
An Algorithm for Computing the MaximumEntropy Ranking for Variable Strength DefaultsRachel A Bourne and Simon ParsonsDepartment of Electronic EngineeringQueen Mary & West�eld CollegeUniversity of LondonLondon E1 4NS, UKr.a.bourne,s.d.parsons@elec.qmw.ac.ukAbstractA new algorithm for computing the maximum entropy ranking (me-ranking)over a set of variable strength defaults is given. Although this requires moreinformation than its predecessor in terms of strengths for defaults, it has amuch wider applicability, and allows for greater expressiveness in encodingdefault knowledge. The algorithm is shown to be sound and complete to theextent that it always produces an me-ranking when one exists. The reasonsfor multiple rankings and for no ranking are explored. A su�cient conditionfor uniqueness of the me-ranking is given.1 BackgroundDefaults like bird) fly are natural rules which can be used to describe the normalbehaviour of some domain. Default knowledge can be used to make inferences abouta given situation so that, for example, an arbitrary bird would be assumed to yunless there were information to the contrary.The question arises of what should be inferred from any given set of defaults andresearch into this has led to the development of many very di�erent nonmonotonicreasoning formalisms [8, 12, 13, 14]. A probabilistic model of default reasoning hasproven to capture the most basic requirements of nonmonotonic behaviour [1, 7, 11].A natural extension to this model is to apply the principle of maximum entropy to�nd a distinguished consequence relation which captures the default knowledge butmakes no additional assumptions, i.e., is the least biased [6, 10]. In this paper, theoriginal work of [5] on applying maximum entropy to default reasoning is extendedto cater for arbitrary sets of variable strength defaults. In doing so, it is hoped bothto clarify the assumptions required by the me-approach, and to demonstrate thatthis exible method can help to explain why there has been disagreement amongresearchers regarding the nature of default inference.2 Deriving the me-rankingFirst, it is necessary to look at what a default represents and how defaults areconnected to ranking functions and consequence relations.De�nition 2.1 A default is a natural rule of the form a ) b such that the an-tecedent, a, and the consequent, b, are formul� of a �nite propositional language,L. 1



The symbol,), is a new default connective the semantics of which will be describedshortly; it should not be confused with the material implication symbol, !. Theconnectives ^, _, :, !, have their usual meaning. The semantics of L are given interms of the set of its models, M. A model, m 2 M, is said to verify a default,a ) b, if m j= a ^ b. Conversely, a model, m, is said to falsify a default, a ) b, ifm j= a ^ :b.De�nition 2.2 A ranking function, �, is a mapping fromM to the nonnegative in-tegers for which at least one model, m, has �(m) = 0. This determines a preferenceordering models, so that �(m) < �(m0)means that m is preferred to, or more normal than, m0.This function, �, in turn determines a preference ordering over the formulas of L,where a formula is as preferred as its most preferred model, so that�(a) = minmj=a[�(m)] (1)Equivalently, �(a) < �(b) means that there exists an m such that m j= a and forall m0 such that m0 j= b, �(m) < �(m0).A default constrains a ranking function so that it is more normal to verify thedefault than to falsify it. Such a ranking function is said to be admissible withrespect to that default. More formally,De�nition 2.3 A ranking function, �, satis�es a default, a ) b, or is admissiblewith respect to it, i� �(a ^ b) < �(a ^ :b) (2)A ranking function over models is equivalent to a rational consequence relation [8].To determine whether some consequent, b, is a consequence of some antecedent, a,with respect to a ranking function, �, it is necessary to check whether � satis�esa) b. If j�� represents the consequence relation, thena j�� b i� �(a ^ b) < �(a ^ :b)Defaults have also been given a semantics in terms of parameterised probabilitydistributions [1, 5], and ranking functions can be