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AbstractThe hitherto most abstract, and hence general, argumemtsyistem, is
the one described by Dung in a paper from 1995. This framewosds not allow
for joint attacks on arguments, but in a recent paper we adapto support such
attacks, and proved that this adapted framework enjoyedahee formal proper-
ties as that of Dung. One problem posed by Dung’s originah&aork, which was
neglected for some time, is how to compute preferred extessof the argumen-
tation systems. However, in 2001, in a paper by Doutre anddifterm procedure
was given for enumerating preferred extensions for theséerys. In this paper
we propose a method for enumerating preferred extensiotieqgiotentially more
complex systems, where joint attacks are allowed. The ndeithanspired by the
one given by Doutre and Mengin.
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1. Introduction

In the last fifteen years or so, there has been much interesigimmentation systems
within the artificial intelligence community. This intetespreads across many different
sub-areas of artificial intelligence. One of these is nomatonic reasoning [1,2], which
exploits the fact that argumentation systems can handéeresolve, inconsistencies [3,
4] and uses it to develop general descriptions of non-marnoteasoning [5,6]. This line
of work is summarised in [7]. Another area that makes usegfmentation is reasoning
and decision making under uncertainty [8,9,10], which eitplthe dependency structure
one can infer from arguments in order to correctly combiridence. Much of this work
is covered in [11]. More recently [12,13], the multi-ageystems community has begun
to make use of argumentation, using it to develop a notioatidmal interaction [14,15].
One very influential and very abstract system of argumeoratias that introduced
by Dung [16]. This was, for instance, the basis for the worka was the system ex-
tended by Amgoud in [17,18], and subsequently as the basihéodialogue systems



in [19,20]. The importance of Dung’s results is mainly dughe fact that his frame-
work abstracts away from details of language and argumentatles, that the presented
semantics therefore are clear and intuitive, and thatioglghips among arguments can
be analysed in isolation from other (e.g. implicationalptienships. Furthermore, the
results can easily be transferred to any other argument&tamnework, by identifying
that framework’s equivalent of an attack. It is this genigyalve believe, that has con-
tributed to the popularity of the work, and we see it as a prometender for becoming
an established standard for further investigations inéortature of arguments and their
interaction.

However, even if Dung was trying to abstract away from theaityihg language and
structure of arguments, his framework implicitly assumésgacal “and” connective in
the underlying language, to be able to model all kinds ot&taThis hidden assumption
is caused by Dung'’s attack relation being a simple binati@h from one argument to
another, rather than a relation mapping sets of argumeithay sets of arguments. In a
recent paper [21] we presented a generalisation of Dungradmwork, which allows sets
of arguments to attack single arguments, and thus freesrttierlying language from
being closed under some logical “and” connectivEhe main motivation for that work
was that sometimes it seems reasonable for a number of angsitoeinteract and con-
stitute an attack on some other argument, even though thenangts of the attack does
not individually attack that argument. The approach, wsereh joint attacks are mod-
elled by adding to the argumentation system a new argumantepresents the set of
attacking arguments, and then employing traditional argutation analysis to this sys-
tem, is not satisfactory: The encoding is artificial, addirgjance between the formalism
and the modelled argumentation situation, and to ensutentireisense conclusions do
not arise, the relation of attack among arguments need tedigated or an extra layer
of logical relationships among arguments need to be spdcifiee former muddles the
clear distinction between arguments and attacks, whichthasery appeal of Dung’s
framework, and the latter makes it hard to survey the effettme set of argument on
others and calls for more specialized formalisms for analiisan Dung’s. For further
elaborations on this see [21].

