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Abstract

A new algorithm for computing the maximum entropy ranking (me-ranking)
over a set of variable strength defaults is given. Although this requires more
information than its predecessor in terms of strengths for defaults, it has a
much wider applicability, and allows for greater expressiveness in encoding
default knowledge. The algorithm is shown to be sound and complete to the
extent that it always produces an me-ranking when one exists. The reasons
for multiple rankings and for no ranking are explored. A sufficient condition
for uniqueness of the me-ranking is given.

1 Background

Defaults like bird = fly are natural rules which can be used to describe the normal
behaviour of some domain. Default knowledge can be used to make inferences about
a given situation so that, for example, an arbitrary bird would be assumed to fly
unless there were information to the contrary.

The question arises of what should be inferred from any given set of defaults and
research into this has led to the development of many very different nonmonotonic
reasoning formalisms [8, 12, 13, 14]. A probabilistic model of default reasoning has
proven to capture the most basic requirements of nonmonotonic behaviour [1, 7, 11].
A natural extension to this model is to apply the principle of maximum entropy to
find a distinguished consequence relation which captures the default knowledge but
makes no additional assumptions, i.e., is the least biased [6, 10]. In this paper, the
original work of [5] on applying maximum entropy to default reasoning is extended
to cater for arbitrary sets of variable strength defaults. In doing so, it is hoped both
to clarify the assumptions required by the me-approach, and to demonstrate that
this flexible method can help to explain why there has been disagreement among
researchers regarding the nature of default inference.

2 Deriving the me-ranking

First, it is necessary to look at what a default represents and how defaults are
connected to ranking functions and consequence relations.

Definition 2.1 A default is a natural rule of the form a = b such that the an-
tecedent, a, and the consequent, b, are formule of a finite propositional language,

L.



The symbol, =, is a new default connective the semantics of which will be described
shortly; it should not be confused with the material implication symbol, —. The
connectives A, V, =, =, have their usual meaning. The semantics of £ are given in
terms of the set of its models, M. A model, m € M, is said to verify a default,
a = b, if m = a Ab. Conversely, a model, m, is said to falsify a default, a = b, if
m = a A —b.

Definition 2.2 A ranking function, &, is a mapping from M to the nonnegative in-
tegers for which at least one model, m, has k(m) = 0. This determines a preference
ordering models, so that

k(m) < K(m')

means that m is preferred to, or more normal than, m'.

This function, k, in turn determines a preference ordering over the formulas of £,
where a formula is as preferred as its most preferred model, so that

#(a) = min [ (m)] 1)

mE=a

Equivalently, x(a) < k(b) means that there exists an m such that m = @ and for
all m' such that m' = b, k(m) < s(m').

A default constrains a ranking function so that it is more normal to verify the
default than to falsify it. Such a ranking function is said to be admissible with
respect to that default. More formally,

Definition 2.3 A ranking function, k, satisfies a default, a = b, or is admissible
with respect to it, iff
k(a A b) < Kk(a A —b) (2)

A ranking function over models is equivalent to a rational consequence relation [8].
To determine whether some consequent, b, is a consequence of some antecedent, a,
with respect to a ranking function, «, it is necessary to check whether x satisfies
a = b. If |~ represents the consequence relation, then

alpg b iff k(aAb) < k(aA-b)

Defaults have also been given a semantics in terms of parameterised probability
distributions [1, 5], and ranking functions can be viewed as abstractions of these.
The parameterised probability semantics defines a default, a = b, as a constraint
on the conditional probability to be ‘almost’ certain, P(bla) > 1 — e, where ¢ is a
parameter close to zero. Now, if constraints are expressed in terms of powers of ¢,
the corresponding defaults can be viewed as having priorities, or strengths, which
correspond to the exponent of €. This gives a revised notion of satisfaction and
admissibility so that

a=0b means that x(aAb)+s < k(aA-b) (3)

The default represents the constraint P(bla) > 1 — &°.

The equivalence of the probabilistic and ranking function representations for
defaults is useful. It is well known that when a set of constraints determines some
class of probability distributions, there exists a (usually) unique member which
corresponds to the least biased estimate, or that which makes the least assumptions
about the rest of the data—the maximum entropy distribution [6]. By using the
parameterised probabilistic semantics, the principle of maximum entropy can be
applied to find a probability distribution. Once this has been found, it can be
abstracted back to the ranking function representation.