viewed as abstractions of these.The parameterised probability semantics de�nes a default, a ) b, as a constrainton the conditional probability to be `almost' certain, P (bja) � 1 � ", where " is aparameter close to zero. Now, if constraints are expressed in terms of powers of ",the corresponding defaults can be viewed as having priorities, or strengths, whichcorrespond to the exponent of ". This gives a revised notion of satisfaction andadmissibility so thata s) b means that �(a ^ b) + s � �(a ^ :b) (3)The default represents the constraint P (bja) � 1� "s.The equivalence of the probabilistic and ranking function representations fordefaults is useful. It is well known that when a set of constraints determines someclass of probability distributions, there exists a (usually) unique member whichcorresponds to the least biased estimate, or that which makes the least assumptionsabout the rest of the data|the maximum entropy distribution [6]. By using theparameterised probabilistic semantics, the principle of maximum entropy can beapplied to �nd a probability distribution. Once this has been found, it can beabstracted back to the ranking function representation.2



The entropy of a probability distribution over a set of models, M, is given byH [P ] = � Xm2MP (m) logP (m) (4)The problem, then, is to select that probability distribution which maximises (4)subject to constraints imposed by the defaults.This idea was originally proposed by Pearl [11], and developed by Goldszmidt etal. [5], who presented an algorithm which computed the me-ranking for a restrictedclass of defaults called minimal core sets. They used the same constraint for eachdefault but pointed out that the algorithm could also be applied to variable strengthdefaults, provided the sets were still minimal core. The minimal core restrictionensures that all the inequality constraints are satis�ed as equalities.In the work presented here, using variable strength defaults requires all con-straints to be satis�ed as equalities in the maximum entropy distribution. Whilethis means that more information is required from the knowledge engineer, who mustnow specify the strength he assigns to defaults explicitly, it makes the whole for-malism more meaningful since it guarantees that all defaults are taken into accountand stresses the necessity of specifying relative strengths for defaults, somethingwhich was not obvious in the original work. The point is that varying the strengthsleads to di�erent me-rankings so that it is not meaningful to look for the me-rankingwithout specifying a strength assignment over the defaults.Now, specifying relative orders of magnitude for the conditional probabilitiescorresponding to each default (i.e., their strengths), results in a similar order ofmagnitude description of the probabilities of each model. This is achieved by al-lowing the parameter, ", to tend to zero. This can be thought of as taking a setof assumptions (i.e., the defaults) to the extreme in order to ascertain what otherinformation is implied. Intuitively, defaults with numerically higher strengths canbe thought of as holding more strongly than, or as having priority over, those oflower strength.Because the analysis is in�nitesimal, the constraints represent asymptotic equal-ities and the symbol � is used to denote this1. When abstracting back to rankingfunctions, it is only the lowest exponents in an expression which dominate andthe asymptotic equalities become integer equalities. Note that since it is only theasymptotic behaviour of the probabilities that is important, there is no need toconsider their coe�cients explicity, nor indeed the actual value of entropy.The strength of each default is expressed as some power of the parameter "which has no signi�cance other than linking all defaults together. Thus a defaulta s) b will be said to have relative strength s, if P (:bja) � "s for some integers > 0. As " ! 0, the term "s ! 0 and so P (bja) ! 