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AbstractThe hitherto most abstract, and hence general, argumentation system, is
the one described by Dung in a paper from 1995. This frameworkdoes not allow
for joint attacks on arguments, but in a recent paper we adapted it to support such
attacks, and proved that this adapted framework enjoyed thesame formal proper-
ties as that of Dung. One problem posed by Dung’s original framework, which was
neglected for some time, is how to compute preferred extensions of the argumen-
tation systems. However, in 2001, in a paper by Doutre and Mengin, a procedure
was given for enumerating preferred extensions for these systems. In this paper
we propose a method for enumerating preferred extensions ofthe potentially more
complex systems, where joint attacks are allowed. The method is inspired by the
one given by Doutre and Mengin.
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1. Introduction

In the last fifteen years or so, there has been much interest inargumentation systems
within the artificial intelligence community. This interest spreads across many different
sub-areas of artificial intelligence. One of these is non-monotonic reasoning [1,2], which
exploits the fact that argumentation systems can handle, and resolve, inconsistencies [3,
4] and uses it to develop general descriptions of non-monotonic reasoning [5,6]. This line
of work is summarised in [7]. Another area that makes use of argumentation is reasoning
and decision making under uncertainty [8,9,10], which exploits the dependency structure
one can infer from arguments in order to correctly combine evidence. Much of this work
is covered in [11]. More recently [12,13], the multi-agent systems community has begun
to make use of argumentation, using it to develop a notion of rational interaction [14,15].

One very influential and very abstract system of argumentation was that introduced
by Dung [16]. This was, for instance, the basis for the work in[5], was the system ex-
tended by Amgoud in [17,18], and subsequently as the basis for the dialogue systems



in [19,20]. The importance of Dung’s results is mainly due tothe fact that his frame-
work abstracts away from details of language and argumentation rules, that the presented
semantics therefore are clear and intuitive, and that relationships among arguments can
be analysed in isolation from other (e.g. implicational) relationships. Furthermore, the
results can easily be transferred to any other argumentation framework, by identifying
that framework’s equivalent of an attack. It is this generality, we believe, that has con-
tributed to the popularity of the work, and we see it as a primecontender for becoming
an established standard for further investigations into the nature of arguments and their
interaction.

However, even if Dung was trying to abstract away from the underlying language and
structure of arguments, his framework implicitly assumes alogical “and” connective in
the underlying language, to be able to model all kinds of attacks. This hidden assumption
is caused by Dung’s attack relation being a simple binary relation from one argument to
another, rather than a relation mapping sets of arguments toother sets of arguments. In a
recent paper [21] we presented a generalisation of Dung’s framework, which allows sets
of arguments to attack single arguments, and thus frees the underlying language from
being closed under some logical “and” connective1. The main motivation for that work
was that sometimes it seems reasonable for a number of arguments to interact and con-
stitute an attack on some other argument, even though the arguments of the attack does
not individually attack that argument. The approach, wheresuch joint attacks are mod-
elled by adding to the argumentation system a new argument that represents the set of
attacking arguments, and then employing traditional argumentation analysis to this sys-
tem, is not satisfactory: The encoding is artificial, addingdistance between the formalism
and the modelled argumentation situation, and to ensure that nonsense conclusions do
not arise, the relation of attack among arguments need to be restricted or an extra layer
of logical relationships among arguments need to be specified. The former muddles the
clear distinction between arguments and attacks, which wasthe very appeal of Dung’s
framework, and the latter makes it hard to survey the effectsof one set of argument on
others and calls for more specialized formalisms for analysis than Dung’s. For further
elaborations on this see [21].

In this paper, we build on the work in [21] and propose a methodfor enumerating
preferred extensions of the argumentation systems defined there. In general it is hard
to compute a preferred extension [23], but [24] presents a method that enumerates pre-
ferred extensions for an abstract argumentation system as presented in [16]. Moreover,
[25] and [26] present methods for answering whether a specific argument is in at least
one preferred extension, or if it is in all preferred extensions. Here we adapt the basic

