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Abstract. In the area of agent-based computing there are many prapfusal
specific system architectures, and a number of proposatgefweral approaches
to building agents. As yet, however, there are comparatfest attempts to relate
these together, and even fewer attempts to provide metbgiés| which relate
designs to architectures and then to executable agentspapeér provides a first
attempt to address this shortcoming; we propose a genetabohef defining
architectures for logic-based agents which can be direggguted. Our approach
is based upon the use of multi-context systems and we #itesits use through
the specification of a simple agent.

1 Introduction

Agent-based computing is fast emerging as a new paradigen@ineering complex,
distributed systems [15, 28]. An important aspect of thésdr is the use of agent ar-
chitectures as a means of delivering agent-based fundtp(&f. work on agent pro-
gramming languages [16, 24, 26]). In this context, an aechilre can be viewed as a
separation of concerns—it identifies the main functions tiftamately give rise to the
agent’s behaviour and defines the interdependencies tisabetween them. As agent
architectures become more widely used, there is an incrgdsimand for unambiguous
specifications of them and there is a greater need to verifjeimentations of them. To
this end, a range of techniques have been used to formaltyfg@gent architectures
(eg Concurrent MetateM [9, 27], DESIRE [3, 25] and Z [6]). Hoxer, these techniques
typically fall short in at least one of the following ways) (hey enforce a particu-
lar view of architecture upon the specification; (ii) thejeofno explicit structures for
modelling the components of an architecture or the relatigps between them; (iii)
they leave a gap between the specification of an architeahddts implementation.

To rectify these shortcomings, we have proposed [20] theofismulti-context sys-
temg12] as a means of specifying and implementing agent amtiites. Multi-context
systems provide an overarching framework that allowsmtistheoretical components
to be defined and interrelated. Such systems consist of d sehtexts, each of which



can informally be considered to be a logic and a set of formuldtten in that logic,
and a set of bridge rules for transferring information betweontexts. Thus, differ-
ent contexts can be used to represent different compongtite architecture and the
interactions between these components can be specified &aysnoé the bridge rules
between the contexts. We believe multi-context systemsvatesuited to specifying
and modelling agent architectures for two main types ofaeag) from asoftware en-
gineering perspectivihey support modular decomposition and encapsulation(ignd
from alogical modelling perspectivihey provide an efficient means of specifying and
executing complex logics. Each of these broad areas will b@wealt with in turn.

Let us first consider the advantages from a software endimgeperspective. Firstly,
multi-context systems support the development of modutdnitectures. Each architec-
tural component—be it a functional component (responsini@ssessing the agent’s
current situation, say) or a data structure component (feats beliefs, say)—can
be represented as a separate context. The links betweenprtipooents can then be
made explicit by writing bridge rules to link the context$id ability to directly sup-
port component decomposition offers a clean route from tgh kevel specification
of the architecture through to its detailed design. Moreabés basic philosophy can
be applied no matter how the architectural components arendgosed or how many
architectural components exist. Secondly, since mulit&xt systems encapsulate ar-
chitectural components and enable flexible interrelatigpssto be specified, they are
ideally suited to supporting re-use (both of designs andémpntations). Thus, con-
texts that represent particular aspects of the architectan be packaged as software
components (in the component-ware sense [23]) or they carsbé as the basis for
specialisation of new contexts (inheritance in the obgganted sense [2]).

Moving onto the logical modelling perspective, there anerfmain advantages of
adopting a multi-context approach. The first is an extenefdie software engineer-
ing advantages which specifically applies to logical systeBy breaking the logical
description of an agent into a set of contexts, each of whigtisha set of related for-
mulae, we effectively get a form of many-sorted logic (a# formulae in one context
are a single sort) with the concomitant advantages of sitifadnd efficiency. The sec-
ond advantage follows on from this. Using multi-contextteyss makes it possible to
build agents which use several different logics in a way kleaps the logics neatly sep-
arated (all the formulae in one logic are gathered togethene context). This either
makes it possible to increase the representational powkergafal agents (compared
with those which use a single logic) or simplify agents cqutaally (compared with
those which use several logics in one global context). Hitel advantage is illustrated
in [20] where we use multi-context systems to simplify thastouction of a BDI agent.