In this paper, we build on the work in [21] and propose a mettowéénumerating
preferred extensions of the argumentation systems deftmer@.tIn general it is hard
to compute a preferred extension [23], but [24] presents thotkethat enumerates pre
ferred extensions for an abstract argumentation systemesempted in [16]. Moreover,
[25] and [26] present methods for answering whether a sgeaifjument is in at least
one preferred extension, or if it is in all preferred extems. Here we adapt the basic

1Subsequently, we have been directed to [22], which descabeargumentation framework that is a gener-
alization of that in [16] too. The main differences betwe28][and [21] are due to difference in perspectives:
Bochman is motivated by the task of establishing a corredgace between disjunctive logic programming
and abstract argumentation, and ends up with a framewotlatlwavs any finite set of arguments (including
the empty set) to attack and be attacked by any other finitevbetreas we have tried to expand the dialogical
and dialectical boundaries of abstract argumentation loyvadg for arbitrary sets of attacking arguments (but
the empty set), and claim that further flexibility is not neédor argumentative reasoning. (Indeed, the main
example motivating attacks on entire sets of arguments tomhto be sensibly represented in our framework.)
Due to his aims, Bochman construct new semantics for hisdvaork and identifies new families of argumen-
tation systems with nice properties (none of them coingdiith our formalism). We, on the other hand, stick
as close as possible to the semantics provided by Dung, ateihshow that the all of Dung’s results are valid
for systems with sets of attacking arguments.



technique of [24] to the more complex case of argumentatistess with joint attacks.

The main problem for this adaptation, is that the arguméntatystems of [16] can be
viewed as directed graphs, and that this fact is exploitederpruning rules of [24]. For

the argumentation systems of [21], however, no similar rstpucture exists, and new
pruning rules thus have to be constructed. In particularlagk a context independent
notion of “reflective” arguments, and a context independerion of a single argument
being detrimental to a specific set of arguments.

2. Argumentation With Attacking Sets of Arguments

In this section we present our generalisation of the frantkwb[16], as introduced in
[21].

Definition 1 (Argumentation SystemsAnargumentation systeis a pair (A,>), where
A is a set of arguments, andC (P(A) \ {@}) x A is anattack relation

Throughout the paper we assume an argumentation sydtem(A, ), and take it
to be implicit.

We say that a set of argumerfisattacksan argument, if there is S’ C S such
thatS’ > A. In that case we also say thatis attacked byS. If there is no sefS” C S’
such thaiS” attacksA, then we say tha$’ is aminimalattack onA. Obviously, if there
is a set that attacks an argumehtthen there must also exist a minimal attack 4An
Moreover, if S is a minimal attack om, then it must be the case théit> A. If for two
sets of argumentS; and S,, there is an argumemt € S5, which is attacked bys,
then we say tha$; attacksS,, and thatS, is attacked by5. If a setS; attacks some
argument inS>, and this is true of no subsets 81, then we say tha$; is a minimal
attack onSs, and relaxing notation a bit, writ§; > S,. If a set of argumentS does not
attack itself, then we say thatis conflict-free

Let S; andS- be sets of arguments. #, attacks some argumeAt andS; attacks
S5, then we say thab; is adefense ofA from S,, and thatS; defendsA from Ss.
Obviously, if S5 is a superset of, Ss is also a defense ol from S5. An argument
A is said to beacceptable with respect to a set of argumesitsf S defendsA from
all sets of attacking argumenss C A. A conflict-free set of argumeni§ is said to be
admissibleif each argument ir§' is acceptable with respect . This leads us to the
credulous semantics we treat in this paper:

Definition 2 (Preferred Extensions)An admissible se§* is called apreferred exten-
sion if there is no admissible s&' C A, such thatS* C S".

From [16] and [21], we have that for each admissibleSethere exists a preferred
extensionS™*, such thatS C S*. Moreover, as the empty set is an admissible set, we
have that every argumentation system has at least one @@ &tension.

A very skeptical semantics, is tlyggounded extensigmwhich is defined as the least
fix point of the functionF" : P(A) — P(A), defined as

F(S)={A : Aisacceptable wrtS}.