The entropy of a probability distribution over a set of models, M, is given by

HIP| =~ 3 P(m)log P(m) (4)
meM

The problem, then, is to select that probability distribution which maximises (4)
subject to constraints imposed by the defaults.

This idea was originally proposed by Pearl [11], and developed by Goldszmidt et
al. [5], who presented an algorithm which computed the me-ranking for a restricted
class of defaults called minimal core sets. They used the same constraint for each
default but pointed out that the algorithm could also be applied to variable strength
defaults, provided the sets were still minimal core. The minimal core restriction
ensures that all the inequality constraints are satisfied as equalities.

In the work presented here, using variable strength defaults requires all con-
straints to be satisfied as equalities in the maximum entropy distribution. While
this means that more information is required from the knowledge engineer, who must
now specify the strength he assigns to defaults explicitly, it makes the whole for-
malism more meaningful since it guarantees that all defaults are taken into account
and stresses the necessity of specifying relative strengths for defaults, something
which was not obvious in the original work. The point is that varying the strengths
leads to different me-rankings so that it is not meaningful to look for the me-ranking
without specifying a strength assignment over the defaults.

Now, specifying relative orders of magnitude for the conditional probabilities
corresponding to each default (i.e., their strengths), results in a similar order of
magnitude description of the probabilities of each model. This is achieved by al-
lowing the parameter, ¢, to tend to zero. This can be thought of as taking a set
of assumptions (i.e., the defaults) to the extreme in order to ascertain what other
information is implied. Intuitively, defaults with numerically higher strengths can
be thought of as holding more strongly than, or as having priority over, those of
lower strength.

Because the analysis is infinitesimal, the constraints represent asymptotic equal-
ities and the symbol ~ is used to denote this'. When abstracting back to ranking
functions, it is only the lowest exponents in an expression which dominate and
the asymptotic equalities become integer equalities. Note that since it is only the
asymptotic behaviour of the probabilities that is important, there is no need to
consider their coefficients explicity, nor indeed the actual value of entropy.

The strength of each default is expressed as some power of the parameter
which has no significance other than linking all defaults together. Thus a default
a = b will be said to have relative strength s, if P(=bla) ~ &° for some integer
s > 0. Ase — 0, the term ¢ — 0 and so P(bla) — 1; the default becomes
arbitrarily certain. In specifying a default, it is assumed that the knowledge engineer
is encoding information which he takes to be almost certain.

In a similar manner, the probability of each model m € M is taken to be
asymptotically equivalent to some non-negative integer power of ¢, i.e., P(m) ~
e®™) for k(m) > 0; this exponent is denoted k(m) since, later, it will determine
the ranking function over M.

Given a set of variable strength defaults, A = {r; : a; 2 bi}, the constraints
imposed on P for each default can be written:

g’
S Pm) o~ o Y P Q
m|:ai/\—|bi m\:a,—/\b,—

Using these constraints and the Lagrange multiplier technique to find the point of
maximum entropy, Goldszmidt et al. [5] derived the following elegant and simple

I'Two models m and m’ are asymptotically equivalent iff lim. .o % = C, a constant.



approximation for the probability of each model?:

P(m) ~ [ « (6)

where the a; relate to the Lagrange multipliers for each default.

Making a further assumption that the a; can also be approximated by a relative
order of magnitude, thus writing o; ~ (") the probability expressions (6) are
substituted back into the constraints (5) yielding |A| simultaneous equations with
|A| unknowns, the x(r;)>.

In the limit as € — 0 those models with the lowest powers of ¢ will dominate,
and the constraints reduce to:

min [k(m)]+s; = min [k(m)] (7)
m\:ai/\bi m\:ai/\ﬁbi
Given a set of me-ranks for defaults, x(r;), the me-ranking over models, k(m), can
be found using the abstraction of equation (6). The me-rank of each model is given
by the sum of the me-ranks of those defaults it falsifies:

k(m) = Z K(r;) (8)

This completes the derivation of the maximum entropy ranking with x(m) defining
the me-consequence relation. Note that in deriving these constraints (7) and (8),
the assumption is that an me-ranking, i.e., an integral solution to these equations,
exists. Given the extra requirement that the constraints be satisfied as equalities,
this may not always be the case. Reasons for this will be explored in section 4, but
in the next section an algorithm is given which computes the me-ranking, if one
does exist.