1Subsequently, we have been directed to [22], which describes an argumentation framework that is a gener-
alization of that in [16] too. The main differences between [22] and [21] are due to difference in perspectives:
Bochman is motivated by the task of establishing a correspondence between disjunctive logic programming
and abstract argumentation, and ends up with a framework that allows any finite set of arguments (including
the empty set) to attack and be attacked by any other finite set, whereas we have tried to expand the dialogical
and dialectical boundaries of abstract argumentation by allowing for arbitrary sets of attacking arguments (but
the empty set), and claim that further flexibility is not needed for argumentative reasoning. (Indeed, the main
example motivating attacks on entire sets of arguments turns out to be sensibly represented in our framework.)
Due to his aims, Bochman construct new semantics for his framework and identifies new families of argumen-
tation systems with nice properties (none of them coinciding with our formalism). We, on the other hand, stick
as close as possible to the semantics provided by Dung, and instead show that the all of Dung’s results are valid
for systems with sets of attacking arguments.



technique of [24] to the more complex case of argumentation systems with joint attacks.
The main problem for this adaptation, is that the argumentation systems of [16] can be
viewed as directed graphs, and that this fact is exploited inthe pruning rules of [24]. For
the argumentation systems of [21], however, no similar graph structure exists, and new
pruning rules thus have to be constructed. In particular, welack a context independent
notion of “reflective” arguments, and a context independentnotion of a single argument
being detrimental to a specific set of arguments.

2. Argumentation With Attacking Sets of Arguments

In this section we present our generalisation of the framework of [16], as introduced in
[21].

Definition 1 (Argumentation Systems). Anargumentation systemis a pair(A, ⊲), where
A is a set of arguments, and⊲ ⊆ (P(A) \ {∅})× A is anattack relation.

Throughout the paper we assume an argumentation systemA = (A, ⊲), and take it
to be implicit.

We say that a set of argumentsS attacksan argumentA, if there isS′ ⊆ S such
thatS′ ⊲ A. In that case we also say thatA is attacked byS. If there is no setS′′ ( S′

such thatS′′ attacksA, then we say thatS′ is aminimalattack onA. Obviously, if there
is a set that attacks an argumentA, then there must also exist a minimal attack onA.
Moreover, ifS is a minimal attack onA, then it must be the case thatS ⊲ A. If for two
sets of argumentsS1 andS2, there is an argumentA ∈ S2, which is attacked byS1,
then we say thatS1 attacksS2, and thatS2 is attacked byS1. If a setS1 attacks some
argument inS2, and this is true of no subsets ofS1, then we say thatS1 is a minimal
attack onS2, and relaxing notation a bit, writeS1 ⊲ S2. If a set of argumentsS does not
attack itself, then we say thatS is conflict-free.

Let S1 andS2 be sets of arguments. IfS2 attacks some argumentA, andS1 attacks
S2, then we say thatS1 is a defense ofA from S2, and thatS1 defendsA from S2.
Obviously, if S3 is a superset ofS1, S3 is also a defense ofA from S2. An argument
A is said to beacceptable with respect to a set of argumentsS, if S defendsA from
all sets of attacking argumentsS

′ ⊆ A. A conflict-free set of argumentsS is said to be
admissibleif each argument inS is acceptable with respect toS. This leads us to the
credulous semantics we treat in this paper:

Definition 2 (Preferred Extensions). An admissible setS∗ is called apreferred exten-
sion, if there is no admissible setS′ ⊆ A, such thatS∗ ( S′.

From [16] and [21], we have that for each admissible setS, there exists a preferred
extensionS∗, such thatS ⊆ S∗. Moreover, as the empty set is an admissible set, we
have that every argumentation system has at least one preferred extension.

A very skeptical semantics, is thegrounded extension, which is defined as the least
fix point of the functionF : P(A) → P(A), defined as

F (S) = {A : A is acceptable wrt.S}.



Example 1 (An Introductory Example): Consider an argumentation systemAe =
(Ae, ⊲e), whereAe = {A, B, C, D, E, F} and⊲e is defined as:

{A, C, D} ⊲e B, {A, B} ⊲e C, {B} ⊲e D, {C, E} ⊲e D,

{D} ⊲e E, {B, F} ⊲e E, {A} ⊲e F, and {D} ⊲e F.

It can easily be verified that the grounded extension ofAe is {A}. The preferred exten-
sions are{A, B, E} and{A, C, D}, which we shall prove later in the paper.

