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Abstract

As multi-agent systems proliferate and employ different
and more sophisticated formal logics, it is increasingly
likely that agents will be reasoning with different rules
of inference. Hence, an agent seeking to convince an-
other of some proposition may first have to convince the
latter to use a rule of inference which it has not thus far
adopted. We define a formalism to represent degrees
of acceptability or validity of rules of inference, to en-
able autonomous agents to undertake dialogue concern-
ing inference rules. Even when they disagree over the
acceptability of a rule, two agents may still use the pro-
posed formalism to reason collaboratively.

1 Introduction

In 1895, the logician Charles Dodgson (aka Lewis Car-
roll) famously imagined a dialogue between Achilles
and a tortoise, in which the application of Modus Po-
nens (MP) was contested as a valid rule of inference
[4]. Given arbitrary propositionsP andQ, and the two
premisesP and(P ! Q), one can only concludeQ
from these premises if one accepts that Modus Ponens
is a valid rule of inference. This the tortoise refuses
to do, much to the exasperation of Achilles. Instead,
the tortoise insists that a new premise be added to the
argument, namely:(P ^ (P ! Q)) ! Q. When
Achilles does this, the tortoise still refuses to acceptQ as the conclusion, insisting on yet another premise:(P ^ (P ! Q) ^ ((P ^ (P ! Q)) ! Q)) ! Q. The
tortoise continues in this vein,ad infinitum.

Eighty years later, philosopher Susan Haack [9] took
up the question of how one justifies the use of MP as a
deductive rule of inference. If one does so by means of
examples of its valid application, then this is in essence
a form of induction, which (as she remarks) seems too
weak a means of justification for a rule of deduction. If,
on the other hand, one uses a deductive means of justi-
fication, such as demonstrating the preservation of truth
across the inference step in a truth-table, one risks us-
ing the very rule being justified. So how can one person
convince another of the validity of a rule of deductive
inference?

That rules of inference may be the subject of fierce
argument is shown by the debate over Constructivism in
pure mathematics in the twentieth century [21]: here the
rule of inference being contested was double negation
elimination in aReductio Ad Absurdum (RAA)proof:

FROM (:P ! Q) and(:P ! :Q)
INFER::P
FROM::P
INFERP
Although the choice of inference rules in purely for-

mal mathematics may be arbitrary,1 the question of ac-
ceptability of rules of inference is important for Arti-
ficial Intelligence for a number of reasons. Firstly, it
is relevant to modeling scientific reasoning. Construc-
tivism, for example, has been proposed as a formalism
for modern physics [3], as have other, non-standard log-
ics. In the propositional calculus proposed for quantum
mechanics by Birkhoff and von Neumann [2], for ex-
ample, the distributive laws did not hold:

1Goguen [8], for example, argues that standards of mathematical
proof are socially constructed.
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(A _ B) ^ (A _ C) ` A _ (B ^ C)(A _ B) ^ C ` (A ^ C) _ (B ^ C)
Indeed, it is possible to view scientific debates over al-
ternative causal theories as concerned with the validity
of particular modes of inference, as we have shown with
regard to claims of carcinogenicity of chemicals based
on animal evidence [13]. Intelligent systems which seek
to formally model such domains will need to represent
these arguments [14].

Secondly, it is not obvious that one logical formal-
ism is appropriate for all human reasoning, a subject
of much past debate in philosophy (e.g. see [10]). A
many-valued logic proposed for quantum physics, for
instance, has also been suggested to describe religious
reasoning in Azande and Nuer societies, reasoning
which appeared to contravene Modus Ponens [5]. In-
deed, some anthropologists have argued that formal hu-
man reasoning processes are culturally-dependent and
hence different across cultures [18]. To the extent that
this is the case, systems of autonomous software agents
acting on behalf of humans will need to reflect the di-
versity of formal processes. In such circumstances, it
is possible that interacting agents may be using logics
with different rules of inference, as is possible in the
agent negotiation system of [15]. If one agent seeks
to convince another of a particular proposition then that
first agent may have to demonstrate the validity of a rule
of inference used to prove the proposition. Our objec-
tive in this work is to develop a formalism in which such
a debate between agents could be conducted.