1; the default becomesarbitrarily certain. In specifying a default, it is assumed that the knowledge engineeris encoding information which he takes to be almost certain.In a similar manner, the probability of each model m 2 M is taken to beasymptotically equivalent to some non-negative integer power of ", i.e., P (m) �"�(m) for �(m) � 0; this exponent is denoted �(m) since, later, it will determinethe ranking function overM.Given a set of variable strength defaults, � = fri : ai si) big, the constraintsimposed on P for each default can be written:Xmj=ai^:bi P (m) � "si1� "si Xmj=ai^bi P (m) (5)Using these constraints and the Lagrange multiplier technique to �nd the point ofmaximum entropy, Goldszmidt et al. [5] derived the following elegant and simple1Two models m and m0 are asymptotically equivalent i� lim"!0 P (m)P (m0) = C, a constant.3



approximation for the probability of each model2:P (m) � Yrimj=ai^:bi �i (6)where the �i relate to the Lagrange multipliers for each default.Making a further assumption that the �i can also be approximated by a relativeorder of magnitude, thus writing �i � "�(ri), the probability expressions (6) aresubstituted back into the constraints (5) yielding j�j simultaneous equations withj�j unknowns, the �(ri)3.In the limit as " ! 0 those models with the lowest powers of " will dominate,and the constraints reduce to:minmj=ai^bi[�(m)] + si = minmj=ai^:bi[�(m)] (7)Given a set of me-ranks for defaults, �(ri), the me-ranking over models, �(m), canbe found using the abstraction of equation (6). The me-rank of each model is givenby the sum of the me-ranks of those defaults it falsi�es:�(m) = Xrimj=ai^:bi �(ri) (8)This completes the derivation of the maximum entropy ranking with �(m) de�ningthe me-consequence relation. Note that in deriving these constraints (7) and (8),the assumption is that an me-ranking, i.e., an integral solution to these equations,exists. Given the extra requirement that the constraints be satis�ed as equalities,this may not always be the case. Reasons for this will be explored in section 4, butin the next section an algorithm is given which computes the me-ranking, if onedoes exist.3 The me-algorithmThe me-ranking can be found if the equations (7) and (8) can be solved. However,since this is a set of non-linear simultaneous equations, there is no guarantee eitherthat there is a solution or that a given solution is unique. Expanding equations (7)and (8) illustrates how the algorithm for computing the me-ranking was be devised.Let vr (respectively, fr) represent a minimal verifying (respectively, falsifying)model of r in some ranking �.De�nition 3.1 An integer ranking, �, over a set of defaults, fri : ai si) big, is saidto be me-valid with respect to that set if, for all r,�(vr) + sr = �(fr) (9)and the ranking over models is determined by (8).Since each falsifying model of a default has a contribution from its own me-rank,equation (9) can be re-written as�(r) + (�(fr)� �(r)) = �(vr) + sr (10)This equation can be expanded to give:2Note that this approximation is, on the face of it, independent of the strengths si.3Note that the function � is used to represent both the ranking function over models and theme-ranks of the defaults themselves. 4



me-algorithmInput: a set of variable strength defaults, fri : ai si) big.Output: an me-valid ranking, �, if one exists.[1] Initialise all �(ri) = INF.[2] While any �(ri) = INF do:(a) For all ri with �(ri) = INF, computeMINV(ri) + si.(b) For all such ri with minimal MINV(ri) + si,compute MINF(ri).(c) Select rj with minimal MINF(ri).(d) If MINF(rj) = INF let �(rj) := 0else let �(rj) := sj + MINV(rj)� MINF(rj).[3] Assign ranks to models using equation (8).[4] Check constraints (7) to verify this is an me-valid ranking4.Figure 1: The me-algorithm
