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Abstract.

The problem of merging multiple sources of information is central in many information processing

areas such as databases integrating problems, multiple criteria decision making, etc. Recently several

approaches have been proposed to merge classical propositional bases. These approaches are in

general semantically defined. They use priorities, generally based on Dalal’s distance for merging

classical conflicting bases and return a new classical base as a result. In this paper, we present an

argumentation framework for solving conflicts which could be applied to conflicts arising between

agents in a multi-agent system. We suppose that each agent is represented by a consistent knowledge

base and that the different agents are conflicting. We show that by selecting an appropriate preference

relation between arguments, that framework can be used for merging conflicting bases and recovers

the results of the different approaches proposed for merging bases [6], [11], [12], [13], [14], [15].

1. Introduction

In many areas such as cooperative information systems, multi-databases, multi-agents

reasoning systems, GroupWare, distributed expert systems and so on, the information comes

from multiple sources. In these areas, information from different sources is often

contradictory. For example, in a distributed medical expert system, different experts often

disagree on the diagnoses of patients’ diseases. In a multi-database system two component

databases may record the same data item but give it different values because of incomplete

updates, system error, or valid differences in underlying semantics. Some researchers claim

that, on an abstract level, the above problem can be subsumed under the general problem of

merging multiple bases that may contradict each other. Several different approaches have

been proposed for that purpose [6], [11], [12], [13], [14], [15]. Starting from different bases (Σ1,

…, Σn) which are conflicting, these works return a unique consistent base. However, in the
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case of multi-agent reasoning systems where each agent is supposed to have its own

knowledge base, merging the bases looks debatable, since the goal of retaining all available

information is quite legitimate in that case. As a result, other authors have considered

reasoning with such bases without merging them. Argumentation is one of the most

promising approaches developed for that purpose. Argumentation is based on the

construction of arguments and counter-arguments (defeaters) and the selection of the most

acceptable of these arguments. Inspired by the work presented in [1], we present a

preference-based argumentation framework for reasoning with conflicting knowledge bases

where each base could be part of a separate agent. This framework uses preference relations

between arguments in order to determine the acceptable ones. We show that by selecting an

appropriate preference relation between arguments, the preference-based argumentation

framework can be used to merging conflicting bases in the sense that it recovers the results of

fusion operators defined in [6], [11], [12], [13], [14], [15]. Thus the approach could be used by

an agent, engaged in the kind of dialogue we have described in [2], as a means of handling

conflicts between different agents’ views of the world.

This paper is organized as follows: section 2 introduces the preference-based argumentation

framework developed. In section 3 we show that the new framework recovers the results of

other approaches to fusion namely those proposed in [12], [13], and in section 4 we briefly

discuss how this work ties in with our work on multi-agent dialogues. Section 5 is devoted to

some concluding remarks and perspectives.

2. Basic definitions

Let's consider a propositional language L over a finite alphabet P of atoms. Ω denotes the set

of all the interpretations. Logical equivalence is denoted by ≡ and classical disjunction and

conjunction are respectively denoted by ∨ , ∧ . Let ϕ be a formula of L, [ϕ] denotes the set of

all models of ϕ. A literal is an atom or a negation of an atom. Σi represents a classical

propositional base. Let E = {Σ1, …, Σn} (n ≥ 1) be a multi-set of n consistent propositional

bases. We denote by Σ the set Σ1 ∪  … ∪  Σn for short (Σ = Σ1 ∪  … ∪  Σn). Note that Σ may be

inconsistent.

Definition 1. An argumentation framework (AF) is a triplet <A(Σ), Undercut, Pref>. A(Σ) is

the set of all the arguments constructed from Σ, Undercut is a binary relation representing

defeat relationship between arguments. Pref is a (partial or complete) preordering on

A(Σ)×A(Σ). >>Pref denotes the strict ordering associated with Pref.

Several definitions of argument and the notion of defeat exist. For our purpose, we will use

the definitions proposed in [10].
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Definition 2. An argument of A(Σ) is a pair (H, h), where h is a formula of the language L

and H a subbase of Σ satisfying: i) H is consistent, ii) H |- h, iii) H is minimal (no strict subset

of H satisfies i and ii). H is called the support and h the conclusion of the argument.

Definition 3. Let (H, h) and (H’, h’) be two arguments of A(Σ). (H, h) undercuts (H’, h’) iff for

some k ∈  H’, h ≡ ¬k. An argument is undercut if there exists an argument against one

element of its support.