3 The me-algorithm

The me-ranking can be found if the equations (7) and (8) can be solved. However,
since this is a set of non-linear simultaneous equations, there is no guarantee either
that there is a solution or that a given solution is unique. Expanding equations (7)
and (8) illustrates how the algorithm for computing the me-ranking was be devised.

Let v, (respectively, f,.) represent a minimal verifying (respectively, falsifying)
model of r in some ranking k.

Definition 3.1 An integer ranking, x, over a set of defaults, {r; : a; = b;}, is said
to be me-valid with respect to that set if, for all T,

K(vr) + sr = K(fr) (9)
and the ranking over models is determined by (8).

Since each falsifying model of a default has a contribution from its own me-rank,
equation (9) can be re-written as

w(r) + (5(fr) = 6(r)) = K(or) + 57 (10)

This equation can be expanded to give:

2Note that this approximation is, on the face of it, independent of the strengths s;.
3Note that the function & is used to represent both the ranking function over models and the
me-ranks of the defaults themselves.



me-algorithm

Input: a set of variable strength defaults, {r;:a; = bi}.
Output: an me-valid ranking, x, if one exists.

[1] Initialise all k(r;) = INF.
[2] While any x(r;) = INF do:

(a) For all r; with k(r;) = INF, compute
MINV(Ti) =+ s;.

(b) For all such 7; with minimal MINV(r;) + s;,
compute MINF(r;).

(c) Select r; with minimal MINF(r;).

(d) If MINF(rj) = INF let r(r;):=0
else let k(rj):=s; +MINV(r;) — MINF(r;).

[3] Assign ranks to models using equation (8).

[4] Check constraints (7) to verify this is an me-valid ranking®.

Figure 1: The me-algorithm

k(r;) + min Z K(rj) =s;+ min Z k(r5) (11)

ml=a; A\—b; - ml=a;Ab; —
rj.d#i rj . #i
mEa; Ab; mEa; A,

Let the function MINV(r) (respectively, MINF(r)) be defined so that it returns the
current minimal rank of all verifying models of 7 (respectively, the current minimal
rank of all falsifying models of r exzcluding its own contribution) using equation (8).
In the me-algorithm of Figure 1, equation (10), along with the functions MINV(r)
and MINF(r), is used to compute the me-rank of each default iteratively via the
assignment:

k(r) :== sy + MINV(r) — MINF(r) (12)

The remainder of this section sets out to demonstrate the claim that this algorithm
computes an me-ranking, if one exists.

The first lemma shows that the me-algorithm always computes a finite set of
ranks for the defaults provided the input set is p-consistent—meaning that it is
possible to build a probability distribution over the defaults which respects the
constraints they embody.

Lemma 3.2 Given a p-consistent set of variable strength defaults, the me-algorithm
assigns a finite rank to each default.

Proof. Provided the minimal computed value for the function MINV(r) is finite
at each pass of the loop, then the rank assigned to the chosen default will also be
finite since if the computed value of MINF(r) is infinite it will be assigned rank 0,
otherwise it will be assigned MINV(r) + s,, — MINF(r) which is also finite. Suppose
therefore that at some pass of the loop the minimal computed value for MINV(r) is
infinite for all unranked r. This means that all verifying models of each unranked
default also falsify an unranked default, i.e., the set of defaults remaining to be
ranked is unconfirmable. This contradicts the p-consistency of the original set and
hence each default will be assigned a finite rank. O

4As will be seen later, this step may be replaced by a check for 1-fold cycles at step [2](c).



Given a p-consistent set of defaults, therefore, some set of finite ranks will be
produced, which in turn implies a finite set of ranks over models. The next lemma,
shows that this represents a ranking function over models, i.e., that all ranks for
models are non-negative and that at least one has zero rank.

Lemma 3.3 Given a p-consistent set of variable strength defaults, the me-algorithm
assigns a non-negative rank to each model.