Both of the above advantages apply to any logical agent bsiltg multi-context
systems. The remaining two advantages apply to specifistypegical agent—those
which reason about their beliefs and those of other agehssfiiist is that multi-context
systems make it possible [12] to build agents which reasanvirmy which conforms
to the use of modal logics like KD45 (the standard modal Idgichandling belief)
but which obviates the difficulties usually inherent in theya proving in such logics.
Again this is illustrated in [20]. Thus the use of multi-cert systems makes it easy
to directly execute agent specifications where those spatidgns deal with modal no-



tions. The final advantage is related to this. Agents whielsoa about beliefs are often
confronted with the problem of modelling the beliefs of athgents, and this can be
hard, especially when those other agents reason aboutsbiglia different way (be-
cause, for instance, they use a different logic). Multiteah systems provide a neat
solution to this problem [1, 5].

When the software engineering and the logical modellingpectives are com-
bined, it can be seen that the multi-context approach offestear path from specifi-
cation through to implementation. By providing a clear detnappings from concept
to design, and from design to implementation, the multiternapproach offers a way
of tackling the gap (gulf!) that currently exists betweea theory and the practice of
agent-based systems. This paper extends the suggestianim§zD] by further re-
fining the approach, extending the representation and girayadditional support for
building complex agents.

2 Multi-context agents

As discussed above, we believe that the use of multi-cosyestems offers a number of
advantages when engineering agent architectures. Howauéii-context systems are
not a panacea. We believe that they are most appropriate ldikeling agents which
are logic-based and are therefore largely deliberative

2.1 The basic model

Using a multi-context approach, an agent architectureistmnef four basic types of
component. These components were first identified in theegbof building theorem
provers for modal logic [12], before being identified as amoeblogy for constructing
agent architectures [17]. The componentg are

— Units: Structural entities representing the main componentseétchitecture.

— Logics Declarative languages, each with a set of axioms and a nuoflpeles of
inference. Each unit has a single logic associated with it.

— Theories Sets of formulae written in the logic associated with a.unit

— Bridge rules Rules of inference which relate formulae in different anit

Units represent the various components of the architeciurey contain the bulk of
an agent’s problem solving knowledge, and this knowledgizoded in the specific
theory that the unit encapsulates. In general, the natutteeodinits will vary between
architectures. For example, a BDI agent may have units wigphesent theories of
beliefs, desires and intentions (as in [20]), whereas dnitaature based on a functional
separation of concerns may have units which encode theafrisoperation, situation
assessment and plan execution. In either case, each uritduétsible logic associated
with it. Thus the belief unit of a BDI agent has a logic of békssociated with it, and

! See [29] for a discussion of the relative merits of logicdzhand non logic-based approaches
to specifying and building agent architectures.
2 For more detail see [17].



the intention unit has a logic of intention. The logic asat®il with each unit provides
the language in which the information in that unit is encqodmtt the bridge rules
provide the mechanism by which information is transferretieen units.

Bridge rules can be understood as rules of inference withnises and conclusions
in different units. For instance:

Uy Y, Uz P
us . 0
means that formuld may be deduced in unit; if formulae andy are deduced in
unitsu; andus, respectively.

When used as a means of specifying agent architectures(], al2the elements
of the model, both units and bridge rules, are taken to worlcaaently. In practice
this means that the execution of each unit is a non-ternmnigatieductive procedsThe
bridge rules continuously examine the theories of the uh@asappear in their premises
for new sets of formulae that match them. This means thahalcbmponents of the
architecture are always ready to react to any change (ettarinternal) and that there
are no central control elements.

2.2 The extended model

The model as outlined above is that introduced in [17] andl usg20]. However,
this model has proved deficient in a couple of ways, both cotedeto the dynamics
of reasoning. In particular we have found it useful to extémal basic idea of multi-
context systems by associating two control elements wétbtitdge rulesconsumption
andtime-outs A consuming condition means the bridge rule removes thadita from
the theory which contains the premise (remember that a yhisaronsidered to be a
set of formulae). Thus in bridge rules with consuming cdndg, formulae “move”
between units. To distinguish between a consuming comdéiod a non-consuming
condition, we will use the notatiam; > « for consuming and; : ) for non-consuming
conditions. Thus:

up > 1/}7 Uz @

us . 0

means that when the bridge rule is execute, removed fromu; buty is not removed
from us.

Consuming conditions increase expressiveness in the coiation between units.
With this facility, we can model the movement of a formularfrone theory to another
(from one unit to another), changes in the theory of one gt tause the removal
of a formula from another one, and so on. This mechanism akkemit possible to
model the concept of state since having a concrete formuaérunit or another might
represent a different agent state. For example, later ipdiper we use the presence of
a formulain a particular unit to indicate the availabilitfifaoresource.