Different preference relations between arguments may be defined. These preference relations

are induced by a preference relation defined on the supports of arguments. The preference

relation on the supports may be is itself defined from a (total or partial) preordering on the

knowledge base. So, for two arguments (H, h), (H’, h’), (H, h) is preferred to (H’, h’) (denoted

by (H, h) >>Pref (H’, h’)) iff H is preferred to H’ w.r.t Pref. In the next section, we will show

some examples of the origin of a preordering on the base.

An example of a preference relation is the one based on the elitism principle (ELI-

preference [7]). Let ≥ be a total preordering on a knowledge base K and > be the associated

strict ordering. In that case, the knowledge base Κ is supposed to be stratified into (K1, …,

Kn) such that Κ1 is the set of ≥-maximal elements in K and Ki+1 the set of ≥-maximal elements

in K \ (K1 ∪  …∪  K i).

Let H and H' be two subbases of K. H is preferred to H' according to ELI-preference iff

∀ k ∈  H\H', ∃ k' ∈  H' \ H such that k > k'.

Let (H1, h1), (H2, h2) be two arguments of A. (H1, h1) >>ELI (H2, h2) iff H1 is preferred to H2

according to ELI-preference.

Example 1. K = K1 ∪  K2 ∪  K3 such that K1 = {a, ¬a}, K2 = {a →b} and K3 = {¬b}. ({a, a →b}, b)

>> ELI ({¬b}, ¬b).

Using the defeat and the preference relations between arguments, the acceptable arguments

among the elements of A(Σ) may be defined. Inspired by the work of Dung [9], in [1] several

definitions of the notion of acceptability have been proposed and the acceptable arguments

are gathered in a so-called extension. For our purpose, we are interested by the extension

satisfying a stability and the following coherence requirements:

Definition 4. A set S ⊆  A(Σ) of arguments is conflict-free iff there doesn't exist a set A, B ∈

A such that A undercuts B and not(B >>Pref A).

Definition 5. Let <A(Σ), Undercut, Pref> be an AF. A conflict-free set of arguments S is a

stable extension iff S is a fixed point of a function G defined as:

G : 2A × 2A



4

     S → G(S) = {A ∈  A(Σ) | there does not exist B ∈  S such that B undercuts A and not (A

>>Pref B)}

From the set of arguments A(Σ), several stable extensions can be found: Π = {S1, …, Sn}.

These extensions represent the different sets of acceptable arguments. They include all the

arguments defending themselves against any undercutting argument and those defended.

These notions of defense have been defined in [1] as follows:

An argument A is defended by a set S of arguments (or S defends A) iff ∀  B ∈  A, if B

undercuts A and not(A >>Pref B) then ∃  C ∈  S such that C undercuts B and not(B >>Pref C). If

B undercuts A and A >>Pref B then we say that A defends itself against B. C Pref denotes the set

of all the arguments defending themselves against their defeaters. All the proofs of the results

presented in this paper can be found in [3].

Property 1. Let <A(Σ), Undercut, Pref> be an AF. For any stable extension SI ∈  Π, the

following inclusion holds: S = C Pref  ∪  [∪ Fi≥1(C Pref)] ⊆  S. Let T ⊆  A(Σ), F(T) = {A ∈  A(Σ) |

A is defended by T}.

This means that each stable extension contains the arguments which are not undercut, the

arguments which can defend themselves against the undercutting arguments, and also the

arguments defended by that extension.

Property 2. Let Σ ≠ ∅  and <A(Σ), Undercut, Pref> be an AF. The set Π is not empty

(Π ≠ ∅ ). This means that each argumentation framework has at least one stable extension.

Property 3. Let <A(Σ), Undercut, Pref> be an AF. S = ∩SI , i = 1, n. This means that each

argument which is in one extension and not in another does not defend itself and it is not

defended.

Acceptable arguments are defined in order to define the acceptable conclusions of an

inconsistent knowledge base. So from the notion of acceptability, we define the following

consequence relations.

Definition 5. Let <A(Σ), Undercut, Pref> be an AF. Let ϕ be a formula of the language L.

•  ϕ is a plausible consequence of Σ iff there exists H ⊆  Σ such that (H, ϕ) ∈  A(Σ).