�(ri) + minmj=ai^:bi 2664 Xrj ;j 6=imj=aj^:bj �(rj)3775 = si + minmj=ai^bi 2664 Xrj ;j 6=imj=aj^:bj �(rj)3775 (11)Let the function MINV(r) (respectively, MINF(r)) be de�ned so that it returns thecurrent minimal rank of all verifying models of r (respectively, the current minimalrank of all falsifying models of r excluding its own contribution) using equation (8).In the me-algorithm of Figure 1, equation (10), along with the functions MINV(r)and MINF(r), is used to compute the me-rank of each default iteratively via theassignment: �(r) := sr +MINV(r)�MINF(r) (12)The remainder of this section sets out to demonstrate the claim that this algorithmcomputes an me-ranking, if one exists.The �rst lemma shows that the me-algorithm always computes a �nite set ofranks for the defaults provided the input set is p-consistent|meaning that it ispossible to build a probability distribution over the defaults which respects theconstraints they embody.Lemma 3.2 Given a p-consistent set of variable strength defaults, the me-algorithmassigns a �nite rank to each default.Proof. Provided the minimal computed value for the function MINV(r) is �niteat each pass of the loop, then the rank assigned to the chosen default will also be�nite since if the computed value of MINF(r) is in�nite it will be assigned rank 0,otherwise it will be assigned MINV(r)+ sr�MINF(r) which is also �nite. Supposetherefore that at some pass of the loop the minimal computed value for MINV(r) isin�nite for all unranked r. This means that all verifying models of each unrankeddefault also falsify an unranked default, i.e., the set of defaults remaining to beranked is uncon�rmable. This contradicts the p-consistency of the original set andhence each default will be assigned a �nite rank. 24As will be seen later, this step may be replaced by a check for 1-fold cycles at step [2](c).5



Given a p-consistent set of defaults, therefore, some set of �nite ranks will beproduced, which in turn implies a �nite set of ranks over models. The next lemmashows that this represents a ranking function over models, i.e., that all ranks formodels are non-negative and that at least one has zero rank.Lemma 3.3 Given a p-consistent set of variable strength defaults, the me-algorithmassigns a non-negative rank to each model.Proof. This is shown by induction. The rank of each model at any given stageequals the sum of the current ranks of those defaults it falsi�es. At the start, as alldefaults have in�nite rank, the current rank of a model is either zero, if it falsi�esno defaults, or in�nite. Assume that at some intermediate stage all models havenon-negative rank before the chosen default, r, is assigned a rank. Now, if the com-puted value of MINF(r) is in�nite, the default is assigned a rank of 0 but this willnot change the current rank of any model since all its falsifying models also falsifyother unranked defaults. If, on the other hand, MINF(r) is �nite then the default isassigned a rank of MINV(r) + sr �MINF(r). Now any falsifying models of r whichonly falsify other previously ranked defaults will all have a rank of greater thanor equal to MINV(r) + sr because MINF(r) was minimal among them. Any otherfalsifying models of r will still have in�nite rank. The lemma follows by induction.2 This lemma does not preclude a default from having a negative rank. Note that,at this stage, there is no guarantee that the computed ranking over models is me-valid, or even admissible, only that it represents a ranking. The following lemmashows that the defaults are ranked in an order corresponding to the ascending orderof their �(vr) + sr in the �nal ranking.Lemma 3.4 Given a p-consistent set of variable strength defaults, the me-algorithmassigns ranks to defaults in ascending order of the �nal ranks of their minimal ver-ifying models plus their strengths.Proof. The proof of lemma (3.3) shows that, at any stage, if a model's rankbecomes �nite it will be greater than or equal to that of the current default's com-puted MINV(r) + sr. Since, at each pass of the loop, r is chosen so that this isminimal, it also follows that no model which has in�nite rank can subsequentlyobtain a lower �nal rank than the current MINV(r) + sr. This implies both that�(vr) = MINV(r) for the current r, and that the defaults are ranked in ascendingorder of their �nal �(vr) + sr. 2Corollary 3.5 � is admissible, that is, for all r�(vr) + sr � �(fr)Proof. Note that all falsifying models of a default have in�nite rank when it isbeing ranked and so cannot have a �nal rank of less than �(vr) + sr. 2In order to show that the algorithm is sound, it is necessary to notice under whatcircumstances no me-valid ranking exists. In fact, this can be determined from thebehaviour of the me-algorithm itself. The following de�nition will be helpful.De�nition 3.6 (Cycles) An n-fold cycle is said to be encountered if, at stage[2](c) of the me-algorithm, n defaults are available to be ranked (i.e., have minimalMINV(r) + sr) and all have in�nite MINF(r).Now the soundness of the me-algorithm can be established under the circum-stance that no 1-fold cycle is encountered.6