Example 1 (An Introductory Example): Consider an argumentation systerdy =
(Ac,>.), whereA, = {A, B,C, D, E, F} and>, is defined as:

{A,C,D}v. B, {A,B}v.C, {B}>.D, {C,E}v.D,
{D}v. E, {B,F}v.E, {A}v.F, and {D}>.F.

It can easily be verified that the grounded extensiomgfs { A}. The preferred exten-
sions are{ 4, B, E} and{ A, C, D}, which we shall prove later in the paper.

3. Computing Preferred Extensions

We now present a method for computing the preferred extaesdior an argumentation
system with sets of attacking arguments as defined in Defimiti The method is in-
spired by a similar method, for computing preferred extensifor Dung’s original ar-
gumentation systems, presented in [24]. The basic straseigyenumerate all possible
divisions of A into two sets,I andO, wherel are the arguments that airea preferred
extension, and are those that areut, and then check for each divisionifis a pre-
ferred extension. Now, of course the number of divisionsloaurastically reduced, by
noting requirements o imposed by Definition 2, so a full enumeration can often be
avoided.

The enumeration of divisions is constructed as a tree, wiaeh node is a partition
of A into three set$I, O, U), whereU is the arguments still not assigned to one of the
two divisionsI andO. The root of the tree is a node where bditand O are empty
and all arguments are assigned to the undecided partitiach Ehild(I’, O’,U’) of a
node(I, O, U) is then a refinement of the division represented by the pusJimde, i.e.
I C I'andO C O'. The size of such a tree is exponential in the number of argtsne
but fortunately we often do not have to construct the ent&e,tand if only more specific
gueries are sought answered (such as “Is argument A incluindszime preferred exten-
sion?”) we can sometimes get away with only inspecting pafressfew branches of the
tree.

First we define the nodes we work with. These are cadledandidatesor as we
take.A to be implicit, justcandidatesFor a given se§ C A, define

ST={AcA:ITCSstTr A}
and
ST ={AcA:3TCS,BeSstTU{A}v> B}

S~ is thus the set of arguments attacked$iyyand.S is the set of arguments, which
if added toS, would makeS attack itself. A candidate is then a triplé C A,0 C
AU = A\ (IUO)) satisfying the following properties:
I”co, 1)
I= CO,and (2)
INO =o. 3)



(If C = (I,0,U) is a triple, we will use subscripts to refer to the sets in theipon,
e.g.Ic denotes the sdtin C.)

Example 2 (Candidates):We consider again the argumentation systém= (A.,>)
from Example 1. A few examples of candidateg &e}, { D}, {A,C, E, F'}), (@, A., @),
and ({C, D}, {A, B, E, F}, ). Some examples of non-candidates @rd }, { B, D},
{C,E,F}),{E,F},{A,D},{B,C}),and({B},{B, D},{A,C, E, F}).

Focusing only on candidates, rather than arbitrary divisiof A, is thus a restriction
on the number of divisions to consider. We argue that it iiceht below.

It follows from (1) and (3), that for any candidatg I is conflict-free. For any
triple C, we denote by pré€) the set of all preferred extensioss, wherel, C S* C
I, U Ug. It follows, that if Uz = @, then prefC) is {I¢} if I is a preferred extension
and otherwise.

Given a tripleC and an argumem € Ug, define the triples

C—A=(Ic, OcU{A}, Uc\{4}), 4)
and
C+A=(IcU{A}, OcUAZ 4UA, Uc\({A}UAZ4UAC L) (5)
where
Aciy={BeU; : 3SCI:st.SU{A}> B} (6)
and
A ={BeU; : 38CI;,Cclc st. SU{B}>A
VSU{A4,B}rC Vv SU{A, B} A}. @
Example 3 (Adding Arguments to Triples): Building on Example 2, we ad&
to the candidateC; = ({B},{D},{A,C,E,F}) and the non-candidat€, =
({A},{B,D},{C,E, F}): Inthe first case Az’ p = FandA¢g | p = {F}, andin
the secondAz’  , = A, p = 9. ThereforeC, + E = ({B, E},{D, F},{A,C})
andCy + E = ({A,E},{B,D},{C,F}).
It is easy to verify that, given a candidateand an argumem € U, we have that
I a\1g" = Ag 4, (8)
and
I\ T = A 9)
Given the partial division represented by a candidate, samgements might be impos-