2 Arguments over rules of infer-
ence

We begin by noting that a dialogue between two agents
in which one only asserts, and the other only denies, a
rule of inference will not likely lead very far. A dialogue
between agents concerning a rule of inference will need
to express more than simply their respective positions
if either agent is to be persuaded to change its position.
What more may be expressed?

Suppose we have two agents, denoted A and B, and
that A seeks to convince B of a proposition�. For ex-
ample, this may be a joint intention which A desires
both agents to adopt. B asks for a proof of�. Suppose
that A provides a proof which commences from axioms
which are all accepted by B. Assume, however, that this
proof uses a rule of inferenceR which B says its logic

does not include. For example,Rmay be the use of the
contrapositive or RAA. There are three ways in which
the dialogue between A and B could then proceed.

First, A could attempt to demonstrate thatR can be
derived from the rules of inference which are contained
in B’s logic. Similarly, A could attempt to demonstrate
thatR is admissible in B’s logic [20], i.e. thatR is
an element of that set of inference rules under which
the theorems of B’s logic remain unchanged.2 In ei-
ther of these two cases, it would then be rational for
B to accept�, being a proposition whose proof com-
mences from agreed assumptions and which uses infer-
ence rules equivalent (in the sense of derivability or ad-
missibility) to those B has adopted. In such a case, the
difference of opinion is resolved, to the satisfaction of
both agents.

Suppose then that A is unable to prove thatR is
derivable from or admissible in B’s logic. The second
approach which A may pursue is to attempt to give non-
deductive reasons for B to adoptR. Examples of such
reasons could include: scientific evidence for the causal
mechanism possibly represented byR, where the rea-
soning is in a scientific domain; instances of its valid ap-
plication (e.g. the use of precedents in legal arguments);
the (possibly non-deductive) positive consequences for
B of adoptingR (e.g. that doing so will improve the
welfare of B, of A and/or of third parties); the (possi-
bly non-deductive) negative consequences for B of not
adoptingR (e.g. that not doing so will be to the detri-
ment of B, of A and/or of third parties); or empirical
evidence which would impact the choice of a particular
logic.3 The precise nature of such arguments will de-
pend upon the domain represented by the multi-agent
system, and the nature of the proposition�. Moreover,
for A to successfully convince B using such arguments,
B would require some formal means of assessing them,
perhaps using a logic of values as outlined in [7]. Al-
though currently being explored, these ideas are not
pursued further here.

Suppose, however, that A exhausts all such argu-
ments, and still fails to convince B to adopt eitherR
or �. Then, a third approach which A could pursue is
to represent B’s misgivings over the use ofR in an ap-
propriate formalism and use this to seek compromise

2Note thatR could be admissible in B’s logic yet not derivable
from the axioms and inference rules of that logic. All derivable rules
are admissible, however [20].

3Theory change in logic on the basis of empirical evidence has
been much discussed in philosophy, typically in a context ofholist
epistemology [17].
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between the two of them. We term such a formalism
an Acceptability Formalism (AF) and see it as akin to
formalisms for representing uncertainty regarding the
truth of propositions. Note that while B’s misgivings
concerning ruleR may arise from uncertainty as to its
validity, they need not: B may be quite certain in reject-
ing the rule.

What would be an appropriate formalism for repre-
senting degrees of acceptability of a rule of inference?
At this point, A has adoptedR and B has not, so that, in
effect, A (or, strictly, A’s designer) has decided that the
rule is an acceptable rule and B has not so decided. In
other words, A has assignedR the labelAcceptabletoR, and B has not assigned this label. Thus, a very sim-
ple representation of their views ofR would be assign-
ing labels from the qualitative dictionary:fAcceptable,
Unacceptableg or from the dictionaryfAcceptable, No
opinion, Unacceptableg. Such simple dictionaries leave
little room for compromise; so it behooves A to request
B to assign a label from a more granular dictionary, such
as the five-element set:fAlways acceptable, Mostly acceptable but some-
times unacceptable, Acceptable and unacceptable to
the same extent, Sometimes acceptable but mostly un-
acceptable, Always unacceptableg.
Were B to assign any but the final label,Always unac-
ceptable, then A has the opportunity to demonstrate to
B that the current use ofR in the proof of� is an ac-
ceptable application of the rule, and thus achieve some
form of compromise between the two.