•  ϕ is a probable consequence of Σ iff there exists a stable extension Si and ∃  (H, ϕ) ∈

A(Σ) such that (H, ϕ) ∈  Si.

•  ϕ is a certain consequence of Σ iff there exists a stable extension S and ∃  (H, ϕ) ∈  A(Σ)

such that (H, ϕ) ∈  S.

The terms “plausible”, “probable” and “certain” are taken from [10]. Let’s denote by Cpl, Cpr,

Cce respectively, the set of all plausible consequences, all probable consequences and all
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certain consequences. The following inclusions hold.

Property 3. Let <A(Σ), Undercut, Pref> be an AF. Cce  ⊆  Cpr ⊆  Cpl.

Note that when the different bases are not conflicting, the relation Undercut is empty.

Formally:

Property 4. Let Σ be a consistent base and <A(Σ), Undercut, Pref> be an AF.

•  Undercut = ∅ .

•  There exists a unique stable extensions S = A(Σ) = the set of arguments which are not

undercut.

•  Cce  = Cpr = Cpl = Th(Σ) (Th(Σ) denotes the deductive closure of Σ)

Example 2. Let’s consider three bases Σ1 = {a}, Σ2 = {a→b}, Σ3 = {¬b}. We suppose that Σ1 is more

reliable than Σ2 and Σ2 is more reliable than Σ3. Then a > a→b > ¬b. In the framework <A(Σ),

Undercut, ELI>, the set A(Σ) is {A = ({a}, a), B = ({a→b}, a→b), C = ({¬b}, ¬b), D = ({a, a→b}, b),

E = ({¬b, a→b}, ¬a), F = ({a, ¬b},¬  (a→b))}. According to ELI-preference, A >>ELI E, D >>ELI C,

E, F, B >>ELI F. A, B and C are preferred to their defeaters, so A, B, D ∈  S. In this example, there is a

unique stable extension which is S.

3. Connection with works on merging conflicting bases

Recently, several approaches have been proposed to merge classical propositional bases.

These approaches can be divided into two categories; those approaches in which (explicit or

implicit) priorities are used, and those in which priorities are not used. These approaches

define a merging operator Λ which is a function associating to a set E = {Σ1, …, Σn} a

consistent classical propositional base, denoted by Λ(E).

Let B be a subset of A(Σ), Supp(B) is a function which returns the union of the supports of all

the elements of B. Let T be subset of Σ, Arg(T) is a function which returns the arguments

having their support in T.

Case 1. Non use of priorities.

There are two straightforward ways for defining Λ(E) depending on whether the bases are

conflicting or not, namely:

•  Classical conjunctive merging: Λ(E) = ∧Σ i i = 1, n. In this case, Λ(E) = Σ.

•  Classical disjunctive merging: Λ(E) = ∨Σ i i = 1, n. If we have two bases Σ1 = {a} and

Σ2 = {¬a}, the result of merging is Λ(E) = {a ∨  ¬a} a tautology, which does supports

neither a nor ¬a. Let’s see what is the result provided by the argumentation framework.

We consider then the base Σ = {a, ¬a}. A(Σ) = {({a}, a), ({ ¬a}, ¬a)}. Since no

preferences are used in this approach, the preference relation between arguments Pref is
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empty. Two stable extensions are computed: S1 = {({a}, a)} and S2 = {({ ¬a}, ¬a)},

consequently, a and ¬a are two probable consequences of the base Σ.

Other approaches, developed in [14], consist of computing the maximal (for set inclusion)

consistent subsets of the union of the knowledge bases and then take as the result the

intersection of the deductive closure of these subsets. The result of that merging operator is

captured by our argumentation framework. Since no preferences exist, the relation Pref is

empty (Pref = ∅ ). In this particular case, the set S contains the arguments which are not

undercut. Let’s denote by T = {T1, …,Tn} the set of maximal consistent subsets of Σ. In that

case, the following result has been proved in [5].

Proposition 1. Let <A(Σ), Undercut, Pref = ∅ > be an AF. Π = {S1, …, Sn} is the set of the

corresponding stable extensions.

•  ∀  Si ∈  Π, Supp(Si) ∈  T.

•  ∀  Ti ∈  T, Arg(Ti) ∈  Π.

•  ∀  SI ∈  Π, Supp(SI) is consistent.

As a direct consequence of this result we have:

Proposition 2. Let <A(Σ), Undercut, Pref> be an AF. Λ(E) = Cce.