A time-out in a bridge rule means there is a delay betweenrsint in time at
which the conditions of the bridge rule are satisfied and ffextve activation of the
rule. A time-out is denoted by a label on the right of the rée;instance:

M[t]
(N
% For more detail on exactly how this is achieved, see [21].



means that units of time after the theory in unit; gets formulayp, the theory in unit
u Will be extended by formula. If during this time period formula is removed from
the theory in unitu;, this rule will not be applied. In a similar way to consumirane
ditions, time-outs increase expressiveness in the conwation between units. This
is important when actions performed by bridge rules neeckteelracted if a specific
event does not happen after a given period of time. In pdaticii enables us to repre-
sent situations where silence during a period of time maymfigiture (in this case the
bridge rules can then be used to re-establish a previow'stat

3 Modular agents

Using units and bridge rules as the only structural elemesmismbersome when build-
ing complex agents (as can be seen from the model we deveind@0]). As the
complexity of the agent increases, it rapidly becomes vifigult to deal with the nec-
essary number of units and their interconnections usirdgbriules alone. Adding new
capabilities to the agent becomes a complex task in itselfsalve this problem we
suggest adding another level of abstraction to the modedmtidule

3.1 Introducing modules

A module is a set of units and bridge rules that together magelrticular capability or
facet of an agent. For example, planning agents must be leapiainanaging resources,
and such an agent might have a module modeling this abilityil&ly, such an agent
might have a module for generating plans, a module for hagalommunication, and
so on. Thus modules capture exactly the same idea as thebitaps’ discussed by
Busettaet al.[4]. Unlike Busetteet al.,, we do not currently allow modules to be nested
inside one another, largely because we have not yet fouretéssary to do so. How-
ever, it seems likely that we will need to develop a means ofiliag nested hierachies
of modules in order to build more complex agents than we ameotly constructing.

Each module must have a communication unit. This unit is tleglute’s unique
point of contact with the other modules and it knows what lohchessages its module
can deal with. All of an agent’s communication units aremtennected with the others
usingmulticast bridge rule§MBRs) as in Figure 1. This figure shows three MBRs (the
rectangles in the middle of the diagram) each of which hasglesipremise in module
a and a single conclusion in each of the modules

Since the MBRs send messages to more than one module, arsieggage can pro-
voke more than one answer and, hence, contradictory infismenay appear. There
are many possible ways of dealing with this problem, howbeee we consider just one
of them as an example. We associate a weight with each me3ddgealue is assigned

4 Both of these extensions to the standard multi-contexiesyshcur a cost. This is that in-
cluding them in the model means that the model departs soatewdm first order predicate
calculus, and so does not have a fully-defined semantics.ré/euarently looking at using
linear logic, in which individual propositions can only bsed once in any given proof, as a
means of giving a semantics to consuming conditions, ariduatemporal logics as a means
of giving a semantics to time-outs.
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Fig. 1. The inter-connection of modules (froa’s perspective only)

to the message by the communication unit of the module thmatssi¢ out. Weights be-
long to [0, 1] (maximum importance is 1 and minimum is 0), and their mearsrtbe
strength of the opinion given in the message, and this carsée to resolve contradic-
tory messages. For instance, the message with highestteigit be preferred, or the
different weights of incoming messages could be combined bgmmunication unit
receiving them to take a final decision (for instance usiegatlief revision mechanism
described in [18]). Note that weights are used onlinber-modulemessages.

3.2 Messages between modules

Given a setAN of agent names and a s&f N of module names, an inter-module
message has the form:

1(57 R7 907 G7 w)

where

— I is an illocutionary particle that specifies the kind of megsa

— S and R both have the formd[/m]*> whereA € AN or A = Self (Self refers
to the agent that owns the module) ande M N, orm = all (all denotes all the
modules within that agenty reflects who is sending the message &iddicates
to whom it is directed.

® As elsewhere we use BNF syntax, so thdfm]* meansA followed by one or more occur-
rences of/m.



— s the content of the message.

— G is arecord of the derivation @f. It has the form{{I1 F ¢1}.. {I. F ¢n}}
wherel is a set of formulae ang; is a formula withy,, = ¢ .