To formalize this third approach we therefore assume
that A and B agree a dictionaryD of labels to be as-
signed to rules of inference. The elements of such an
AF dictionary could be linguistic qualifiers, as in the
examples above, but they need not be. For example,D
may be the set of integers between 1 and 100 (inclu-
sive), where larger numbers represent greater relative
acceptability of the rule. It is possible to view stan-
dard statistical hypothesis-testing procedures, Neyman-
Pearson theory [6], in this way. Here, for a proposition� concerning unknown parameters, the inference rule
is:

FROM � is true of a sample
INFER � is true of the population from which that

sample arises.
Under assumptions regarding the manner in which the
sample was obtained from the population (e.g. that it
was randomly selected) and assumptions regarding the
distribution of the parameters of interest in the popula-
tion, Neyman-Pearson theory estimates an upper bound

for the probability that the application of the inference
rule is invalid. Thus, we cannot say that the application
of the inference rule is valid in any one case, but we
can say that, if applied to repeated samples drawn from
the same population, it will be invalidly applied (say) at
most 5% of the time. Thus, the calculation ofp-values
for statistical hypothesis tests, which is common prac-
tice in the biological and medical sciences [19], effec-
tively associates each inference with a value from the
setfp : p 2 (0; 1)g. The label “100(1� p)%” is thus a
measure of confidence in the validity of application of
the inference rule.4

Once the two agents have agreed to adopt such a dic-
tionary, the labels could then be applied to multiple con-
tested rules of inference, and used in successive proofs.
To do this will require a calculus for combining labels
for different rules, and for propagating labels through
chains of reasoning, which is the subject of the next
Section.

3 Terrapin Logic TL

3.1 Formalization

We now present a formal description of the logic, which
we call TL (for “Terrapin Logic”, from the Algonquian
for tortoise), to enable reasoning about acceptability la-
bels for rules of inference. Our formalization is similar
to that for the Logic of Argumentation LA presented in
[7], itself influenced by labelled deductive systems and
earlier formalizations of argumentation.

We start with a set of atomic propositions including> and?, the ever true and ever false propositions. We
assume this set of well-formed formulae (wffs), labeledL, is closed under the connectivesf:;!;^;_g. Lmay
then be used to create a database� whose elements are
4-tuples,(� : G : R : ~d), in which � is a wff, G =(�0; �1; : : : ; �n�1) is an ordered sequence ofwffs, withn � 1, and whereR = (`1;`2; : : : ;`n) is an ordered
sequence of inference rules, such that:�0 `1 �1 `2 �2 : : : �n�1 `n �.
In other words, each element�k 2 G is derived from the
preceding element�k�1 as a result of the application of
the k-th rule of inference,̀k; (k = 1; : : : ; n� 1). The
rules of inference in any such sequence may be non-
distinct. The element~d = (d1; d2; : : : ; dn) is an or-
dered sequence of elements from a DictionaryD, being
an assignment of AF labels to the sequence of inference

4This interpretation is akin to Pollock’s statistical syllogism [16].
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rulesR. We also permitwffs l 2 L to be elements of�, by including tuples of the form(l : ; : ; : ;), where
each; indicates a null term. Note that the assignment
of AF labels may be context-dependent, i.e. thedi as-
signed tò i may also depend on�i�1. This is the case
for statistical inference, where thep-value depends on
characteristics of the sample from which the inference
is made, such as its size.