3. Computing Preferred Extensions

We now present a method for computing the preferred extensions for an argumentation
system with sets of attacking arguments as defined in Definition 1. The method is in-
spired by a similar method, for computing preferred extensions for Dung’s original ar-
gumentation systems, presented in [24]. The basic strategyis to enumerate all possible
divisions ofA into two sets,I andO, whereI are the arguments that arein a preferred
extension, andO are those that areout, and then check for each division ifI is a pre-
ferred extension. Now, of course the number of divisions canbe drastically reduced, by
noting requirements onI imposed by Definition 2, so a full enumeration can often be
avoided.

The enumeration of divisions is constructed as a tree, whereeach node is a partition
of A into three sets(I, O, U), whereU is the arguments still not assigned to one of the
two divisionsI andO. The root of the tree is a node where bothI andO are empty
and all arguments are assigned to the undecided partition. Each child(I′, O′, U ′) of a
node(I, O, U) is then a refinement of the division represented by the previous node, i.e.
I ⊆ I′ andO ⊆ O′. The size of such a tree is exponential in the number of arguments,
but fortunately we often do not have to construct the entire tree, and if only more specific
queries are sought answered (such as “Is argument A includedin some preferred exten-
sion?”) we can sometimes get away with only inspecting partsof a few branches of the
tree.

First we define the nodes we work with. These are calledA-candidates, or as we
takeA to be implicit, justcandidates. For a given setS ⊆ A, define

S
→ = {A ∈ A : ∃T ⊆ S s.t.T ⊲ A}

and

S
← = {A ∈ A : ∃T ⊆ S, B ∈ S s.t.T ∪ {A} ⊲ B}.

S→ is thus the set of arguments attacked byS, andS← is the set of arguments, which
if added toS, would makeS attack itself. A candidate is then a triple(I ⊆ A, O ⊆
A, U = A \ (I ∪ O)) satisfying the following properties:

I
→ ⊆ O, (1)

I
← ⊆ O, and (2)

I ∩ O = ∅. (3)



(If C = (I, O, U) is a triple, we will use subscripts to refer to the sets in the partition,
e.g.IC denotes the setI in C.)

Example 2 (Candidates):We consider again the argumentation systemAe = (Ae, ⊲e)
from Example 1. A few examples of candidates are({B}, {D}, {A, C, E, F}), (∅, Ae, ∅),
and ({C, D}, {A, B, E, F}, ∅). Some examples of non-candidates are({A}, {B, D},
{C, E, F}), ({E, F}, {A, D}, {B, C}), and({B}, {B, D}, {A, C, E, F}).

Focusing only on candidates, rather than arbitrary divisions ofA, is thus a restriction
on the number of divisions to consider. We argue that it is sufficient below.

It follows from (1) and (3), that for any candidateC, IC is conflict-free. For any
triple C, we denote by pref(C) the set of all preferred extensionsS∗, whereIC ⊆ S∗ ⊆
IC ∪ UC . It follows, that ifUC = ∅, then pref(C) is {IC} if IC is a preferred extension
and∅ otherwise.

Given a tripleC and an argumentA ∈ UC , define the triples

C − A = (IC , OC ∪ {A}, UC \ {A}), (4)

and

C + A = (IC ∪ {A}, OC ∪ ∆
→

C+A ∪ ∆
←

C+A, UC \ ({A} ∪ ∆
→

C+A ∪ ∆
←

C+A)) (5)

where

∆
→

C+A = {B ∈ UC : ∃S ⊆ IC s.t.S ∪ {A} ⊲ B} (6)

and

∆
←

C+A = {B ∈ UC : ∃S ⊆ IC , C ∈ IC s.t. S ∪ {B} ⊲ A

∨ S ∪ {A, B} ⊲ C ∨ S ∪ {A, B} ⊲ A}. (7)

Example 3 (Adding Arguments to Triples): Building on Example 2, we addE
to the candidateC1 = ({B}, {D}, {A, C, E, F}) and the non-candidateC2 =
({A}, {B, D}, {C, E, F}): In the first case,∆→

C1+E
= ∅ and∆

←

C1+E
= {F}, and in

the second∆→
C2+E

= ∆
←

C2+E
= ∅. Therefore,C1 + E = ({B, E}, {D, F}, {A, C})

andC2 + E = ({A, E}, {B, D}, {C, F}).