sible to add to the sdt without ending up with a contradiction. We therefore define t
set ofreflexive argumentwith respect to a candidagkas follows:



reflC) ={AeU; : 3S CI¢, st.SU{A} > A}. (10)

From the definitions, it immediately follows thatif € refl(C) then prefC + A) = .
Furthermore, we can state an important theorem, which asphat given a candidate
we can use the definitions 6f+ A andC — A to construct a tree of candidates havihg
as root:

Theorem 1. LetC be a candidate, andl € Uc. If A & refl(C) then bothC + A and
C — A are candidates as well. Otherwise oidly- A is a candidate.

Proof. It is obvious thaC — A is a candidate no matter whethéris in refl(C) or not.
We therefore only show th&t+ A is a candidate iffd is not in ref(C).

First, assume that is in refl(C). This means that there is some &1C I, such
thatS U {A} > A. Consequentlylc+4 = Ic U {A} contains a subsé&f = S U {A},
such thafl'> A. If C + A was to be a candidate, (1) would therefore require thi in
Oc4 4. Itfollows thatA is in Ie 4 N Ocy 4, Which is thus not empty. That contradicts
(3), andC + A can thus not be a candidate.

Conversely, assume thdtis not in ref(C), and we show that + A is a candidate
by means of contradiction. That is, assume that A is not a candidate, which means
that one of the following must be true:

(): 3Be Iz y,st.B ¢ Ocya,
(i): 3B e I; 4 st.B &€ Ocya,o0r
(ii): AB € Ic4aNOcqa.

We show that each case is impossible. First, assume that filei case. Sincé is a
candidate, we necessarily have tat € O¢ C Oc¢4 4 and it must thus be the case
that B € I 4 \ Iz, which according to (8) is equivalent to havirg) € AZ7, 4.
But according to (5)A;, 4 is a subset 00¢ 1 4, SOB € Ocy 4 after all, which is a
contradiction. Case (ii) is proved to be impossible withraikir argument.

Assume that (iii) is the case. Sin€eas a candidate, we know from (3) th@- N1, =
@, and, sinced is in Ug, which is disjoint fromOc, also thatO; N (I U {A}) =
OcNlIcya = . Therefore B must be amember @c, 4\ Oc = (Ag ,UAZ, 4) C
Uc. Furthermore, a¥/c N I = o it follows that B must be inlcy4 \ Ic = {A}.
Thus,A must be in eitheA 7, , or Az, 4. The first possibility is ruled out, sincé by
assumption is not a member of &f). So A must be inAG 4.

According to the definition oA;, ,, there must be &' € I and a setS C I,
so eitherS U {A} > A or S U {A} > C. Again the first possibility is precluded by the
assumption that is not in ref(C), so it must be the case théitu {A} > C. But thenA
isin Iz and a< is a candidate also i@¢. That contradicts the assumption tizats in
Uc, and the theorem follows. O

The theorem thus establishes that iterated use of thed andC — A-definitions
makes sense. Moreover, we have the following result on ttadty:

Theorem 2. LetC be a candidate andl and B be distinct arguments itV \ refl(C),
such that bot{C + A) + B and(C + B) + A are candidates. Then



(C+A)+B=(C+B)+A4, (11)
(C—A)—B=(C—-B)— A, and (12)
(C+A)—B=(C-B)+A (13)