Theorem 3.7 (Soundness) Given a p-consistent set of variable strength defaults,the me-algorithm produces an me-valid ranking i� no 1-fold cycle is encountered.Proof. For the if part. Assume that a 1-fold cycle occurs when some r is beingranked. Clearly r is assigned rank zero but all its falsifying models remain in�nite.Now, since there were no other defaults available to be ranked along with r, allunranked defaults have a strictly higher value for MINV(r) + sr. When any ofr's falsifying models become �nite they will have a �nal rank strictly greater than�(vr) + sr and so � is me-invalid.For the only if part. From the corollary (3.5), � is admissible. For � to beme-invalid, it must be the case that for some r, �(vr) + sr < k(fr). This can onlyoccur if all its falsifying models also falsify another default, r0, which has a higher�nal rank for �(vr0)+sr0 .5 The me-algorithm will therefore encounter a 1-fold cyclewhen it ranks r because r0 will not be available for ranking as it does not haveminimal MINV(r) + sr. 2To establish the �nal result for the me-algorithm, that it is complete in the sensethat it computes an me-valid ranking if one exists, it is necessary to show that theassignments for the ranks for defaults are compatible with an me-valid ranking, ifone exists. Note that it is not important which me-valid ranking is computed justthat one will be computed if any exist.Theorem 3.8 (Completeness) The ranks assigned to defaults in the me-algorithmare compatible with an me-valid ranking, if one exists.Proof. Assume that at least one me-valid ranking, �0, exists. The proof is induc-tive. Note that at the start, when no defaults have been ranked, this is compatiblewith �0. Assume that at some point, when rn is selected to be ranked, all previouslyranked rules, ri, i < n, have �(ri) = �0(ri). Now, if v0rn is a minimal verifying modelfor rn in �0, it falsi�es only previously ranked defaults so �(v0rn) = �0(v0rn). As shownin theorem (3.7), the minimal verifying model of rn in � has rank MINV(rn) whichmust equal �0(v0rn) and v0rn is minimal in both �0 and �.Consider f 0rn , a minimal falsifying model for rn in �0. Suppose it, too, falsi�esonly previously ranked defaults, apart from rn, then MINF(rn) will be �nite andequal to �0(v0rn)+sn��0(rn). The rank assigned to �(rn) is �(v0rn)+sn�MINF(rn)which must equal �0(rn). The assignment of �(rn) is therefore compatible with �0.Suppose, on the other hand, that f 0rn falsi�es some as yet unranked defaults andlet one of these be rm with m > n. Now f 0rn will also be a minimal falsifying modelfor rm in �0 and the constraint of me-validity (9) is given by:�0(v0rn) + sn = �0(f 0rn) = �0(rn) + �0(rm) + Cwhere C is a constant being the sum of the �0 ranks of all other defaults falsi�ed byf 0rn . Now there are in�nitely many me-valid rankings which satisfy this equationwith �0(rn) and �0(rm) varying, at least one of which has �0(rn) = 0 and so theassignment �(rn) = 0 will be compatible with at least one of these �0. The theoremfollows by induction. 2Theorems (3.7) and (3.8) lead to the following corollary.Corollary 3.9 An me-valid ranking exists i� the me-algorithm does not encountera 1-fold cycle.It follows that step [4] in the me-algorithm may be replaced by a simple check forthe existence of a 1-fold cycle at step 2[c]. If a 1-fold cycle is encountered thenan exception can be raised to indicate that the ranking produced is not me-valid(though it will be admissible).5Note that there may be several defaults r0. 7