— ¢ € [0, 1] is the weight associated with the message.

To see how this works in practice, consider the followingpsase that an agent (named
B) has four modules b, ¢, d). Modulea sends the message:

Ask(Self [a, Self all, Give(B, A, Nail),11,0.5)

This means that moduteof agentB is asking all its modules whethét should give
A a nail. The reason for doing this i and the weight. puts on this request is 0.5.
Assume modules andd send the answer

Answer(Self /¢, Self | a,not(Give(B, A, Nail)), 2, 0.6)

and
Answer(Self /d, Self |a,not(Give(B, A, Nail)),1s,0.7)

while moduleb sends
Answer(Self /b, Self /a, Give(B, A, Nail), 4,0.3)

Currently we treat the weights of the messages as posgiméasures [7], and so com-
bine the disjunctive support forot(Give(B, A, Nail)) using max. As this combined
weight is higher than the weight of the positive literal, tanmunication unit of mod-

ule a will accept the opiniomot(Give(B, A, Nail)).

The messages we have discussed so far are those which ard pessnd the agent
itself in order to exchange information between the modulbih compose it. Our
approach also admits the more common idea of messages bedgerts. Such inter-
agent messages have the same basic form, but they have twodifferences:

— S andR are agent names (i.8, R € AN), no modules are specified.

— there is no degree of importance (because it is internal tarticplar agent—
however inter-agent messages could be augmented with aalefbelief [18]
which could be based upon the weight of the relevant intentinessages.)

With this machinery in place, we are in a position to specfglistic agent architectures.

4 Specifying a simple agent

This section gives a specification of a simple agent usingpeoach outlined above.
The agent in question is a simple version of the home impreveragents first dis-
cussed in [19], which is supposed to roam the authors’ honadsmg small changes

% In other words(3 is exactly the set of grounds of the argument#j20]. Where the agent does
not need to be able to justify its statements, this compooktite message can be discarded.
Note that, as argued by Gabbay [10] this approach is a gésetiah of classical logic—there
is nothing to stop the same approach being used when meszagest formulae in classical
logic.
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Fig. 2. The modules in the agent

to their environment. In particular the agent we discusg latlempts to hang pictures.
As mentioned, the agent is rather simpler than those ofligimaroduced, the simplifi-
cation being intended to filter out unnecessary detail thghttonfuse the reader. As
a result, compared with the more complex versions of the hiompeovement agents
described in [20], the agent is not quite solipsistic (siitdeas some awareness of its
environment) but it is certainly autistic (since it has nocmenisms for interacting with
other agents). For an example of the specification of a margbtx agent, see [21].

4.1 A high-level description

The basic structure of the agent is that of Figure 2. Ther¢hme® modules connected
by multicast bridge rules. These are the plan librd&l)( the resource manageri),
and the goal manageGM). Broadly speaking, the plan library stores plans for the
tasks that the agent knows how to complete, the resourcegarnkaeps track of the
resources available to the agent, and the goal managerg¢fest goals of the agent to
the selection of appropriate plans.

There are two types of message which get passed along thieasulbridge rules.
These are the following:

— Ask: a request to another module.
— Answer: an answer to an inter-module request.

Thus all the modules can do is to make requests on one anattiemeswer those re-
quests. We also need to define the predicates which form titertioof such messages.
Given a set of agent nametsV, and withAN' = AN U {Self.

— Goal(X): X is a string describing an action. This denotes the fact thaagent
has the goak .

— Have(X, Z): X € AN'is the name of an agent (here always instantiatesk{g,
the agent’s name for itself, but a variable since the agemware that other agents
may own things), and is the name of an object. This denotes Ag&hhas pos-
session oZ.



GET_PLAN

Fig. 3. The plan library module

Note that in the rest of the paper we adopt a Prolog-like rtah which the upper
case letters(, Y, Z, P are taken to be variables.

As can be seen from the above, the content of the messagdatigelg simple,
referring to goals that the agent has, and resources it ggesel hus a typical message
would be a request from the goal manager as to whether th¢ pgesesses a hammer:

ask(Self |G M, Self [all, goal(have(Self , hammer)), {})

Note that in this message, as in all messages in the remaifhtigs paper, we ignore
the weight in the interests of clarity. Such a request mighgenerated when the goal
manager is trying to ascertain if the agent can fulfill a gassplan which involves
using a hammer.