Proof. This is shown by induction. The rank of each model at any given stage
equals the sum of the current ranks of those defaults it falsifies. At the start, as all
defaults have infinite rank, the current rank of a model is either zero, if it falsifies
no defaults, or infinite. Assume that at some intermediate stage all models have
non-negative rank before the chosen default, r, is assigned a rank. Now, if the com-
puted value of MINF(r) is infinite, the default is assigned a rank of 0 but this will
not change the current rank of any model since all its falsifying models also falsify
other unranked defaults. If, on the other hand, MINF(r) is finite then the default is
assigned a rank of MINV(r) + s, — MINF(r). Now any falsifying models of 7 which
only falsify other previously ranked defaults will all have a rank of greater than
or equal to MINV(r) + s, because MINF(r) was minimal among them. Any other
falsifying models of r will still have infinite rank. The lemma follows by induction.
O

This lemma does not preclude a default from having a negative rank. Note that,
at this stage, there is no guarantee that the computed ranking over models is me-
valid, or even admissible, only that it represents a ranking. The following lemma
shows that the defaults are ranked in an order corresponding to the ascending order
of their s(v,.) + s, in the final ranking.

Lemma 3.4 Given a p-consistent set of variable strength defaults, the me-algorithm
assigns ranks to defaults in ascending order of the final ranks of their minimal ver-
ifying models plus their strengths.

Proof.  The proof of lemma (3.3) shows that, at any stage, if a model’s rank
becomes finite it will be greater than or equal to that of the current default’s com-
puted MINV(r) + s,.. Since, at each pass of the loop, r is chosen so that this is
minimal, it also follows that no model which has infinite rank can subsequently
obtain a lower final rank than the current MINV(r) 4+ s,.. This implies both that
k(vr) = MINV(r) for the current r, and that the defaults are ranked in ascending
order of their final k(v,.) + s,. O

Corollary 3.5 & is admissible, that is, for all r

k() + sr < K(fr)

Proof. Note that all falsifying models of a default have infinite rank when it is
being ranked and so cannot have a final rank of less than x(v,.) + s,.. O

In order to show that the algorithm is sound, it is necessary to notice under what
circumstances no me-valid ranking exists. In fact, this can be determined from the
behaviour of the me-algorithm itself. The following definition will be helpful.

Definition 3.6 (Cycles) An n-fold cycle is said to be encountered if, at stage
[2](c) of the me-algorithm, n defaults are available to be ranked (i.e., have minimal
MINV(r) + s,) and all have infinite MINF(r).

Now the soundness of the me-algorithm can be established under the circum-
stance that no 1-fold cycle is encountered.



Theorem 3.7 (Soundness) Given a p-consistent set of variable strength defaults,
the me-algorithm produces an me-valid ranking iff no 1-fold cycle is encountered.
Proof. For the if part. Assume that a 1-fold cycle occurs when some r is being
ranked. Clearly r is assigned rank zero but all its falsifying models remain infinite.
Now, since there were no other defaults available to be ranked along with r, all
unranked defaults have a strictly higher value for MINV(r) + s,. When any of
r’s falsifying models become finite they will have a final rank strictly greater than
k(vr) + s and so k is me-invalid.

For the only if part. From the corollary (3.5), k is admissible. For x to be
me-invalid, it must be the case that for some r, k(v,.) + s, < k(f,). This can only
occur if all its falsifying models also falsify another default, r', which has a higher
final rank for k(v,) + s,+.> The me-algorithm will therefore encounter a 1-fold cycle
when it ranks r because r’ will not be available for ranking as it does not have
minimal MINV(r) + s,.. O

To establish the final result for the me-algorithm, that it is complete in the sense
that it computes an me-valid ranking if one exists, it is necessary to show that the
assignments for the ranks for defaults are compatible with an me-valid ranking, if
one exists. Note that it is not important which me-valid ranking is computed just
that one will be computed if any exist.

Theorem 3.8 (Completeness) The ranks assigned to defaults in the me-algorithm
are compatible with an me-valid ranking, if one exists.

Proof. Assume that at least one me-valid ranking, ', exists. The proof is induc-

tive. Note that at the start, when no defaults have been ranked, this is compatible

with k’. Assume that at some point, when r,, is selected to be ranked, all previously

ranked rules, 7, i < n, have k(r;) = '(r;). Now, if v,. is a minimal verifying model

for r,, in &', it falsifies only previously ranked defaults so k(v;. ) = &'(v. ). Asshown

in theorem (3.7), the minimal verifying model of r,, in x has rank MINV (r,,) which

must equal £'(v,. ) and v, is minimal in both £’ and k.

Consider f,. , a minimal falsifying model for r,, in &'. Suppose it, too, falsifies
only previously ranked defaults, apart from r,,, then MINF(r,) will be finite and
equal to &' (v,. )+ s, —k&'(r,). The rank assigned to £(ry) is k(v;. )+ s, —MINF(r,)
which must equal «'(r,). The assignment of k(r,) is therefore compatible with x'.