m a b c r1 r2 r3 P (m)m1 0 0 0 - - - 1m2 0 0 1 - - - 1m3 0 1 0 - - - 1m4 0 1 1 - - - 1m5 1 0 0 f f - �1�2m6 1 0 1 f v - �1m7 1 1 0 v f f �2�3m8 1 1 1 v v v 1Table 1: Unnormalised probabilities for example 4.1.ComplexityThe main disadvantage of this new algorithm, which it shares with that of [5], isits intractability, requiring enumeration of models. Thus if L has n propositions,the me-algorithm will be polynomial in 2n. The issue of complexity is not ad-dressed in this paper and this is a severe problem with the me-approach in general[3]. However, the intention of this paper is to expound the theoretical bene�ts ofthe maximum entropy ranking, not its practicability. A current implementation6requires L to contain 16 or fewer propositions.4 Uniqueness and existence criteriaIn the derivation of the me-constraint equations, it was assumed that consideringthe asymptotic behaviour of the probabilities, and �xing the relative strength ofdefaults, determines the me-ranking. In both cases this amounts to ignoring theircoe�cients. It turns out that this assumption does not hold in general although itis possible to identify situations in which there are no solutions, and in which thesolution is unique.First, an example which illustrates why the assumption may not always be valid.Consider the following example where the probabilities (6) are used to show whatmay happen when all defaults have the same strength but the coe�cients of thesestrengths are allowed to vary.Example 4.1 � = fr1 : a s1) b; r2 : a s2) c; r3 : a ^ b s3) cgTable 1 shows whether a model falsi�es or veri�es each default and gives its (un-normalised) probability using equation (6):Using the substitution u = "1�" , with all defaults having equal strength of 1, andletting the coe�cients of these be c1, c2, c3, respectively, the constraint equations(5) give rise to three simultaneous equations:�1�2 + �1 = c1u(1 + �2�3)�1�2 + �2�3 = c2u(1 + �1)�2�3 = c3uSolving these for the �i in terms of u gives7:�1 = u(c1 + c1c3u� c2 + c3)1 + c2u6Available at: http://www2.elec.qmw.ac.uk/�rach/drs.html.7Note that � has been replaced by = since the coe�cients are now relevant, however, thisanalysis is somewhat lax since by using (6) some approximation has already occurred. Nevertheless,the point being made is a valid one. 8



m a b c (1; 0; 1) (1; 1; 0) (2;�1; 2)m1 0 0 0 0 0 0m2 0 0 1 0 0 0m3 0 1 0 0 0 0m4 0 1 1 0 0 0m5 1 0 0 1 2 1m6 1 0 1 1 1 2m7 1 1 0 1 1 1m8 1 1 1 0 0 0Table 2: Multiple me-rankings for example 4.1.�2 = c1c2u+ c1c2c3u2 + c2 � c3c1 + c1c2u� c2 + c3�3 = c3u(c1 + c1c2u� c2 + c3)c1c2u+ c1c2c3u2 + c2 � c3Now consider what happens asymptotically for various values of the coe�cients.Case 1: Let c1 = 2(c2 � c3) (for c2 > c3). This gives a solution of �1 � u,�2 � 1, �3 � u and leads to an me-ranking over defaults of (1,0,1).Case 2: Let c2 = c3. This gives a solution of �1 � u, �2 � u, �3 � 1, and anme-ranking over defaults of (1,1,0).Case 3: Let c1 + c3 = c2. This gives a solution of �1 � u2, �2 � 1u , �3 � u2and an me-ranking over defaults of (2,-1,2).The me-rankings corresponding to each of these cases are given in Table 2. Itis clear that di�erent choices for the coe�cients may lead to di�erent me-rankingsover the defaults and, more importantly, over the models. This corresponds to therebeing multiple solutions to the constraint equations given by (7) and (8).For maximum entropy entailment to be well-de�ned, it is desirable to be able todetermine when a unique me-ranking can be found. It has already been establishedthat the me-algorithm can be used to identify when no solution exists (encounteringa 1-fold cycle). The following results identify a unique me-ranking.De�nition 4.2 An integer ranking, �, over models is said to be robust8 with respectto a set of defaults, fri : ai si) big, if no two defaults share a common minimalfalsifying model in �.Theorem 4.3 Given a �nite set of defaults, fri : ai si) big, if an me-valid ranking,�, is robust then it is unique.The proof can be found in [4]. This de�nition of robustness is only a su�cientcondition for uniqueness, however. It may be possible to �nd a necessary conditionand this is the subject of ongoing research.5 ExamplesIn the �rst example, the solution is tabulated explictly to illustrate the method of�nding the me-ranking but later this is omitted to save space.Example 5.1 (Exceptional inheritance)� = fr1 : b s1) f; r2 : p s2) b; r3 : p s3) :f; r4 : b s4) wg8Adopting the use of \robustness" to indicate existence of a unique solution from [2].9



