withAN 0 = AN [ fSelfg.

– Goal(X): X is a string describing an action. This denotes the fact that the agent
has the goalX .

– Have(X;Z): X 2 AN 0 is the name of an agent (here always instantiated toSelf ,
the agent’s name for itself, but a variable since the agent isaware that other agents
may own things), andZ is the name of an object. This denotes AgentX has pos-
session ofZ.
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Note that in the rest of the paper we adopt a Prolog-like notation in which the upper
case lettersX;Y; Z; P are taken to be variables.

As can be seen from the above, the content of the messages is relatively simple,
referring to goals that the agent has, and resources it possesses. Thus a typical message
would be a request from the goal manager as to whether the agent possesses a hammer:ask(Self =GM;Self =all; goal(have(Self ; hammer)); fg)
Note that in this message, as in all messages in the remainderof this paper, we ignore
the weight in the interests of clarity. Such a request might be generated when the goal
manager is trying to ascertain if the agent can fulfill a possible plan which involves
using a hammer.

4.2 Specifications of the modules

Having identified the structure of the agent in terms of modules, the next stage in the
specification is to detail the internal structure of the modules in terms of the units they
contain, and the bridge rules connecting those units. The structure of the plan library
module is given in Figure 3. In this diagram, units are represented as circles, and bridge
rules as rectangles. Arrows into bridge rules indicate units which hold the antecedents
of the bridge rules, and arrows out indicate the units which hold the consequents. The
two units in the plan library module are:

– The communication unit (CU): the unit which handles communication with other
units.

– The plan repository (S): a unit which holds a set of plans.

The bridge rule connecting these units is:GET PLAN = CU > ask(Self =Sender;Self =all; goal(Z); fg),S : plan(Z; P )CU : answer(Self =PL; (Self =Sender; goal(Z); fPg)
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where the predicateplan(Z; P ) denotes the fact thatP , taken to be a conjunction of
terms, is a plan to achieve the goalZ7.

When the communication unit sees a message on the inter-module bus asking about
the feasibility of the agent achieving a goal, then, if thereis a plan to achieve that goal
in the plan repository, that plan is sent to the module which asked the original question.
Note that the bridge rule has a consuming condition—this is to ensure that the question
is only answered once.

The structure of the resource manager module is given in Figure 4. The two units in
this module are:

– The communication unit (CU).
– The resource respository (R): a unit which holds the set of resources available to

the agent.

The bridge rule connecting the two units is the following:ALLOCATE = CU > ask(Self =Sender; Self =Receiver; goal(have(X;Z)); fg),R > resource(Z; free)CU : answer(Self =RM; Self =Sender; have(X;Z); fg),R : resource(Z; allocated)
where theresource(Z; allocated) denotes the fact that the resourceZ is in use, andresource(Z; free) denotes the fact that the resourceZ is not in use.

When the communication unit sees a message on the inter-module bus asking if the
agent has a resource, then, if that resource is in the resource repository and is currently
free, the formula recording the free resource is deleted by the consuming condition, a
new formula recording the fact that the resource is allocated is written to the repository,
and a response is posted on the inter-module bus. Note that designating a resource

7 Though here we take a rather relaxed view of what constitutesa plan—our “plans” are little
more than a set of pre-conditions for achieving the goal.
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Fig. 5. The goal manager module

as “allocated” is not the same as consuming a resource (whichwould be denoted by
the deletion of the resource), and that once again the bridgerule deletes the original
message from the communication unit.

The goal manager is rather more complex than either of the previous modules we
have discussed, as is immediately clear from Figure 5 which shows the modules it
contains, and the bridge rules which connect them. These modules are:

– The communication unit (CU).
– The plan list unit (P): this contains a list of plans the execution of which is currently

being monitored.
– The goal manager unit (G): this is the heart of the module, and ensures that the

necessary sub-goaling is carried out.
– The resource list module (R): this contains a list of the resources being used as part

of plans which are currently being executed.

The bridge rules relating these units are as follows. The first two bridge rules handle
incoming information from the communication unit:RESOURCE = CU > answer(Self =RM;Self =GM; have(Self ; Z); fg)R : ZPLAN = CU > answer(Self =PL;Self =GM; goal(Z); fPg)P : plan(Z; P )



The first of these,RESOURCE, looks for messages from the resource manager report-
ing that the agent has possession of some resource. When sucha message arrives, the
goal manager adds a formula representing the resource to itsresource list module. The
second bridge rulePLAN does much the same for messages from the plan library re-
porting the existence of a plan—such plans are written to theplan library. There is also
a bridge ruleASK which generates messages for other modules:

ASK = G : goal(X),G : not(done(X)),R : not(X);P : not(plan(X;Z))G : not(done(ask(X)));CU : ask(Self =G;Self =all; goal(X); fg),G : done(ask(X))
If the agent has the goal to achieveX , andX has not been achieved, nor isX an
available resource (and therefore in theR unit), nor is there a plan to achieveX , andX has not already been requested from other modules, thenX is requested from other
modules and this request is recorded. The remaining bridge rules are:MONITOR = G : goal(X),R : not(X),P : plan(X;P )G : monitor(X;P )DONE = G : goal(X),R : XG : done(X)
TheMONITOR bridge rule takes a goalX and, if there is no resource to achieveX but
there is a plan to obtain the resource, adds the formulamonitor(X;P ) to theG unit,
which has the effect of beginnning the search for the resources to carry out the plan. The
DONE bridge rule identifies that a goalX has been achieved when a suitable resource
has been allocated.

4.3 Specifications of the units

Having identified the individual units within each module, and the bridge rules which
connect the units, the next stage of the specification is to identify the logics present
within the various units, and the theories which are writtenin those logics. For this
agent most of the units are simple containers for atomic formulae. In contrast, theG
unit contains a theory which controls the execution of plans. The relevant formulae are:monitor(X;P ) ! assert subgoals(P )monitor(X;P ) ! prove(P )monitor(X;P ) ^ proved(P ) ! done(X)



assert subgoals( î Yi) ! î goal(Yi)prove(X ^ î Yi) ^ done(X)! prove( î Yi)î done(Yi) ! proved( î Yi)
Themonitor predicate forces all the conjuncts which make up its first argument to be
goals (which will be monitored in turn), and kicks off the “proof” of the plan which is
its second argument8. This plan will be a conjunction of actions, and as each is “done”
(a state of affairs achieved through the allocation of resources by other bridge rules),
the proof of the next conjunct is sought. When all have been “proved”, the relevant goal
is marked as completed.

The specification as presented so far is generic—it is akin toa class description
for a class of autistic home improvement agents. To get a specific agent we have to
“program” it by giving it information about its initial state. For our particular example
there is little such information, and we only need to add formulae to three units. The
plan repository holds a plan for hanging pictures using hammers and nails:S : plan(hangP icture(X);have(X; picture) ^ have(X;nail) ^ have(X;hammer))
The resource repository holds the information that the agent has a picture, nail and a
hammer: R : Resource(picture; free)R : Resource(nail; free)R : Resource(hammer; free)
Finally, the goal manager contains the fact that the agent has the goal of hanging a
picture: G : goal(hangP icture(Self ))
With this information, the specification is complete.

4.4 The agent in action

When the agent is instantiated with this information and executed, we get the following
behaviour. The goal manager unit, which has the goal of hanging a picture, does not
have the resources to hang the picture, and has no information on how to obtain them.
It therefore fires theASK bridge rule to ask other modules for input, sending message

8 Given our relaxed view of planning, this “proof” consists ofshowing the pre-conditions of the
plan can be met.



ask(Self=GM; Self=all; goal(hangP icture(Self )); fg) (GM1)answer(Self=PL; Self=GM; goal(hangP icture(Self ));fhave(Self ; picture) ^ have(Self ; nail) ^ have(Self ; hammer)g) (PL1)ask(Self=GM; Self=all; goal(have(Self ; picture)); fg) (GM2)ask(Self=GM; Self=all; goal(have(Self ; nail)); fg) (GM3)answer(Self=RM;Self=GM; have(Self ; picture); fg) (RM1)ask(Self=GM; Self=all; goal(have(Self ; hammer)); fg) (GM4)answer(Self=RM;Self=GM; have(Self ; nail); fg) (RM2)answer(Self=RM;Self=GM; have(Self ; hammer); fg) (RM3)

Table 1.The inter-module messages

GM1 (detailed in Table 1). When this message reaches the planlibrary, the bridge rule
GET PLAN is fired, returning a plan (PL1). This triggers the bridge rule PLAN in the
goal manager, adding the plan to itsP unit. This addition causes theMONITOR bridge
rule to fire. This, along with the theory in theG unit, causes the goal manager to realise
that it needs a picture, hammer and nail, and to ask for these (GM2, GM3, GM4). As
each of these messages reaches the resource manager, they cause theALLOCATE rule
to fire, identifying the resources as being allocated, and generating messages back to
the goal manager (RM1, RM2, RM3). These resources cause theRESOURCE bridge
rule in the goal manager to fire and the resources to be added tothe resource list,R.
The addition of the resouces is all that is required to complete the plan of hanging a pic-
ture, and the bridge ruleDONE fires, adding the formulaedone(have(Self; picture)),done(have(Self; hammer)) anddone(have(Self; nail)) to theG unit. The theory in
G then completes execution.