In other words, the result of merging the knowledge-bases is the set of certain consequences.

The above results show that the approach developed in [14] is captured by our preference-

based argumentation framework.

Example 3. Let’s extend the above example to three bases Σ1 = {a}, Σ2 = {¬a}, Σ3 = {a}. There are

two maximal (for set-inclusion) subsets of Σ1 ∪  Σ2 ∪  Σ3, T1 = {a} and T2 = {¬a}. The result of merging

these three bases is the empty set since the intersection between T1 and T2 is empty. In the

argumentation framework, a and ¬a are two probable consequences, but there are no certain

consequences.

Case 2. Use of priorities.

Two kinds of approach which use priorities can be distinguished depending on whether they

use implicit or explicit priorities. In [6] for example, the different bases are supposed

weighted, the base having a higher weight is more reliable than the others. In presence of

such weights, the maximal consistent subsets are computed by taking as many sentences as

possible from the knowledge bases of higher weights (or priorities). In this case, the result

Λ(E) is also captured by the argumentation framework presented in section 2, provided that

we choose an appropriate preference relation between arguments and strengthen the

definition of “conflict-free”. The most appropriate relation is the one based on certainty level

and defined in [4] in a possibilistic context. In that case, a knowledge base E is supposed to
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be stratified in E1, …, En such that the beliefs in Ei have the same certainty level and are more

certain than the elements in Ej where i < j. (This notion of  “certainty” corresponds to the

degree of  belief that an agent has in given propositions, and can be combined with a notion

of its belief in other agents when that proposition is from another agent’s knowledge base.)

For our purpose, we suppose that Σ = Σ'1 ∪  … ∪  Σ'k such that Σ'i is the union of the bases

having the same weight. Σ'1 is the union of the bases having the highest weight and Σ'k is the

union of the bases having the smallest weight.

Definition 6. The weight of a non-empty subset H of Σ is the highest number of a layer (i.e.

the lower layer) met by H, so weight(H) = max {j | 1��M���N�DQG�+j ��∅ }, where Hi denotes

H ∩ Σ'i.

Definition 7. Let H, H’ be two subsets of Σ. H is preferred to H' (denoted H Pref1 H') iff

weight(H) < weight(H'). Consequently, (H, h) is preferred to (H', h'), (denoted (H, h) >>Pref1

(H', h')), iff H Pref1 H'.

The new definition of conflict-free is the following one:

Definition 8. A set S ⊆  A(Σ) of arguments is conflict-free iff there doesnot exist a set A, B ∈

A such that A undercuts B.

Let's denote by T = {T1, …,Tn} the set of maximal consistent subsets of Σ. As in the case

without preferences, these subsets can be computed from the stable extensions of the

framework <A(Σ), Undercut, Pref1>.

Proposition 3. Let <A(Σ), Undercut, Pref1> be an AF. Π = {S1, …, Sn} is the set of the

corresponding stable extensions.

•  ∀  Si ∈  Π, Supp(Si) ∈  T.

•  ∀  Ti ∈  T, Arg(Ti) ∈  Π.

•  ∀  SI ∈  Π, Supp(SI) is consistent.

Proposition 4. Let <A(Σ), Undercut, Pref1> be an AF. Λ(E) = Cce.

Propositions 3 and 4 show that the approach developed in [6] is captured by our preference-

based argumentation framework as well.

Some recent approaches are proposed for merging conflicting knowledge bases using

implicit priorities. These priorities are extracted from the different interpretations. The three

basic steps followed in [11], [12], [13], [15] for the semantic of a merging operator Λ are:

a) Rank-order the set of interpretations Ω w.r.t each propositional base Σi by computing a

local distance, denoted d(ω, Σi), between ω and each Σi. The local distance is based on

Dalal's distance [8]. The distance between an interpretation ω and a propositional base Σi
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is the number of atoms on which this interpretation differs from some model of the

propositional base. Formally, d(ω, Σi) = min dist(ω,ω’), ω’ ∈  [Σi] where dist(ω,ω’) is the

number of atoms whose valuations differ in the two interpretations.

b) Rank-order the set of interpretations Ω w.r.t all the propositional bases. This leads to the

overall distance denoted d(ω, E). This later, computed from local distances d(ω, Σi),

defines an ordering relation between the interpretations defined as follows: ω ≤ ω’ iff

d(ω, E) ≤ d(ω’, E).

c) Λ(E) is defined by being such that its models are minimal with respect to ≤, namely:

[Λ(E)] = min(Ω, ≤).