Suppose, on the other hand, that f, falsifies some as yet unranked defaults and
let one of these be 7, with m > n. Now f, will also be a minimal falsifying model
for ry, in &' and the constraint of me-validity (9) is given by:

K(0h) + 50 = K (f) = K(ra) + K (rm) + C

where C is a constant being the sum of the k' ranks of all other defaults falsified by
fr.. Now there are infinitely many me-valid rankings which satisfy this equation
with «'(ry) and &'(ry,) varying, at least one of which has &'(r,) = 0 and so the
assignment «(r,) = 0 will be compatible with at least one of these &'. The theorem
follows by induction. O

Theorems (3.7) and (3.8) lead to the following corollary.

Corollary 3.9 An me-valid ranking exists iff the me-algorithm does not encounter
a 1-fold cycle.

It follows that step [4] in the me-algorithm may be replaced by a simple check for
the existence of a 1-fold cycle at step 2[c]. If a 1-fold cycle is encountered then
an exception can be raised to indicate that the ranking produced is not me-valid
(though it will be admissible).

5Note that there may be several defaults r’.



m|a b c|r 12 13| P(m)
m; |0 0 O] - - - 1
mz2 | 0 0 1 - - - 1
m3 |0 1 O - - - 1
mg |0 1 1 - - - 1
ms |1 0 0] f f - a1
me 1 0 1 f v - a1
mr 1 1 0 v f f Q203
mg |1 1 1 v v v 1

Table 1: Unnormalised probabilities for example 4.1.

Complexity

The main disadvantage of this new algorithm, which it shares with that of [5], is
its intractability, requiring enumeration of models. Thus if £ has n propositions,
the me-algorithm will be polynomial in 2. The issue of complexity is not ad-
dressed in this paper and this is a severe problem with the me-approach in general
[3]. However, the intention of this paper is to expound the theoretical benefits of
the maximum entropy ranking, not its practicability. A current implementation®
requires £ to contain 16 or fewer propositions.

4 Uniqueness and existence criteria

In the derivation of the me-constraint equations, it was assumed that considering
the asymptotic behaviour of the probabilities, and fixing the relative strength of
defaults, determines the me-ranking. In both cases this amounts to ignoring their
coefficients. It turns out that this assumption does not hold in general although it
is possible to identify situations in which there are no solutions, and in which the
solution is unique.

First, an example which illustrates why the assumption may not always be valid.
Consider the following example where the probabilities (6) are used to show what
may happen when all defaults have the same strength but the coefficients of these
strengths are allowed to vary.

Example 4.1
A={r:aB3brm:aBcrs:anbBc}

Table 1 shows whether a model falsifies or verifies each default and gives its (un-

normalised) probability using equation (6):
[

Using the substitution v = —==, with all defaults having equal strength of 1, and

1—¢?
letting the coefficients of these be ¢y, ¢z, c3, respectively, the constraint equations

(5) give rise to three simultaneous equations:

apas+a; = cau(l + azas)
aras + asas = cu(l+ay)
o3 = C3U

Solving these for the a; in terms of u gives:

u(er + cresu — 2 + ¢3)
1+ cou

o) =

6 Available at: http://www2.elec.qmw.ac.uk/~rach/drs.html.

"Note that ~ has been replaced by = since the coefficients are now relevant, however, this
analysis is somewhat lax since by using (6) some approximation has already occurred. Nevertheless,
the point being made is a valid one.



m |a b c|(1,0,1) (1,1,0) (2,-1,2)
m; |0 0 0 0 0 0
my |0 0 1 0 0 0
m3 |0 1 0 0 0 0
ma |0 1 1 0 0 0
ms |1 0 0 1 2 1
me | 1 0 1 1 1 2
mr7 |1 1 0 1 1 1
mg | 1 1 1 0 0 0

Table 2: Multiple me-rankings for example 4.1.

C1CU + c1cacsu® + ¢y — C3

Qg =
c1 +cicou—co +c3

csu(ecr + creau — 2 + ¢3)
ci1Cou + cicac3u? + ¢y — c3

Now consider what happens asymptotically for various values of the coefficients.

Case 1: Let ¢; = 2(ca —¢3) (for ¢ > ¢3). This gives a solution of a; ~ w,
as ~ 1, ag ~ u and leads to an me-ranking over defaults of (1,0,1).