With this formal system, we can take a database and
use the consequence relation`TCR defined in Figure 1
to build arguments for propositions of interest. This
consequence relation is defined in terms of rules for
building new arguments from old. The rules are written
in a style similar to standard Gentzen proof rules, with
the antecedents of the rule above the horizontal line and
the consequent below. In Figure 1, we use the notationG
H to refer to that ordered sequence created from ap-
pending the elements of sequenceH after the elements
of sequenceG, each in their respective order. The rules
are:� The rule Ax says that if the tuple(� : G : R :~d) is in the database, then it is possible to build

the argument(� : G : R : ~d) from the database.
The rule thus allows the construction of arguments
from database items.� The rule^-I says that if the arguments(� : G :R : ~d) and (� : H : S : ~e) may be built from
the database, then an argument for� ^ � may also
be built. The rule thus shows how to introduce ar-
guments about conjunctions; using it requires an
inference of the form:�; � ` (� ^ �), which we
denotè ^-I in Figure 1. This inference is then as-

signed an AF dictionary value ofd^-I .� The rule^-E1 says that if it is possible to build an
argument for� ^ � from the database, then it is
also possible to build an argument for�. Thus the
rule allows the elimination of one conjunct from
an argument, and its use requires an inference of
the form: � ^ � ` �. This inference is denoted
by `^-E1, and is assigned an AF value ofd^-E1.

The rule^-E2 is analogous tô -E1 but allows the
elimination of the other conjunct.� The rule_-I1 allows the introduction of a disjunc-
tion from the left disjunct. The rule_-I2 allows
the introduction of a disjunction from the right dis-
junct. If instantiated with awff � and its nega-

tion � = :�, these rules permit the (possibly con-
tested) assertion of a Law of the Excluded Middle
(LEM).� The rule_-E allows the elimination of a disjunc-
tion and its replacement by tuple when that tuple
is a TL-consequence of each disjunct.� The rule:-I allows the introduction of negation.
The rule:-E allows the derivation of?, the ever-
false proposition, from a contradiction. The rule::-E allows the elimination of a double negation.� The rule!-I says that if on adding a tuple(� : ; :; : ;) to a database, where� 2 L, it is possible
to conclude�, then there is an argument for� !�. The rule thus allows the introduction of! into
arguments.� The rule!-E says that from an argument for� and
an argument for� ! � it is possible to build an ar-
gument for�. The rule thus allows the elimination
of ! from arguments and is analogous to MP in
standard propositional logic.

Our purpose in this paper is to propose a formal syntax
and proof rules for argument over rules of inference,
and so we do not consider semantic issues. Interpreta-
tions of TL would be defined with respect to a specified
AF dictionary or dictionary-class, and may assign!
to represent a relationship between propositions other
than material implication. A virtue of our initial focus
on syntactical elements is that, once defined, the proof
rules may be applied in different semantic contexts. We
are currently exploring alternative semantic interpreta-
tions for TL, along with the issue of its consistency and
completeness relative to these.

3.2 Negotiation within TL

Given the formalism TL just defined, how may this be
used by two agents, A and B, in dialogue over a con-
tested rule of inference? We assume the agents have
agreed a common set of assumptions to which they both
adhere, and have agreed a common AF dictionaryD of
labels to assign to inference rules. We assume the el-
ements ofD are partially ordered under a relation de-
noted<. We further assume thatD contains an elementd�1 such that for all otherd 2 D, we haved�1 < d,
and that the assignment ofd�1 to a rule of inference
by an agent marks it as always and completely unac-
ceptable.
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Ax
(� : G : R : ~d) 2 �� `TCR (� : G : R : ~d)^-I

� `TCR (� : G : R : ~d) and � `TCR (� : H : S : ~e)� `TCR (� ^ � : G
H 
 (� ^ �) : R
 S 
 (`^-I ) : ~d
 ~e
 (d^-I ))^-E1
� `TCR (� ^ � : G : R : ~d)� `TCR (� : G
 (�) : R
 (`^-E1) : ~d
 (d^-E1))^-E2
� `TCR (� ^ � : G : R : ~d)� `TCR (� : G
 (�) : R
 (`^-E2) : ~d
 (d^-E2))_-I1

� `TCR (� : G : R : ~d)� `TCR (� _ � : G
 (� _ �) : R
 (`_-I1 ) : ~d
 (d_-I1 ))_-I2
� `TCR (� : H : S : ~e)� `TCR (� _ � : H 
 (� _ �) : S 
 (`_-I2 ) : ~e
 (e_-I2 ))_-E