4.2 Specifications of the modules

Having identified the structure of the agent in terms of meduthe next stage in the
specification is to detalil the internal structure of the medin terms of the units they
contain, and the bridge rules connecting those units. Thuetstre of the plan library
module is given in Figure 3. In this diagram, units are repnésd as circles, and bridge
rules as rectangles. Arrows into bridge rules indicatesumtiich hold the antecedents
of the bridge rules, and arrows out indicate the units whiald the consequents. The
two units in the plan library module are:

— The communication unitGQU): the unit which handles communication with other
units.
— The plan repository): a unit which holds a set of plans.

The bridge rule connecting these units is:
CU > ask(Self | Sender, Self [all, goal(Z),{}),
S : plan(Z, P)

GET-PLAN = CU : answer(Self | PL, (Self / Sender, goal(Z),{P})
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Fig. 4. The resource manager module

where the predicatglan(Z, P) denotes the fact tha®, taken to be a conjunction of
terms, is a plan to achieve the gdai.

When the communication unit sees a message on the interlelmggiasking about
the feasibility of the agent achieving a goal, then, if thisra plan to achieve that goal
in the plan repository, that plan is sent to the module whgked the original question.
Note that the bridge rule has a consuming condition—this entsure that the question
is only answered once.

The structure of the resource manager module is given ir€iguThe two units in
this module are:

— The communication unitGU).
— The resource respositorR): a unit which holds the set of resources available to
the agent.

The bridge rule connecting the two units is the following:

CU > ask(Self [ Sender, Self | Receiver, goal(have(X, Z)),{}),
R > resource(Z, free)

CU : answer(Self /|RM, Self /| Sender, have(X, Z),{}),
R : resource(Z, allocated)

ALLOCATE =

where theresource(Z, allocated) denotes the fact that the resout€ds in use, and
resource(Z, free) denotes the fact that the resout€és not in use.

When the communication unit sees a message on the interlenloatsiasking if the
agent has a resource, then, if that resource is in the resogpository and is currently
free, the formula recording the free resource is deletechbyconsuming condition, a
new formula recording the fact that the resource is allatet@vritten to the repository,
and a response is posted on the inter-module bus. Note ta@na¢ing a resource

" Though here we take a rather relaxed view of what constimtelsn—our “plans” are little
more than a set of pre-conditions for achieving the goal.



MONITOR

Fig. 5. The goal manager module

as “allocated” is not the same as consuming a resource (wiicid be denoted by
the deletion of the resource), and that once again the bridgedeletes the original
message from the communication unit.

The goal manager is rather more complex than either of theqare modules we
have discussed, as is immediately clear from Figure 5 whindws the modules it
contains, and the bridge rules which connect them. Thesellmodre:

— The communication unitGU).

— The plan list unit P): this contains a list of plans the execution of which is eutly
being monitored.

— The goal manager uni): this is the heart of the module, and ensures that the
necessary sub-goaling is carried out.

— The resource list moduldR): this contains a list of the resources being used as part
of plans which are currently being executed.

The bridge rules relating these units are as follows. Thetfirs bridge rules handle
incoming information from the communication unit:

CU > answer(Self | RM, Self |GM, have(Self, Z),{})
R:Z
CU > answer(Self | PL, Self |GM, goal(Z),{P})
P :plan(Z, P)

RESOURCE =

PLAN =




The first of theseRESOURCE, looks for messages from the resource manager report-
ing that the agent has possession of some resource. Whem snebsage arrives, the
goal manager adds a formula representing the resourcertssdsrce list module. The
second bridge rulLAN does much the same for messages from the plan library re-
porting the existence of a plan—such plans are written t@tae library. There is also

a bridge ruleASK which generates messages for other modules:

G : goal(X),
G : not(done(X)),
R : not(X),
P : not(plan(X, Z))
G : not(done(ask(X))),
CU : ask(Self |G, Self [all, goal(X),{}),
G : done(ask(X))

ASK =

If the agent has the goal to achieyg, and X has not been achieved, nor 1 an
available resource (and therefore in fRaunit), nor is there a plan to achievé, and
X has not already been requested from other modules,Xhisrrequested from other
modules and this request is recorded. The remaining bridgs are:

G : goal(X),
R : not(X),

P : plan(X, P)
G : monitor(X, P)
G : goal(X),

R:X
G : done(X)

MONITOR =

DONE =

TheMONITOR bridge rule takes a go& and, if there is no resource to achieVebut
there is a plan to obtain the resource, adds the formulaitor (X, P) to theG unit,
which has the effect of beginnning the search for the ressuccarry out the plan. The
DONE bridge rule identifies that a go&l has been achieved when a suitable resource
has been allocated.