Case 2: Let ¢; = ¢3. This gives a solution of a3 ~ u, as ~ u, ag ~ 1, and an
me-ranking over defaults of (1,1,0).

Case 3: Let ¢; + ¢3 = cy. This gives a solution of a; ~ u?, ay ~ %, az ~u
and an me-ranking over defaults of (2,-1,2).

The me-rankings corresponding to each of these cases are given in Table 2. It
is clear that different choices for the coefficients may lead to different me-rankings
over the defaults and, more importantly, over the models. This corresponds to there
being multiple solutions to the constraint equations given by (7) and (8).

For maximum entropy entailment to be well-defined, it is desirable to be able to
determine when a unique me-ranking can be found. It has already been established
that the me-algorithm can be used to identify when no solution exists (encountering
a 1-fold cycle). The following results identify a unique me-ranking.

2

Definition 4.2 An integer mnking, K, over models is said to be robust® with respect
to a set of defaults, {r; : a; = b;}, if no two defaults share a common minimal
falsifying model in k.

Theorem 4.3 Given a finite set of defaults, {r; : a; =% b}, if an me-valid ranking,
K, s robust then it is unique.

The proof can be found in [4]. This definition of robustness is only a sufficient
condition for uniqueness, however. It may be possible to find a necessary condition
and this is the subject of ongoing research.

5 Examples

In the first example, the solution is tabulated explictly to illustrate the method of
finding the me-ranking but later this is omitted to save space.

Example 5.1 (Exceptional inheritance)

A={r: b3 firo:pBbrs:pZ -fry: 03w}

8 Adopting the use of “robustness” to indicate existence of a unique solution from [2].



m b f p wl|lr r T3 T K(m)

my |0 O O O - - - - 0

m2 |0 0 0 1 - - - - 0

m3 |0 0 1 O - f v - K(r2)

my 0 0 1 1 - f v - K(Tz)

ms |0 1 0 0| - - - - 0

me 0 1 0 1 - - - - 0

mr; |0 1 1 0| - £t £ - | k(r2) +k(rs)
mg |0 1 1 1| - f £ - | k(r2)+s(rs)
mg |1 0 0 O] f - - f | k(ry) +&(ra)
mio 1 0 0 1 f - - v K(Tl)
min |1 0 1 0| f v v | &(r)+e(re)
mi2 1 0 1 1 f v v v K(Tl)
mi3 1 1 0 0 v - - f K(T4)
mia |1 1 0 1 v - - v 0
mis |1 1 1 0 v v f f | k(rs) + k(ra)
mie 1 1 1 1 v v f v K(T?,)

Table 3: The me-ranking for the penguin example.

The intended interpretation of this knowledge base is that birds fly, penguins are
birds, penguins do not fly and birds have wings. Table 3 shows whether a model
falsifies or verifies each default. The column headed k(m) gives the me-rank of each
model in terms of the k(r;) using equation (8).

Substituting the x(m) into the reduced constraint equations (7) gives rise to:

k(r1) = s
k(ra) = s+ min(k(ry),k(rs))
k(rs) = s3+min(k(r), k(r2))
Kk(ry) = 84

Clearly, the only solution to these equations is k(r1) = s1, K(r2) = s1 + s2, K(r3) =
s1 + s3, and k(r4) = s4-

To determine default consequences it is necessary to compare the ranks of a
default’s minimum verifying and falsifying models. Since this solution holds for any
strength assignment (s1, S2, S3, S4), it follows that some default conclusions may hold
in general. In particular, it can be seen that the default p A b = —f is me-entailed
since

k(pAbBA-f) < k(pADAY)
s1 < 81+ 83
This result is unsurprising since p A b = —f is a preferential consequence of A. A
more interesting general conclusion is p = w, which follows since

k(p Aw) =81 < k(p A —w) = s1 + min(sa, s4)

Again this result holds regardless of the strength assignments and illustrates that,
for this example, the inheritance of w to p via b is uncontroversial. O

Example 5.2 (Nixon diamond)
A={r:q3pry:r 3 -p}
The intended interpretation is that quakers are pacificists whereas republicans are

not pacifists. Given a strength assignment of (s, s2) it is easily shown that x(r;) =