Example 3. (continued) Let’s consider the three following bases Σ1 = {a}, Σ2 = {¬a}, Σ3 = {a}. There

exist two interpretations ω0 = {a} and ω1 = {¬a}.

•  d(ω0, Σ1) = d(ω0, Σ3) = 0, d(ω0, Σ2) = 1.

•  d(ω1, Σ1) = d(ω1, Σ3) = 1, d(ω1, Σ2) = 0.

Once d(ω, Σi) is defined for each knowledge base Σi, several methods have been proposed in

order to aggregate the local distances d(ω, Σi) according to whether the bases have the same

weight or not. In particular the following operators have been proposed respectively in [12]

and [13]: d(ω, E) = ∑
=

Σω
n

1i

i),d(  and d(ω, E) = ∑
=

α×Σω
n

1i

ii),d(  where α i is the weight

associated with the base Σi. We denote by Λ1 the first operator and by Λ2 the second one.

Example 3. (continued) Let’s consider the three following bases Σ1 = {a}, Σ2 = {¬a}, Σ3 = {a}.

According to the first operator Λ1, d(ω0, E) = 1 and d(ω1, E) = 2. Then the generated base has ω0 as

an interpretation.

Let’s suppose now that Σ2 is more reliable than the two others and it has a weight 3. Σ1, Σ3 have weight

1. Using the operator Λ2, d(ω0, E) = d(ω0, Σ1) × 1 + d(ω0, Σ2) × 3 + d(ω0, Σ3) × 1 = 3 and d(ω1, E) =

2. Then the generated base has ω1 as an interpretation.

To capture the results of these two merging operators, we consider the new definition of

conflict-free (given in definition 8) and we define two new preference relations between

arguments Pref2 and Pref3. These relations are based on Dalal’s distance. The basic idea is to

associate to the support of each argument a weight. This last corresponds to the minimal

distance between the support and the different bases. The distance between a support H and a

base Σi is computed as follows: dist(H, Σi) = min dist(ω, ω’), ω ∈  [H] and ω ∈  [Σi].

Example 2. (continued) Σ1 = {a}, Σ2 = {a→b}, Σ3 = {¬b} are three bases. H = {a, a→b}, H’ = { ¬b}

are two subsets of Σ. dist(H, Σ1) = dist(H, Σ2) = 0, dist(H, Σ3) = 1, dist(H’, Σ1) = 0, dist(H’, Σ2) = 0,

dist(H, Σ3) = 0.
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To capture the results of the merging operator Λ1, the weight of a support is defined as

follows:

Definition 9. Let H be a subset of Σ. Weight(H) = ∑
=

Σ
n

1i

),H(dist i .

Pursuing definition 7, a subset H of Σ is preferred to another subset H’ (denoted H Pref2 H’)

iff weight(H) < weight(H’). Consequently, (H, h) is preferred to (H’, h’), (denoted (H, h)

>>Pref2 (H’, h’)), iff H Pref2 H’.

Example 2. (continued) H = {a, a→b}, H’ = { ¬b} are two subsets of Σ. Weight(H) = 1 and weight(H’)

= 0, then H’ is preferred to H. Consequently, ({¬b},¬b) >>Pref2 ({a, a→b}, b).

Proposition 5. Let S1, …, Sn be the stable extensions of the framework <A(Σ), Undercut,

Pref2>.

•  S is not necessarily included in each Si.

•  ∀  Si, Supp(Si) is consistent.

•  [Supp(S1)], …, [Supp(Sn)] are the models obtained by the merging operator Λ1.