� `TCR (� _ � : G : R : ~d) and�; (� : ; : ; : ;) `TCR ( : H : S : ~e) and �; (� : ; : ; : ;) `TCR ( : J : T : ~f):� `TCR ( : G
H 
 J 
 () : R 
 S 
 T 
 (`_-E ) : ~d
 ~e
 ~f 
 (d_-E )):-I
�; (� : ; : ; : ;) `TCR (? : G : R : ~d)� `TCR (:� : G
 (:�) : R
 (`:-I ) : ~d
 (d:-I )):-E
� `TCR (� : G : R : ~d) and � `TCR (:� : H : S : ~e)� `TCR (? : G
H 
 (?) : R
 S 
 (`:-E) : ~d
 ~e
 (d:-E ))::-E

� `TCR (::� : G : R : ~d)� `TCR (� : G
 (�) : R
 (`::-E) : ~d
 (d::-E ))!-I
�; (� : ; : ; : ;) `TCR (� : G : R : ~d)� `TCR (� ! � : G
 (� ! �) : R
 (`!-I ) : ~d
 (d!-I ))!-E

� `TCR (� : G : R : ~d) and � `TCR (� ! � : H : S : ~e)� `TCR (� : G
H 
 (�) : R
 S 
 (`!-E) : ~d
 ~e
 (d!-E))
Figure 1: The TL Consequence Relation
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We then assume the two agents agree to construct
a logical languageL which adopts all inference rules
in the union of their two respective sets of rules
(i.e. L contains all those rules which either agent has
adopted).5 We next assume that two databases,�A
and�B , of 4-tuples are constructed fromL as outlined
above, with�A containing agent A’s assignments of
dictionary labels in the fourth place of each tuple, while�B contains B’s assignments. Thus, the elements of the
two databases may potentially only differ in the fourth
places of the tuples each contains, sinceL uses all in-
ference rules of both agents. One can readily imagine
cases where such differences may arise. For example,
we noted in the previous section that the TL disjunction
introduction rules,_-I1 and_-I2, permit the assertion
of a LEM. If one agent does not agree with the use of
this rule in this way they may assign it an AF value ofd�1. As mentioned, this assignment can be context-
specific, i.e. an agent could assign the valued�1 only
when either of these rules is used to assert LEM, and not
when they are used for two unrelated propositions� and�. Likewise with the double negation elimination rule::-E, which may be considered appropriate for some
propositions and not others. Similarly, agents may as-
sign differential dictionary values to the use of inference
rules which are derived from those in Figure 1, such as
the two distributive laws mentioned in Section 1 in rela-
tion to Birkhoff and von Neumann’s logic for quantum
mechanics.

As in Section 2, assume there is a claim� which A as-
serts but which B contests since its proof uses an infer-
ence rule which B has not adopted, nor which is deriv-
able from, nor admissible in, B’s logic. For simplicity,
we first assume there is only one such rule and that it is
deployed only once in A’s proof of�. Suppose the tuple
which contains A’s proof of� is (� : G : R : ~dA), and
that the contested rule is̀k, for some k. B’s assignment
of labels to the inference rules used in the proof of� is
the fourth element of the tuple(� : G : R : ~dB). Since
the k-th rule is contested by B, we should expect the
k-th elements of~dA and ~dB to differ, i.e. thatdAk 6= dBk .

If dBk = d�1, then B has assigned the contested rule
a label which indicates its use is completely unaccept-
able to B. This would eliminate any possibility of com-
promise between the two agents over the use of the rule.
The dialogue could proceed only by the second of the
two approaches outlined in Section 2, i.e. by means of a

5We assume for simplicity that the axioms of the logics of the two
agents are not inconsistent.

discussion of the implications of adopting or not adopt-
ing the contested rule or the proposition�.6 Suppose
instead then thatdBk 6= d�1. In this circumstance, al-
though B’s logic does not includèk, B may be willing
to accept̀ k some of the time. For instance, if the labels
in D had a probabilistic interpretation, B may agree to
use`k a proportion of the times it is asked to do so,
analogously with statistical confidence values. Alterna-
tively, B may accept the use of contested rules on the
basis of the label assigned to them being above some
threshold value; such thresholds may differ according
to the identity of the requesting agent, A, for example,
with contested rules being accepted more readily from
trusted agents than from others.