10



s1 and k(r2) = s2. The classical problem associated with this knowledge base is
to ask whether Nixon, being a republican and a quaker, is pacifist or not. This
is represented by the default » A ¢ = p. The two relevant models to compare are
rAqgApand r A gA —p whose me-ranks in the general me-solution are

K(rAgAp)=s2 and K(rAgA-p)=s (13)

Clearly either r A ¢ = p or r A ¢ = —p, or neither, may be me-entailed depending
on the comparative strengths s; and s,. This result is in accordance with the
“intuitive” solution that no conclusion should be drawn regarding Nixon’s pacifist
status unless there is reason to suppose that one default holds more strongly than
the other. In the case of one default being stronger, the conclusion favoured by the
stronger would prevail. a

Example 5.3 (Royal elephants/marine chaplains)
A:{rl:a%b,rg:c%b,rgzbgd,m:a%—'d}

There are two interpretations of this knowledge base. In the first, the propositions a,
b, ¢, and d, stand for royal, elephant, african and grey, respectively; in the second,
the propositions stand for chaplain, man, marine and beer drinker, respectively.
The constraint equations (7) give rise to:

k(r1) = s1+min(k(rs), k(rs))
k(ra) = s
k(rs) = s3
k(re) = s4+min(k(r), k(rs))
which have the unique solution x(r1) = s1 + s3, k(r2) = sa2, k(r3) = s3, and

k(r4) = S3 + S4.

The key question relating to this knowledge base is “Are elephants which are
both royal and african, not grey?”, or alternatively, “Don’t marine chaplains drink
beer?” This translates into the default a A ¢ = —d which is me-entailed in general
as can be seen from:

klaheA—-d) < klaAcAd)

s3 < s3+ min(sy,s1 + 2 + s3)

The result in this example is unambiguous, that is, it holds for all strength
assignments. However, Touretzky et al [14] were not entirely happy about the
conclusion that marine-chaplains do not drink beer. They argued that if the rate
of beer drinking amongst marines was significantly higher than normal, then this
might alter the behaviour associated with marine-chaplains.

Now, the default r5 : ¢ = d (marines drink beer) is in fact me-entailed by A,
but adding it to the database with all defaults having equal strength would violate
the robustness condition. If, however, r5 were added with a higher strength, so that
it represents an extra constraint in the entropy maximization, a robust solution
results and the status of the default a A ¢ = —d depends on the relative strengths
s4 and ss.

So, Touretzky et al. were correct in supposing that if marines were heavier
drinkers than men in general then it may not be clear whether marine chaplains are
beer drinkers or not. However, as this information is not explicitly represented, it is
unsurprising that conclusions based on it do not occur. This example illustrates an
important point, sometimes seemingly overlooked [13], that any reasoning system
can only reason with the information that is available to it. The beauty of the me-
approach is that it highlights exactly what is implied by the data, and only what is
implied by that data. O
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It is interesting to note that many of the more complex examples from the literature
(for example, see [9]), which have been devised deliberately to overcome any intuitive
biases, fail to satisfy the robustness condition when all defaults are assigned equal
strengths. If a set is probabilistically consistent it is possible to restore robustness by
altering the strengths. This suggests that some sets may be too complex for human
intuition to disentangle because they are ambiguous or underspecified. Because the
me-approach requires more information from the knowledge engineer, in terms of a
strength assignment over defaults, some of these ambiguities can be cleared up and
the hitherto implicit biases made explicit.

6 Conclusions

Using the me-approach for default reasoning provides the same benefits as its use
in statistical problems. As Jaynes [6] suggests, by encoding all known relevant in-
formation and finding the maximum entropy distribution, any observations which
differ significantly from the result imply that other constraints, in this case defaults,
exist. A closer approximation to the desired model is obtained by adding more de-
faults or by adjusting the strengths. Rather than questioning the conclusions of a
default reasoning system, one needs to ensure that all relevant information has been
encoded—the maximum entropy formalism enables the precise and explicit repre-
sentation of this as default knowledge and moreover has an objective justification
based on the principle of indifference.

This paper has refined and extended the work of [5] on applying the principle
of maximum entropy to the probabilistic semantics for default rules to enable it
to be applied to arbitrary sets of variable strength defaults. A new algorithm was
presented which finds a maximum entropy ranking and establishes existence, and a
sufficient condition to determine uniqueness was given. This extension to arbitrary
sets has shed some light onto the causes of controversy among classical examples
from the literature and pointed to ways of resolving them.
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