Proof. We only show (11), since the others follow from similar, atlstightly simpler
arguments. It is obvious thatc; a1 = IcyB)+a and, given thaO i 4)4p =
Oc+B)+a, also thatUc 4)48 = Ucyp)+a- We therefore just need to show that

Occ+ay+B = OrciB)ta:

Octa)+8=0cUACL s UACL 4 UAC, 4y YA ) 1B
=0c U Icia\ 1)U Tz \ 1)
Uciayre \eia) YU Tcpayrs \ 1e5a)
=0c U I gyayrp \ I ) U Tcyayrs \ I ),

where the last step is warranted by the observation$hatC T~ andS C T, for
any two setsS andT', whereS C T.
Now, asl(¢c4a)+5 = I(c+B)+4, W€ have:

OcU (Iciayp \ 1)U Ticpayrn \1o)
=0c U (I¢ipypa\ 1)U Tcyrpyra\ 1)
=0c U (Icip\ I )V Ieyp\ 1)
Ucrpy+a \ Lcip) U T cypyra \1c3B) = OctB)+a
O

Thus, no matter in what order several arguments are moved#fe to I andOc,
the resulting candidate is the same.

Now, we wish to use a tree of candidates as enumeration oémpeef extensions.
Given a candidaté, we define &-tree inductively as follows:

e If Us = @ then the tree consisting of the laafs aC-tree.

e If A e U\ refl(C) then a tree with root nod@ having the roots of & + A-tree
and aC — A-tree as only children is &-tree.

e If A € U nrefl(C) then a tree with root nodeé having the root of & — A-tree
as only child is &-tree.

Example 4 (C-trees): We continue expanding @h as in Example 3. Repeated construc-
tion of candidates gives thg -tree presented in Figure 1. Notice that some branches are
shorter than others. This is because some additiodsitaply additions ta0, and hence
exhaustU sooner.

Any tree, for which there is some candid@esuch that the tree is @-tree, is called a
candidate treeThe following results guarantee that candidate treesidechll divisions
that encode preferred extensions.



(C1+E)+A

G+E__ (G+E)-A)+C
/ €+ E)—A
Cq ((01+E)7A)7C
\ /(cle)+A
G- E (G —E)—A)+C
e A

((C1-E)-A)-C
Figure 1. ACy-tree

Lemmal. LetS C A be aconflict-free sef, a candidate, wherd: C S andO:NS =
@, and A a member oF '\ I.. ThenC + A is a candidate, an@¢4 4 NS = 2.

Proof. First note thatd cannotbe in refC), as that would mean that there is aFe€ I
such thafl’ U {A} > A, which again would mean th# is not conflict-free. Therefore,
Theorem 1 guarantees th@t+ A is a candidate, and we thus only need to show that
OcianNS=0.

As Oc N S = @ itfollows thatOc a NS = (AF, 4 U AL, 4) N S. If this set
is non-empty, then there must beRain S, such that there isa s@t C I C S and
elementC € I C S, where eitheT U {A} > B, TU{B}> A, TU{A,B}>C,
orT U {4, B} > A. But each of these imply th&f is not conflict-free, and hence we
conclude thaO¢ 4 NS = @. O

Theorem 3. LetC be a candidate, and € Ue. Then prefC) = pref(C + A) U pref(C —
A).

Proof. It is obvious that pref” + A) U pref(C — A) C pref(C), so we only show that
pref(C) C pref(C + A) U pref(C — A).

Let S* € pref(C), i.e.Io C S* C I UUg. If AisnotinS*, then it follows that
S* C IouU; \ {A} = Ic— 4 UUc_4, and hence tha$* € pref(C — A). If Ais
in S* we similarly get thatS* > I U{A} = I-;4 and we only need to show that
S* CIeyaUUcya,ie. thatOe 4 NS* = @. But this is guaranteed by Lemma 1, and
the result follows. O

From this we immediately get:

Corollary 1. If S*is a preferred extension, then there is a |I€aif any(2, @, A)-tree,
such thatS* € pref(C).