The messages passed between modules are represented in pictorial form in Fig-
ure 6—each row in the diagram identifies one module, time runsfrom left to right, and
the diagonal lines represent the transfer of messages between modules.

5 Related Work

There are two main strands of work to which ours is related—work on executable agent
architectures and work on multi-context systems. As mentioned above, most previous
work which has produced formal models of agent architectures, for example dMARS
[13], Agent0 [22] and GRATE* [14], has failed to carry forward the clarity of the speci-
fication into the implementation—there is a leap of faith required between the two. Our
work, on the other hand, maintains a clear link between specification and implemen-
tation through the direct execution of the specification as exemplified in our running
example. This relation to direct execution also distinguishes our work from that on
modelling agents in Z [6], since it is not yet possible to directly execute a Z specifica-
tion. It is possible to animate specifications, which makes it possible to see what would
happen if the specification were executed, but animating agent specifications is some
way from providing operational agents. Our work also differs from that which aims to
describe the operational semantics of agent architecturesusing the�-calculus [8], since
our models have a declarative rather than an operational semantics.
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Fig. 6. An execution trace for the agent

More directly related to our work is that on DESIRE and Concurrent MetateM. DE-
SIRE [3, 25] is a modelling framework originally conceived as a means of specifying
complex knowledge-based systems. DESIRE views both the individual agents and the
overall system as a compositional architecture. All functionality is designed as a series
of interacting, task-based, hierarchically structured components. Though there are sev-
eral differences, from the point of view of the proposal advocated in this paper, we can
see DESIRE’stasksas modules andinformation linksas bridge rules. In our approach
there is no an explicit task control knowledge of the kind found in DESIRE. There are
no entities that control which units, bridge rules or modules should be activated nor
when and how they are activated. Also, in DESIRE the communication between tasks
is carried out by the information links that are wired-in by the design engineer. Our
inter-module communication is organized as a bus and the independence between mod-
ules means new ones can be added without modifying the existing structures. Finally
the communication model in DESIRE is based on a one-to-one connection between
tasks, in a similar way to that in which we connect units inside a module. In contrast,
our communication between modules is based on a multicast model.

Concurrent MetateM defines concurrent semantics at the level of single rules [9, 27].
Thus an agent is basically a set of temporal rules which fire when their antecedents are
satisfied. Our approach does not assume concurrency within the components of units,
rather the units themselves are the concurrent components of our architectures. This
means that our model has an inherent concurrent semantics atthe level of the units and
has no central control mechanism. Though our exemplar uses what is essentially first
order logic (albeit a first order logic labelled with arguments), we could use any logic
we choose—we are not restricted to a temporal logic as in MetateM.

There are also differences between our work and previous work on using multi-
context systems to model agents’ beliefs. In the latter [11], different units, all contain-
ing a belief predicate, are used to represent the beliefs of the agent and the beliefs of
all the acquaintances of the agent. The nested beliefs of agents may lead to tree-like
structures of such units (calledbelief contexts). Such structures have then been used to
solve problems like the three wise men [5]. In our case, however, any nested beliefs
would typically be included in a single unit or module. Moreover we provide a more
comprehensive formalisation of an autonomous agent in thatwe additionally show how
capabilities other than that of reasoning about beliefs canbe incorporated into the archi-
tecture. In this latter respect this paper extends the work of [20] with the idea of modules
which links the approach more strongly with the software engineering tradition.



6 Conclusions

This paper has proposed a general approach to defining agent architectures. It provides
a means of structuring logical specifications of agents in a way which makes them di-
rectly executable. This approach has a number of advantages. Firstly it bridges the gap
between the specification of agents and the programs which implement those specifica-
tions. Secondly, the modularity of the approach makes it easier to build agents which
are capable of carrying out complex tasks such as distributed planning. From a soft-
ware engineering point of view, the approach leads to architectures which are easily
expandable, and have re-useable components.

From this latter point of view, our approach suggests a methodology for building
agents which has similarities with object-oriented design[2]. The notion of inheritance
can be applied to groups of units and bridge rules, modules and even complete agents.
These elements could have a general design which is specialized to different and more
concrete instances by adding units and modules, or by refining the theories inside the
units of a generic agent template. However, before we can develop this methodology,
there are some issues to resolve. Firstly there is the matterof the semantics of the
comsuming conditions and time-outs in bridge rules. Secondly, there is the question of
how to handle nested hierachies of modules—something whichis essential if we are to
develop really complex agents.
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