m b f p w r1 r2 r3 r4 �(m)m1 0 0 0 0 - - - - 0m2 0 0 0 1 - - - - 0m3 0 0 1 0 - f v - �(r2)m4 0 0 1 1 - f v - �(r2)m5 0 1 0 0 - - - - 0m6 0 1 0 1 - - - - 0m7 0 1 1 0 - f f - �(r2) + �(r3)m8 0 1 1 1 - f f - �(r2) + �(r3)m9 1 0 0 0 f - - f �(r1) + �(r4)m10 1 0 0 1 f - - v �(r1)m11 1 0 1 0 f v v f �(r1) + �(r4)m12 1 0 1 1 f v v v �(r1)m13 1 1 0 0 v - - f �(r4)m14 1 1 0 1 v - - v 0m15 1 1 1 0 v v f f �(r3) + �(r4)m16 1 1 1 1 v v f v �(r3)Table 3: The me-ranking for the penguin example.The intended interpretation of this knowledge base is that birds y, penguins arebirds, penguins do not y and birds have wings. Table 3 shows whether a modelfalsi�es or veri�es each default. The column headed �(m) gives the me-rank of eachmodel in terms of the �(ri) using equation (8).Substituting the �(m) into the reduced constraint equations (7) gives rise to:�(r1) = s1�(r2) = s2 +min(�(r1); �(r3))�(r3) = s3 +min(�(r1); �(r2))�(r4) = s4Clearly, the only solution to these equations is �(r1) = s1, �(r2) = s1 + s2, �(r3) =s1 + s3, and �(r4) = s4.To determine default consequences it is necessary to compare the ranks of adefault's minimum verifying and falsifying models. Since this solution holds for anystrength assignment (s1; s2; s3; s4), it follows that some default conclusions may holdin general. In particular, it can be seen that the default p ^ b) :f is me-entailedsince �(p ^ b ^ :f) < �(p ^ b ^ f)s1 < s1 + s3This result is unsurprising since p ^ b ) :f is a preferential consequence of �. Amore interesting general conclusion is p) w, which follows since�(p ^ w) = s1 < �(p ^ :w) = s1 +min(s2; s4)Again this result holds regardless of the strength assignments and illustrates that,for this example, the inheritance of w to p via b is uncontroversial. 2Example 5.2 (Nixon diamond)� = fr1 : q s1) p; r2 : r s2) :pgThe intended interpretation is that quakers are paci�cists whereas republicans arenot paci�sts. Given a strength assignment of (s1; s2) it is easily shown that �(r1) =10



s1 and �(r2) = s2. The classical problem associated with this knowledge base isto ask whether Nixon, being a republican and a quaker, is paci�st or not. Thisis represented by the default r ^ q ) p. The two relevant models to compare arer ^ q ^ p and r ^ q ^ :p whose me-ranks in the general me-solution are�(r ^ q ^ p) = s2 and �(r ^ q ^ :p) = s1 (13)Clearly either r ^ q ) p or r ^ q ) :p, or neither, may be me-entailed dependingon the comparative strengths s1 and s2. This result is in accordance with the\intuitive" solution that no conclusion should be drawn regarding Nixon's paci�ststatus unless there is reason to suppose that one default holds more strongly thanthe other. In the case of one default being stronger, the conclusion favoured by thestronger would prevail. 2Example 5.3 (Royal elephants/marine chaplains)� = fr1 : a s1) b; r2 : c s2) b; r3 : b s3) d; r4 : a s4) :dgThere are two interpretations of this knowledge base. In the �rst, the propositions a,b, c, and d, stand for royal, elephant, african and grey, respectively; in the second,the propositions stand for chaplain, man, marine and beer drinker, respectively.The constraint equations (7) give rise to:�(r1) = s1 +min(�(r3); �(r4))�(r2) = s2�(r3) = s3�(r4) = s4 +min(�(r1); �(r3))which have the unique solution �(r1) = s1 + s3, �(r2) = s2, �(r3) = s3, and�(r4) = s3 + s4.The key question relating to this knowledge base is \Are elephants which areboth royal and african, not grey?", or alternatively, \Don't marine chaplains drinkbeer?" This translates into the default a ^ c ) :d which is me-entailed in generalas can be seen from:�(a ^ c ^ :d) < �(a ^ c ^ d)s3 < s3 +min(s4; s1 + s2 + s3)The result in this example is unambiguous, that is, it holds for all strengthassignments. However, Touretzky et al [14] were not entirely happy about theconclusion that marine-chaplains do not drink beer. They argued that if the rateof beer drinking amongst marines was signi�cantly higher than normal, then thismight alter the behaviour associated with