Thus, when enumerating preferred extensions, it sufficesngtruct a single candi-
date tree, viz. 4, g, A)-tree, even if candidates do not represent all possiblsidns
of A. Furthermore, as the grounded extension of any system issetaof any preferred
extension [16,21], we have the following stronger result:

Corollary 2. If S* is a preferred extension, ar@ is the grounded extension, then there
isaleafC ofany(G,G" UG, A\ (GUG™ UG™))-tree, such thaS™* < pref(C).



4. Pruning of Candidate Trees

Depending on how a candidate tree is constructed, we migablecto prune it. In what
follows we present some simple corollaries which allow forgng of candidate trees.

Corollary 3. LetC be a candidate for which pr&f) = @. Then prefC’) = & for all
node<C’ in anyC-tree.

Thus, if during construction of a candidate tree, we creataralidate for which we
know that prefC) is empty (e.g. by use of Theorems 6 or 7 below), then we do na ha
to construct the sub-tree rooted at that candidate.

Corollary 4. LetC be a candidate. U = refl(C), then prefC) = pref((I¢, Oc U
UC7®))'

Thus, if at some point in the construction of a candidate, tvee cannot find an
argument to add td., then we can stop exploring this branch of the tree.

Theorem 4. LetC be a candidate. I U Us C S*, for some admissible sé&t*, then
pref(C) = @.

Proof. Obvious from Definition 2. O
Theorem 5. LetC be a candidate. If; \ (I UU;) ™ # @ then prefC) = @.

Proof. Assume otherwise, and I6t* € pref(C) andA € I\ (IcuU¢)”. AsA € I

it follows that there is some argumeBte I C S* and setl’ C I C S*, such that

T U {A} > B. Furthermore, as$* is a preferred extension, it defends itself, and thus
attacks some argument@iuU { A}. But asS* is conflict-free, this argument must b
andA must thus be ir5*— C (I U U¢)—, which is a contradiction. O

Theorem 6. LetC be a candidate andl € Ug. If

o for all setsT', whereT' > A, it holds thatT' N I;” # @, and
o A € (IC @] Uc)ﬂ, and
e A¢ (IC uUe \ {A})h

then prefC — A) = @.

Proof. Assume that there is 8* € pref(C — A), i.e. thatlo_4 C S* C U¢_ 4, which
implies thatA ¢ S*. Hence, eithelS* does not defend., or S* U { A} is not conflict-
free. We show that both cases are impossible.

Let T be some minimal attack oA. Since we have thadl' N I;” # @, I attacks
T, and hence tha®™* O I defendsA, ruling out the first case.

If S* U {A} is not conflict-free, buS* is, then thereisa sét C S* C (I UU; \
{A}) and argumenB € S* C (I UU. \ {4}), such thateithel' > A, T U {A} > A,
orT U {A} > B. But the latter of these is precluded Hy¢Z (I UU¢ \ {A})~ and the
othersbyA ¢ (I UU;) ™. O

Theorem 7. LetC be a candidate andl € U an argument, which is attacked by at
least one set of arguments. If, for all pairs of s&t&and R, whereT' > Rand R > A, it
holds thatI’ N O¢ # @, then prefC + A) = @.



Proof. AssumeS* € pref(C + A), implying thatlo 4, C S*,i.e.A € S*. AsS*is
a preferred extension, it must defedd Let R be an attack o (whose existence is
guaranteed by the assumptions of the theorem). Sfadefends4, it follows that there
isasetl’ C S* such thafl'> R. But thenT" and R fulfills the conditions in the theorem,
andT' NO¢ # . Itfollows thatS*NO¢ # @, which implies that I UU:) N O¢ # &,
which contradicts that is a candidate. O

It may be possible to establish further pruning rules, eigigdor families of con-
crete argumentation systems, where the attack relatiomowi to abide by some restric-
tions. Moreover, it might be possible to establish heuwssibr checking the conditions in
the above theorems, or construct data structures whictv &iothese to be easily tested
in C + A andC — A given the answers iG. However, this is outside the scope of this
paper.