It is easy to verify that, given a candidateC and an argumentA ∈ UC , we have that

I
→

C+A \ I
→

C = ∆
→

C+A, (8)

and

I
←

C+A \ I
←

C = ∆
←

C+A. (9)

Given the partial division represented by a candidate, somearguments might be impos-
sible to add to the setI without ending up with a contradiction. We therefore define the
set ofreflexive argumentswith respect to a candidateC as follows:



refl(C) = {A ∈ UC : ∃S ⊆ IC , s.t.S ∪ {A} ⊲ A}. (10)

From the definitions, it immediately follows that ifA ∈ refl(C) then pref(C + A) = ∅.
Furthermore, we can state an important theorem, which implies that given a candidateC,
we can use the definitions ofC + A andC −A to construct a tree of candidates havingC
as root:

Theorem 1. Let C be a candidate, andA ∈ UC . If A 6∈ refl(C) then bothC + A and
C − A are candidates as well. Otherwise onlyC − A is a candidate.

Proof. It is obvious thatC − A is a candidate no matter whetherA is in refl(C) or not.
We therefore only show thatC + A is a candidate iffA is not in refl(C).

First, assume thatA is in refl(C). This means that there is some setS ⊆ IC , such
thatS ∪ {A} ⊲ A. Consequently,IC+A = IC ∪ {A} contains a subsetT = S ∪ {A},
such thatT ⊲ A. If C + A was to be a candidate, (1) would therefore require thatA is in
OC+A. It follows thatA is in IC+A ∩ OC+A, which is thus not empty. That contradicts
(3), andC + A can thus not be a candidate.

Conversely, assume thatA is not in refl(C), and we show thatC + A is a candidate
by means of contradiction. That is, assume thatC + A is not a candidate, which means
that one of the following must be true:

(i): ∃B ∈ I→
C+A

s.t.B 6∈ OC+A,
(ii): ∃B ∈ I←

C+A
s.t.B 6∈ OC+A, or

(iii): ∃B ∈ IC+A ∩ OC+A.

We show that each case is impossible. First, assume that (i) is the case. SinceC is a
candidate, we necessarily have thatI→

C
⊆ OC ⊆ OC+A and it must thus be the case

that B ∈ I→
C+A

\ I→
C

, which according to (8) is equivalent to havingB ∈ ∆
→

C+A
.

But according to (5),∆→
C+A

is a subset ofOC+A, soB ∈ OC+A after all, which is a
contradiction. Case (ii) is proved to be impossible with a similar argument.

Assume that (iii) is the case. SinceC is a candidate, we know from (3) thatOC∩IC =

∅, and, sinceA is in UC , which is disjoint fromOC , also thatOC ∩ (IC ∪ {A}) =
OC ∩IC+A = ∅. Therefore,B must be a member ofOC+A \OC = (∆→

C+A
∪∆

←

C+A
) ⊆

UC . Furthermore, asUC ∩ IC = ∅ it follows that B must be inIC+A \ IC = {A}.
Thus,A must be in either∆→

C+A
or ∆←

C+A
. The first possibility is ruled out, sinceA by

assumption is not a member of refl(C). SoA must be in∆←
C+A

.
According to the definition of∆←

C+A
, there must be aC ∈ IC and a setS ⊆ IC ,

so eitherS ∪ {A} ⊲ A or S ∪ {A} ⊲ C. Again the first possibility is precluded by the
assumption thatA is not in refl(C), so it must be the case thatS ∪ {A} ⊲ C. But thenA

is in I
←

C
and asC is a candidate also inOC . That contradicts the assumption thatA is in

UC , and the theorem follows.

The theorem thus establishes that iterated use of theC + A andC − A-definitions
makes sense. Moreover, we have the following result on that activity:

Theorem 2. Let C be a candidate andA andB be distinct arguments inU \ refl(C),
such that both(C + A) + B and(C + B) + A are candidates. Then



(C + A) + B = (C + B) + A, (11)

(C − A) − B = (C − B) − A, and (12)

(C + A) − B = (C − B) + A. (13)

Proof. We only show (11), since the others follow from similar, albeit slightly simpler
arguments. It is obvious thatI(C+A)+B = I(C+B)+A and, given thatO(C+A)+B =
O(C+B)+A, also thatU(C+A)+B = U(C+B)+A. We therefore just need to show that
O(C+A)+B = O(C+B)+A:

O(C+A)+B =OC ∪ ∆
→

C+A ∪∆
←

C+A ∪ ∆
→

(C+A)+B
∪ ∆

←

(C+A)+B

=OC ∪ (I→C+A \ I
→

C ) ∪ (I←C+A \ I
←

C )

∪ (I→(C+A)+B
\ I
→

C+A) ∪ (I←(C+A)+B
\ I
←

C+A)

=OC ∪ (I→(C+A)+B
\ I
→

C ) ∪ (I←(C+A)+B
\ I
←

C ),

where the last step is warranted by the observation thatS→ ⊆ T→ andS← ⊆ T←, for
any two setsS andT , whereS ⊆ T .