4.3 Specifications of the units

Having identified the individual units within each moduledathe bridge rules which
connect the units, the next stage of the specification isdatify the logics present
within the various units, and the theories which are writtethose logics. For this
agent most of the units are simple containers for atomic @am In contrast, th&

unit contains a theory which controls the execution of pldie relevant formulae are:

monitor(X, P) — assert_subgoals(P)
monitor(X, P) — prove(P)
monitor(X, P) A proved(P) — done(X)



assert_subgoals(/\ Y;) — /\ goal(Ys;)
i i

prove(X A /\ Yi) Adone(X) — prove(/\ Yi)

(3

/\ done(Y;) — proved(/\ Yi)

Themonitor predicate forces all the conjuncts which make up its firstiargnt to be
goals (which will be monitored in turn), and kicks off the tmf” of the plan which is
its second arguméhtThis plan will be a conjunction of actions, and as each isi&to
(a state of affairs achieved through the allocation of resesiby other bridge rules),
the proof of the next conjunct is sought. When all have beeovipd”, the relevant goal
is marked as completed.

The specification as presented so far is generic—it is akia ¢ttass description
for a class of autistic home improvement agents. To get aifspegent we have to
“program” it by giving it information about its initial stat For our particular example
there is little such information, and we only need to add falae to three units. The
plan repository holds a plan for hanging pictures using hansrand nails:

S : plan(hangPicture(X),
have(X, picture) A have(X, nail) A have(X, hammer))

The resource repository holds the information that the Bas a picture, nail and a
hammer:

R : Resource(picture, free)
R : Resource(nail, free)

R : Resource(hammer, free)

Finally, the goal manager contains the fact that the agesttta goal of hanging a
picture:

G : goal(hangPicture(Self))

With this information, the specification is complete.

4.4 The agentin action

When the agent is instantiated with this information ancteied, we get the following
behaviour. The goal manager unit, which has the goal of mangipicture, does not
have the resources to hang the picture, and has no informatitlhlow to obtain them.

It therefore fires théASK bridge rule to ask other modules for input, sending message

8 Given our relaxed view of planning, this “proof” consistsstiowing the pre-conditions of the
plan can be met.



ask(Self/GM, Self /all, goal(hangPicture(Self)),{}) (GM1)
answer(Self/PL, Sel f/|GM, goal(hangPicture(Self)),

{have(Self, picture) A have(Self , nail) A have(Self , harnmer)}) (PL1)
ask(Self/GM, Self/all, goal(have(Self, picture)), {}) (GM2)
ask(Self/GM, Self/all, goal(have(Self,nail)), {}) (GM3)
answer(Self/RM, Self |GM, have(Self, picture), {}) (RM1)
ask(Self/GM, Self/all, goal(have(Self, hammer)),{}) (GM4)
answer(Self/RM, Sel f |GM, have(Self,nail), {}) (RM2)
answer(Self/RM, Sel f |GM, have(Self, hammer),{}) (RM3)

Table 1. The inter-module messages

GM1 (detailed in Table 1). When this message reaches thdiptany, the bridge rule
GET_PLAN is fired, returning a plan (PL1). This triggers the bridgeefLAN in the
goal manager, adding the plan toRsunit. This addition causes th@ONITOR bridge
rule to fire. This, along with the theory in tii& unit, causes the goal manager to realise
that it needs a picture, hammer and nail, and to ask for tHest2( GM3, GM4). As
each of these messages reaches the resource manageruseyheAL LOCATE rule
to fire, identifying the resources as being allocated, anbging messages back to
the goal manager (RM1, RM2, RM3). These resources caufREB®OURCE bridge
rule in the goal manager to fire and the resources to be addibe t@source listR.
The addition of the resouces is all that is required to cotefifee plan of hanging a pic-
ture, and the bridge rulONE fires, adding the formuladone(have(Sel f, picture)),
done(have(Sel f, hammer)) anddone(have(Sel f, nail)) to theG unit. The theory in
G then completes execution.

The messages passed between modules are representediialpiotm in Fig-
ure 6—each row in the diagram identifies one module, time fuoms left to right, and
the diagonal lines represent the transfer of messages éetwedules.