Example 2. (continued) Σ1 = {a}, Σ2 = {a→b}, Σ3 = {¬b}. P = {a, b}, so the possible models are: ω0

= {a, b}, ω1 = {a, ¬b}, ω2 = {¬a, b} and ω3 = {¬a, ¬b}.

d(ω0, E) = d(ω1, E) = d(ω3, E) = 1 and d(ω2, E) = 2, then the result of merging is the three models ω0,

ω1, ω3. Let’s consider now the framework <A(Σ), Undercut, Pref2> where A(Σ) = {A = ({a}, a), B =

({a→b}, a→b), C = ({¬b}, ¬b), D = ({a, a→b}, b), E = ({¬b, a→b}, ¬a), F = ({a, ¬b},¬  (a→b))}.

weight({a}) = weight({a→b}) = weight({¬b}) = 0 and weight({a, a→b}) = weight({¬b, a→b}) =

weight({a, ¬b}) = 1. The conflicts (in the sense of the relation "undercut") are represented by the

figure below:

Three stable extensions can be computed: S1 = {B, C, E}, S2 = {A, B, D}, S3 = {A, C, F}. [Supp(S1)] =

[{ ¬b, a→b}] = { ¬a, ¬b} = ω3, [Supp(S2)] = [{a, a →b}] = {a, b} = ω0, [Supp(S3)] = [{a, ¬b}] = {a,

¬b} = ω1.

To capture the results of the merging operator Λ2, we suppose that each base Σi is equipped

with a weight (priority) α i. The definition of a support weight is:

Definition 10. Let H be a subset of Σ. Weight(H) = ∑
=

α×Σ
n

1i

ii),H(dist .

D

E

C

B

F

A
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This new definition of weight leads to a new preference relation denoted by Pref3.

Proposition 6. Let S1, …, Sn be the stable extensions of the framework <A(Σ), Undercut,

Pref3>.

•  ∀  Si, Supp(Si) is consistent.

•  [Supp(S1)], …, [Supp(Sn)] are the models obtained by the merging operator Λ2.

Propositions 5 and 6 show that the approach developed in [11], [12], [13], [15] is captured by

our preference-based argumentation framework too.

Overall, then, we can conclude that the approach outlined in this paper can capture a wide

range of different approaches to merging information from inconsistent knowledge-bases.

4. Conflicts in multi-agent dialogues

Previous work on merging conflicting knowledge bases has been largely from the perspective

of knowledge fusion. The idea is that there are a number of different repositories of

information about the world which need to be merged in order to discover the true picture.

From this perspective, it makes perfect sense to think of taking the separate knowledge bases

and building one large coherent knowledge base from them. We, however, have a rather

different view. Our work concentrates on dialogue in multi-agent systems. Individual agents

have access to private knowledge bases that they use as a basis for constructing arguments

justifying requests that they make to one another [2]. Here, too, we have conflict, when

agents disagree about the truth of propositions, but it is just not practical for the agents to

pool their knowledge in order to resolve them. They will not want to share all of their

knowledge, and, even if they did, the overheads in establishing a coherent knowledge base

would be too high. Instead, what the agents require is a mechanism for resolving, on an “as

required” basis, the conflicts that arise between the arguments that they make in a way which

corresponds to the sound principles for merging information that have previously been

proposed. Such a mechanism is what we have discussed in this paper. As a result, we know

that if we adopt the mechanisms suggested here as part of our approach to inter-agent

dialogue [2] (and doing this is simple since we already make use of the underlying

argumentation framework), we have the choice of a range of conflict resolution mechanisms

each of which relates exactly to one of the options argued for elsewhere in the literature. So,

the work discussed in this paper allows us to resolve conflicts in multi-agent dialogues.

5. Conclusions and future work

The work reported here concerns reasoning with conflicting knowledge-bases, that is

knowledge bases which are mutually inconsistent in a classical sense. Our first main
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contribution is to propose a preference-based argumentation framework which resolves the

conflicts. This approach is different from the ones existing in the literature. The existing

approaches consist of first merging the various knowledge bases to obtain a unique one and

then draw conslusions from the new base. In contrast, our approach allows arguments to be

built from separate knowledge bases, and the arguments to then be merged. This method of

obatining conclusions is much more practical in the context of multi-agent systems. The

second contribution of this paper is to show that the preference-based argumentation

framework we introduce is general enough to capture the results of some of the merging

operators which have been developed. To cover the works proposed in [12] and [13], we

have proposed two new preference relations between the arguments, relations which are

based on Dalal’s distance. Thus we can obtain all the advantages of the approaches for

merging conflicting information, we can draw the same conclusions, but without having to

actually construct the merged knowledge base.

An extension of this work would be the study of the properties of the new preference

relations. Another immediate extension would be to consider several inconsistent knowledge

bases instead of consistent ones, thus we can develop a distributed argumentation framework.

This looks likely to be very useful in multi-agent systems where each agent is supposed to

have its own (consistent / inconsistent) knowledge base.
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