Now, asI(C+A)+B = I(C+B)+A, we have:

OC ∪ (I→(C+A)+B
\ I
→

C ) ∪ (I←(C+A)+B
\ I
←

C )

=OC ∪ (I→(C+B)+A
\ I
→

C ) ∪ (I←(C+B)+A
\ I
←

C )

=OC ∪ (I→C+B \ I
→

C ) ∪ (I←C+B \ I
←

C )

∪ (I→(C+B)+A
\ I
→

C+B) ∪ (I←(C+B)+A
\ I
←

C+B) = O(C+B)+A

Thus, no matter in what order several arguments are moved from UC to IC andOC ,
the resulting candidate is the same.

Now, we wish to use a tree of candidates as enumeration of preferred extensions.
Given a candidateC, we define aC-tree inductively as follows:

• If UC = ∅ then the tree consisting of the leafC is aC-tree.
• If A ∈ UC \ refl(C) then a tree with root nodeC having the roots of aC + A-tree

and aC − A-tree as only children is aC-tree.
• If A ∈ UC ∩ refl(C) then a tree with root nodeC having the root of aC − A-tree

as only child is aC-tree.

Example 4 (C-trees):We continue expanding onC1 as in Example 3. Repeated construc-
tion of candidates gives theC1-tree presented in Figure 1. Notice that some branches are
shorter than others. This is because some additions toI imply additions toO, and hence
exhaustU sooner.

Any tree, for which there is some candidateC such that the tree is aC-tree, is called a
candidate tree. The following results guarantee that candidate trees include all divisions
that encode preferred extensions.



C1

C1 + E

(C1 + E) + A

(C1 + E) − A

((C1 + E) − A) + C

((C1 + E) − A) − C

C1 − E

(C1 − E) + A

(C1 − E) − A

((C1 − E) − A) + C

((C1 − E) − A) − C

Figure 1. A C1-tree

Lemma 1. LetS ⊆ A be a conflict-free set,C a candidate, whereIC ⊆ S andOC∩S =

∅, andA a member ofS \ IC . ThenC + A is a candidate, andOC+A ∩ S = ∅.

Proof. First note thatA cannot be in refl(C), as that would mean that there is a setT ⊆ IC

such thatT ∪ {A} ⊲ A, which again would mean thatS is not conflict-free. Therefore,
Theorem 1 guarantees thatC + A is a candidate, and we thus only need to show that
OC+A ∩ S = ∅.

As OC ∩ S = ∅ it follows that OC+A ∩ S = (∆→
C+A

∪ ∆
←

C+A
) ∩ S. If this set

is non-empty, then there must be aB in S, such that there is a setT ⊆ IC ⊆ S and
elementC ∈ IC ⊆ S, where eitherT ∪ {A} ⊲ B, T ∪ {B} ⊲ A, T ∪ {A, B} ⊲ C,
or T ∪ {A, B} ⊲ A. But each of these imply thatS is not conflict-free, and hence we
conclude thatOC+A ∩ S = ∅.

Theorem 3. LetC be a candidate, andA ∈ UC . Then pref(C) = pref(C +A)∪pref(C −
A).

Proof. It is obvious that pref(C + A) ∪ pref(C − A) ⊆ pref(C), so we only show that
pref(C) ⊆ pref(C + A) ∪ pref(C − A).

Let S
∗ ∈ pref(C), i.e.IC ⊆ S

∗ ⊆ IC ∪ UC . If A is not inS
∗, then it follows that

S∗ ⊆ IC ∪ UC \ {A} = IC−A ∪ UC−A, and hence thatS∗ ∈ pref(C − A). If A is
in S∗ we similarly get thatS∗ ⊇ IC ∪ {A} = IC+A and we only need to show that
S∗ ⊆ IC+A ∪UC+A, i.e. thatOC+A ∩S∗ = ∅. But this is guaranteed by Lemma 1, and
the result follows.