5 Related Work

There are two main strands of work to which ours is related-rkwa executable agent
architectures and work on multi-context systems. As meeticabove, most previous
work which has produced formal models of agent architestud example dMARS
[13], AgentO [22] and GRATE* [14], has failed to carry forvebihe clarity of the speci-
fication into the implementation—there is a leap of faithuieed between the two. Our
work, on the other hand, maintains a clear link between fipation and implemen-
tation through the direct execution of the specificationaemeplified in our running
example. This relation to direct execution also distingagour work from that on
modelling agents in Z [6], since it is not yet possible to dilgexecute a Z specifica-
tion. It is possible to animate specifications, which makesssible to see what would
happen if the specification were executed, but animatingtegpecifications is some
way from providing operational agents. Our work also d#fsom that which aims to
describe the operational semantics of agent architeaisiag ther-calculus [8], since
our models have a declarative rather than an operationalrsiss.
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Fig. 6. An execution trace for the agent

More directly related to our work is that on DESIRE and Coneat MetateM. DE-
SIRE [3,25] is a modelling framework originally conceivesl@ means of specifying
complex knowledge-based systems. DESIRE views both theidludl agents and the
overall system as a compositional architecture. All fumadility is designed as a series
of interacting, task-based, hierarchically structureghponents. Though there are sev-
eral differences, from the point of view of the proposal athted in this paper, we can
see DESIRE'¢asksas modules anihformation linksas bridge rules. In our approach
there is no an explicit task control knowledge of the kindrfdin DESIRE. There are
no entities that control which units, bridge rules or modwséould be activated nor
when and how they are activated. Also, in DESIRE the comnatioio between tasks
is carried out by the information links that are wired-in Ietdesign engineer. Our
inter-module communication is organized as a bus and thepirdence between mod-
ules means new ones can be added without modifying the mxistructures. Finally
the communication model in DESIRE is based on a one-to-oneaion between
tasks in a similar way to that in which we connect units inside a mledIn contrast,
our communication between modules is based on a multicadéimo

Concurrent MetateM defines concurrent semantics at thedésmgle rules [9, 27].
Thus an agent is basically a set of temporal rules which firenitheir antecedents are
satisfied. Our approach does not assume concurrency withindmponents of units,
rather the units themselves are the concurrent componénisr @architectures. This
means that our model has an inherent concurrent semantius latvel of the units and
has no central control mechanism. Though our exemplar ubas i& essentially first
order logic (albeit a first order logic labelled with argurtenwe could use any logic
we choose—we are not restricted to a temporal logic as in tefléta

There are also differences between our work and previouk worusing multi-
context systems to model agents’ beliefs. In the latter,[different units, all contain-
ing a belief predicate, are used to represent the belieflseohgent and the beliefs of
all the acquaintances of the agent. The nested beliefs aitageay lead to tree-like
structures of such units (calldmblief contexts Such structures have then been used to
solve problems like the three wise men [5]. In our case, heweny nested beliefs
would typically be included in a single unit or module. Moveo we provide a more
comprehensive formalisation of an autonomous agent inaatdditionally show how
capabilities other than that of reasoning about beliefsogaincorporated into the archi-
tecture. In this latter respect this paper extends the w20y with the idea of modules
which links the approach more strongly with the softwareieeegring tradition.



6 Conclusions

This paper has proposed a general approach to defining ageiteatures. It provides
a means of structuring logical specifications of agents irag which makes them di-
rectly executable. This approach has a number of advantiysty it bridges the gap
between the specification of agents and the programs whigleiment those specifica-
tions. Secondly, the modularity of the approach makes iee&s build agents which
are capable of carrying out complex tasks such as distdbpi@nning. From a soft-
ware engineering point of view, the approach leads to achites which are easily
expandable, and have re-useable components.

From this latter point of view, our approach suggests a nugtogy for building
agents which has similarities with object-oriented de$&jnThe notion of inheritance
can be applied to groups of units and bridge rules, modulé®aen complete agents.
These elements could have a general design which is spedab different and more
concrete instances by adding units and modules, or by rgfihia theories inside the
units of a generic agent template. However, before we caaldpgithis methodology,
there are some issues to resolve. Firstly there is the mafttdre semantics of the
comsuming conditions and time-outs in bridge rules. Selgptitkre is the question of
how to handle nested hierachies of modules—something viiessential if we are to
develop really complex agents.
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