Our approach so far has assumed that A is seeking to
persuade B to adopt a proposition�, and hence an infer-
ence rulè k. However, if the two agents are engaged
in some joint task, for instance agreeing common inten-
tions or prioritizations, both A and B may be simultane-
ously seeking to persuade each other to adopt proposi-
tions and thus inference rules. In these circumstances, it
may behoove the two agents to agree common accept-
ability labels for contested inference rules, as a means
of ranking or prioritizing propositions. How might this
be done? Suppose, as above, that database�A contains
the tuple(� : G : R : ~dA), while�B contains the tuple(� : G : R : ~dB). We can readily construct a common
database� of tuples(� : G : R : ~d), where the labels~d are defined from~dA and ~dB by some agreed method.
For instance, A and B may agree to define each elementdi of ~d by di = minfdAi ; dBi g.

It would also be straightforward to define a func-
tion which maps a sequence~d to a single valued�,
to provide some form of summary assessment of a
chain of inferences. For instance, the mappingd� =mini=1;:::;nfdig would be equivalent in this context to
saying that“A chain is only as strong as its weakest
link.” If AF dictionary values were real numbers be-
tween 0 and 1 (e.g. statisticalp-values), then an ap-
propriate mapping may bed� = 1 � Qni=1(1 � di).
With such a mapping agreed, the two agents could then
readily define a rank order of propositions. For in-
stance, if the weakest-link mappingd� = minifdig
was used, and� contains the tuples(� : G : R : ~d)
and(� : H : S : ~e), then we could define� to be ranked

6Agent A could seek to contest the assignment by B of the labeld�1, an approach we do not pursue here. As Heathcote has demon-
strated [11], to justify an assertion that the rule represented an invalid
form of argument B may ultimately require some form of abduction,
which thus provides the possibility of continuing contestation by A.
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higher than� wheneverminjfejg < minifdig. This
may be of value if the propositions represent, for ex-
ample, alternative joint intentions, or competing allo-
cations of resources. Recent work in AI has explored
methods for combining preferences of different agents
in argumentation systems [1].

Note also that the AF labels and the summary map-
ping d� could be used to define an uncertainty formal-
ism value for the proposition� at the conclusion of
the chain of inference. Again, statistical inference pro-
vides an example: consequent statements (about popu-
lation parameters) are assigned labelsTRUEor FALSE
in a statistical inference according to the relative size of
the samplep-value compared to some pre-determined
threshold value, typically 0.05. Such an assignment
of uncertainty values to propositions would provide an-
other way for the two agents to jointly prioritize propo-
sitions. If the two agents do agree to use a common
database� constructed as described here, then the Ter-
rapin Logic provides a means for them to do so. This is
because the TL Consequence Relation rules of Figure 1
are a calculus for propagation and manipulation of the
4-tuple elements of�.

4 Conclusion

We have presented a formalism in which degrees of ac-
ceptability of rules of inference can be represented, so
that two agents may undertake dialogue over contested
rules. The formalism also permits agents in disagree-
ment to collaborate on joint tasks. Although framed in
terms of inference rules, our formalism may also apply
to defeasible rules, and so we are examining the link
between it and Pollock’s argumentation system for de-
feasible reasoning [16]. Our initial formalization has
assumed that both agents establish a common set of as-
sumptions, whose truth neither questions. An extension
currently being explored is to combine the AF with an
uncertainty formalism expressing degrees of belief in
these assumptions. Another area of exploration is to ex-
tend the TL formalism to permit expression by agents
of their arguments for and against particular inference
rules. Such a logic of argumentation [7, 12] would en-
able the two agents to express their reasons for their
assignment of acceptability labels, which TL does not
permit, and thus provide further opportunity for com-
promise between the two.
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