From this we immediately get:

Corollary 1. If S∗ is a preferred extension, then there is a leafC of any(∅, ∅, A)-tree,
such thatS∗ ∈ pref(C).

Thus, when enumerating preferred extensions, it suffices toconstruct a single candi-
date tree, viz. a(∅, ∅, A)-tree, even if candidates do not represent all possible divisions
of A. Furthermore, as the grounded extension of any system is a subset of any preferred
extension [16,21], we have the following stronger result:

Corollary 2. If S∗ is a preferred extension, andG is the grounded extension, then there
is a leafC of any(G, G→ ∪ G

←, A \ (G ∪ G
→ ∪ G

←))-tree, such thatS∗ ∈ pref(C).



4. Pruning of Candidate Trees

Depending on how a candidate tree is constructed, we might beable to prune it. In what
follows we present some simple corollaries which allow for pruning of candidate trees.

Corollary 3. Let C be a candidate for which pref(C) = ∅. Then pref(C′) = ∅ for all
nodesC′ in anyC-tree.

Thus, if during construction of a candidate tree, we create acandidate for which we
know that pref(C) is empty (e.g. by use of Theorems 6 or 7 below), then we do not have
to construct the sub-tree rooted at that candidate.

Corollary 4. Let C be a candidate. IfUC = refl(C), then pref(C) = pref((IC , OC ∪
UC , ∅)).

Thus, if at some point in the construction of a candidate tree, we cannot find an
argument to add toIC , then we can stop exploring this branch of the tree.

Theorem 4. Let C be a candidate. IfIC ∪ UC ( S∗, for some admissible setS∗, then
pref(C) = ∅.

Proof. Obvious from Definition 2.

Theorem 5. LetC be a candidate. IfI←
C

\ (IC ∪ UC)
→ 6= ∅ then pref(C) = ∅.

Proof. Assume otherwise, and letS∗ ∈ pref(C) andA ∈ I←
C

\ (IC ∪UC)
→. AsA ∈ I←

C

it follows that there is some argumentB ∈ IC ⊆ S∗ and setT ⊆ IC ⊆ S∗, such that
T ∪ {A} ⊲ B. Furthermore, asS∗ is a preferred extension, it defends itself, and thus
attacks some argument inT ∪ {A}. But asS∗ is conflict-free, this argument must beA,
andA must thus be inS∗→ ⊆ (IC ∪ UC)

→, which is a contradiction.

Theorem 6. LetC be a candidate andA ∈ UC . If

• for all setsT , whereT ⊲ A, it holds thatT ∩ I→
C

6= ∅, and
• A 6∈ (IC ∪ UC)

→, and
• A 6∈ (IC ∪ UC \ {A})←

then pref(C − A) = ∅.

Proof. Assume that there is aS∗ ∈ pref(C − A), i.e. thatIC−A ⊆ S∗ ⊆ UC−A, which
implies thatA 6∈ S∗. Hence, eitherS∗ does not defendA, or S∗ ∪ {A} is not conflict-
free. We show that both cases are impossible.

Let T be some minimal attack onA. Since we have thatT ∩ I→
C

6= ∅, IC attacks
T , and hence thatS∗ ⊇ I defendsA, ruling out the first case.

If S∗ ∪ {A} is not conflict-free, butS∗ is, then there is a setT ⊆ S∗ ⊆ (IC ∪UC \
{A}) and argumentB ∈ S∗ ⊆ (IC ∪ UC \ {A}), such that eitherT ⊲ A, T ∪ {A} ⊲ A,
or T ∪ {A} ⊲ B. But the latter of these is precluded byA 6∈ (IC ∪ UC \ {A})← and the
others byA 6∈ (IC ∪ UC)

→.

Theorem 7. Let C be a candidate andA ∈ UC an argument, which is attacked by at
least one set of arguments. If, for all pairs of setsT andR, whereT ⊲ R andR ⊲ A, it
holds thatT ∩ OC 6= ∅, then pref(C + A) = ∅.