marine-chaplains.Now, the default r5 : c ) d (marines drink beer) is in fact me-entailed by �,but adding it to the database with all defaults having equal strength would violatethe robustness condition. If, however, r5 were added with a higher strength, so thatit represents an extra constraint in the entropy maximization, a robust solutionresults and the status of the default a ^ c ) :d depends on the relative strengthss4 and s5.So, Touretzky et al. were correct in supposing that if marines were heavierdrinkers than men in general then it may not be clear whether marine chaplains arebeer drinkers or not. However, as this information is not explicitly represented, it isunsurprising that conclusions based on it do not occur. This example illustrates animportant point, sometimes seemingly overlooked [13], that any reasoning systemcan only reason with the information that is available to it. The beauty of the me-approach is that it highlights exactly what is implied by the data, and only what isimplied by that data. 211



It is interesting to note that many of the more complex examples from the literature(for example, see [9]), which have been devised deliberately to overcome any intuitivebiases, fail to satisfy the robustness condition when all defaults are assigned equalstrengths. If a set is probabilistically consistent it is possible to restore robustness byaltering the strengths. This suggests that some sets may be too complex for humanintuition to disentangle because they are ambiguous or underspeci�ed. Because theme-approach requires more information from the knowledge engineer, in terms of astrength assignment over defaults, some of these ambiguities can be cleared up andthe hitherto implicit biases made explicit.6 ConclusionsUsing the me-approach for default reasoning provides the same bene�ts as its usein statistical problems. As Jaynes [6] suggests, by encoding all known relevant in-formation and �nding the maximum entropy distribution, any observations whichdi�er signi�cantly from the result imply that other constraints, in this case defaults,exist. A closer approximation to the desired model is obtained by adding more de-faults or by adjusting the strengths. Rather than questioning the conclusions of adefault reasoning system, one needs to ensure that all relevant information has beenencoded|the maximum entropy formalism enables the precise and explicit repre-sentation of this as default knowledge and moreover has an objective justi�cationbased on the principle of indi�erence.This paper has re�ned and extended the work of [5] on applying the principleof maximum entropy to the probabilistic semantics for default rules to enable itto be applied to arbitrary sets of variable strength defaults. A new algorithm waspresented which �nds a maximum entropy ranking and establishes existence, and asu�cient condition to determine uniqueness was given. This extension to arbitrarysets has shed some light onto the causes of controversy among classical examplesfrom the literature and pointed to ways of resolving them.References[1] E. Adams. The Logic of Conditionals. Reidel, Dordrecht, Netherlands, 1975.[2] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From statistical knowl-edge bases to degrees of belief. Arti�cial Intelligence, 87:75{143, 1996.[3] R. Ben-Eliyahu. NP-complete problems in optimal horn clause satis�ability.Technical report r-158, Cognitive Systems Laboratory, UCLA, Los Angeles,1990.[4] R. A. Bourne and S. Parsons. Maximum entropy and variable strength defaults.In Proceedings of the Sixteenth International Joint Conference on Arti�cialIntelligence, 1999.[5] M. Goldszmidt, P. Morris, and J. Pearl. A maximum entropy approach tononmonotonic reasoning. IEEE Transactions on Pattern Analysis and MachineIntelligence, 15:220{232, 1993.[6] E. Jaynes. Where do we stand on maximum entropy? In R. Levine andM. Tribus, editors, The Maximum Entropy Formalism, pages 15{118, Cam-bridge, MA, 1979. MIT Press.[7] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferentialmodels and cumulative logics. Arti�cial Intelligence, 44:167{207, 1990.12
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