As mentioned before, the method for answering questionstapmeferred ex-
tensions, presented here, is based on candidate trees.xaberature of construct-
ing/walking the trees we leave unspecified, as it may be digrdron the question that
we seek an answer to and the system at hand. In some caseshersaitable to use a
depth-first walk of a candidate tree, and in others (such asww| = co) a breath-first
or iterated deepening depth-first walk will be needed. Hawesven though we leave
out an exact specification of our method, we show how to apgptyan example:

Example 5 (Full-blown Example): We round off the example systefn, presented in
Example 2, by identifying all preferred extensions for i¢. o sets of arguments are
attacking A it is clear that it belongs to the grounded extensionAfWe therefore
set out with constructing &-tree, whereC is a candidate havinde = {A}, such as
({A},{F},{B,C, D, E}). We construct the tree in a depth-first manner. The final tesul
is shown in Figure 2.

First we construcC + B = ({4, B},{C,D,F},{E}) and then(C + B) + E =
({A,B,E},{C,D, F},2). Here {A, B, E} is an admissible set, anl/(¢ py+£ iS
empty, so the recursion stops. Next we would need to cor(gideB)— F, butC+ B and
E satisfies the conditions in Theorem 6 so we know that therselyetoted a{C+ B) — F
contains no preferred extensions, so we skip it.

Instead we back-track and constrdct B = ({A},{B, F},{C,D,E}),(C—B)+
C={AC}{B,F},{D,E}),andthen(C—B)+C)+D = ({A,C,D},{B, E, F'},
@). This latter one contains an admissible set, {iz, C, D}. Next, we construct
((C-B)+C)-D = ({A,C},{B, D, F},{E}), which satisfies the conditions in Theo-
rem 5 (the satisfying element beify. Therefore, we do not investigate that sub-tree any
further. Instead we back-track and constrg€t— B) — C = ({A},{B,C,F},{D, E})
and then((C — B) - C)+ D = ({A,D},{B,C,E,F},2). Here {A, D} is not a
preferred extension (it does not attaBkwhich attacks it). Back-tracking one level, we
construct((C — B) — C) — D = ({A},{B,C,D, F},{E}). This candidate satisfies
the condition in Theorem 4, &s4, E'} is a subset of A, B, E'}, which we discovered
previously.

The analysis thus shows that the two admissible setsltdving no admissible set
as supersets (i.e. the preferred extensions){aeB, E} and{ A4, C, D}.

Due to the restriction to candidates and the pruning ruteghé example we were
able to deduce the result from five total divisions (out of Bddretically possible di-



B C+B)+E

c+
_— ___(e-p-0)+D
C —

(c-B)-C)-D

C-B
B/
T~ (€-B)-C)+D
Cc-B-c—

(€-B)-C)-D

Figure 2. Enumerating all preferred extensions.4f .

visions), and with an overhead of five partial divisions. Wk this is a satisfactory
result, considering the highly intertwined nature of thamyple system. Of course, the
actualefficiency of the method is influenced by a number of factors:

e How fast can the conditions in Theorems 4 to 7 be checked?

e In what order are candidates expanded. In the example abeveent for explor-
ing the largest sets as soon as possible, which allowed liagraut sub-trees for
smaller sets later on. Other heuristics may be better, dépgron the problem
being solved.

5. Conclusions

We have presented a method for enumerating the preferredsighs of argumentation
system where joint attacks are allowed. We have proved lieatiethod is complete and
have presented a number of optimisation rules which shaelfgreduce the running time
of implementations. We do not claim that the set of thesengpétion rules is complete,
and acknowledge that details regarding implementatiostit@pen for optimisation.
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