Proof. AssumeS∗ ∈ pref(C + A), implying thatIC+A ⊆ S∗, i.e. A ∈ S∗. As S∗ is
a preferred extension, it must defendA. Let R be an attack onA (whose existence is
guaranteed by the assumptions of the theorem). SinceS∗ defendsA, it follows that there
is a setT ⊆ S∗ such thatT ⊲R. But thenT andR fulfills the conditions in the theorem,
andT ∩OC 6= ∅. It follows thatS∗∩OC 6= ∅, which implies that(IC∪UC)∩OC 6= ∅,
which contradicts thatC is a candidate.

It may be possible to establish further pruning rules, especially for families of con-
crete argumentation systems, where the attack relation is known to abide by some restric-
tions. Moreover, it might be possible to establish heuristics for checking the conditions in
the above theorems, or construct data structures which allow for these to be easily tested
in C + A andC − A given the answers inC. However, this is outside the scope of this
paper.

As mentioned before, the method for answering questions about preferred ex-
tensions, presented here, is based on candidate trees. The exact nature of construct-
ing/walking the trees we leave unspecified, as it may be dependent on the question that
we seek an answer to and the system at hand. In some cases it maybe suitable to use a
depth-first walk of a candidate tree, and in others (such as when|A| = ∞) a breath-first
or iterated deepening depth-first walk will be needed. However, even though we leave
out an exact specification of our method, we show how to apply it to an example:

Example 5 (Full-blown Example):We round off the example systemAe, presented in
Example 2, by identifying all preferred extensions for it. As no sets of arguments are
attackingA it is clear that it belongs to the grounded extension ofA. We therefore
set out with constructing aC-tree, whereC is a candidate havingIC = {A}, such as
({A}, {F}, {B, C, D, E}). We construct the tree in a depth-first manner. The final result
is shown in Figure 2.

First we constructC + B = ({A, B}, {C, D, F}, {E}) and then(C + B) + E =
({A, B, E}, {C, D, F}, ∅). Here {A, B, E} is an admissible set, andU(C+B)+E is
empty, so the recursion stops. Next we would need to consider(C+B)−E, butC+B and
E satisfies the conditions in Theorem 6 so we know that the sub-tree rooted at(C+B)−E

contains no preferred extensions, so we skip it.
Instead we back-track and constructC−B = ({A}, {B, F}, {C, D, E}), (C−B)+

C = ({A, C}, {B, F}, {D, E}), and then((C−B)+C)+D = ({A, C, D}, {B, E, F},
∅). This latter one contains an admissible set, viz.{A, C, D}. Next, we construct
((C−B)+C)−D = ({A, C}, {B, D, F}, {E}), which satisfies the conditions in Theo-
rem 5 (the satisfying element beingB). Therefore, we do not investigate that sub-tree any
further. Instead we back-track and construct(C −B)−C = ({A}, {B, C, F}, {D, E})
and then((C − B) − C) + D = ({A, D}, {B, C, E, F}, ∅). Here {A, D} is not a
preferred extension (it does not attackB which attacks it). Back-tracking one level, we
construct((C − B) − C) − D = ({A}, {B, C, D, F}, {E}). This candidate satisfies
the condition in Theorem 4, as{A, E} is a subset of{A, B, E}, which we discovered
previously.

The analysis thus shows that the two admissible sets ofA having no admissible set
as supersets (i.e. the preferred extensions), are{A, B, E} and{A, C, D}.

Due to the restriction to candidates and the pruning rules, in the example we were
able to deduce the result from five total divisions (out of 64 theoretically possible di-



C

C + B (C + B) + E

C − B

(C − B) + C

((C − B) − C) + D

((C − B) − C) − D

(C − B) − C

((C − B) − C) + D

((C − B) − C) − D

Figure 2. Enumerating all preferred extensions ofAe.

visions), and with an overhead of five partial divisions. We think this is a satisfactory
result, considering the highly intertwined nature of the example system. Of course, the
actualefficiency of the method is influenced by a number of factors:

• How fast can the conditions in Theorems 4 to 7 be checked?
• In what order are candidates expanded. In the example above we went for explor-

ing the largest sets as soon as possible, which allowed for ruling out sub-trees for
smaller sets later on. Other heuristics may be better, depending on the problem
being solved.

5. Conclusions

We have presented a method for enumerating the preferred extensions of argumentation
system where joint attacks are allowed. We have proved that the method is complete and
have presented a number of optimisation rules which should help reduce the running time
of implementations. We do not claim that the set of these optimisation rules is complete,
and acknowledge that details regarding implementation arestill open for optimisation.
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