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AbstractWe consider agents in a multi-agent system, each equipped with a
Bayesian network model (BN) of its environment. We want the agents to reach
consensus on one compromise network, which may not be identical to a single one
of the BNs initially held by the agents, but rather a combination of aspects from
each BN. The task can be characterized as the need for agents to agree on a spe-
cific state (a BN) of a variable with an enormous state space (all possible BNs).
The grandness of the task is reduced by the fact that BNs are composed of local
relationships, and it should therefore be possible to reachthe compromise by grad-
ually agreeing on parts of it. In the metaphor of the variable, the agents should be
able to agree on successively smaller subsets of the enormous state space. However,
these same local relationship can interact, and understanding the extent to which
partial agreements affect the possible final compromise is ahighly complex task.
In this work we suggest using formal argumentation as the reasoning mechanism
for agents solving this task, and suggest an open-ended agora approach that ensures
agents high quality compromises in an anytime fashion.
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1. Introduction

We investigate how Bayesian networks (BNs) can be used in a multi-agent setting with
the help of argumentation theory. Previously the two methodologies have mainly been
studied together with a view to incorporating the efficiencyand precision of BNs into
argumentation theory (e.g. [1]), or as an exercise in converting models of one theory into
models of the other (e.g. [2] and [3]). Here, we envision equipping each agent in a MAS
with a BN, as a model of the domain it is situated in, and aim at providing a framework
built on formal argumentation principles in which the agents, starting from their indi-
vidual domain models, can conclude on a single network representing their joint domain
knowledge. This would be useful in cases where the agents only meet occasionally and in
the meantime may make small changes to their models to reflectsurprising observations
of their surroundings. By using the two paradigms in this manner, we hope to exploit the
strengths of BNs and of argumentation: Allowing individualagents to draw inferences in



face of noisy observations using their BNs, and having agents extract a consistent “truth”
from a set of conflicting ones through a distributed process built on argumentation.

The task of fusing several BNs into one compromise BN is made theoretically inter-
esting by the fact that BNs by their graphical nature can be decomposed into several lo-
cal relationships, and thus the aspect of gradually building a compromise BN bottom up
is tempting. However, these very same local relationships can interact in complex ways,
and the consequences of committing oneself to a partial compromise can be hard to esti-
mate. Maybe because of this difficulty, the task has previously mainly been considered a
centralized one-off operation, with little considerationgiven to these “cascading” effects.
Furthermore, the task has been addressed with an a priori specified view to what consti-
tutes an adequate compromise, with no apparent consensus onthe goal of network fusion
among authors (see [4], [5], [6], and [7]). In this paper, we do not commit ourselves to
a specific compromise objective. Rather, we establish a general framework in which any
kind of compromise on BNs can be reached in a gradual manner, with the exact nature
of the proceedings specified by some parameter functions.

As presented the setup may be confused with a negotiation problem, where the
agents would try to negotiate a compromise that is close to their individually held beliefs.
However, unlike the standard negotiation setup, the parts of the problem cannot be val-
ued in isolation, and hence, to the individual agent the value of an already agreed upon
partial compromise, will depend on the compromise choices that remain to be made. For
the same reason, the problem cannot be seen as a distributionof resources, as the indi-
vidual agents utility of the “resources” would change according to how the remaining
ones are distributed. Instead, we hope only to provide the agents with the ability to deter-
mine the extent to which they commit themselves at each step in the construction of the
compromise. That is, the main focus of our work is to provide the reasoning mechanism
individual agents can use for surveying the consequences ofcommitting to partial com-
promises. The advantages of our approach over previous efforts include: That a general
purpose argumentation engine can be implemented and reusedin contexts with different
definitions of compromise; that efficient distributed implementations are natural; that in
cases where agents almost agree a priori, little information need to be shared among the
agents; and that anytime compromises can be achieved.

2. Preliminaries And Problem Definition1

2.1. Bayesian Nets

A BN B is an acyclic directed graph (DAG)G,2 over a set of random variablesV , along
with a conditional probability distribution for each variable in V given its parents inG.
The joint probability distributionP overV , obtained by multiplying all these conditional
probability distributions, adheres to a number of conditional (in)dependence constraints
identifiable fromG alone. Any other BNB′ with a graph implying the exact same con-
straints onP is said to beequivalentto B. [9] proved that the set of all BNs equivalent
to some BNB can be uniquely characterized by a partially directed graphcalled the

1For actual examples and background on the topics, ideas, andalgorithms presented here and later, refer to
[8].

2We assume the reader is familiar with the basics of graph theory.



patternof B. The pattern ofB is constructed by taking the skeleton ofB and directing
links as they appear inB iff they participate in a v-structure3. Any BN equivalent toB
can be obtained from its pattern by exchanging links for directed arcs, while taking care
that no directed cycles are introduced, and that no v-structures not already found in the
pattern are introduced. Any DAG obtained from the pattern inthis manner is called a
consistent extensionof the pattern. The two constraints imply that not all partially di-
rected graphs are patterns of some BN, and furthermore that some links in a pattern are
exchanged for similarly directed arcs in all consistent extensions of the pattern. Such
arcs and arcs found in the pattern are calledcompelled arcs, and the partially directed
graph obtained by exchanging links for compelled arcs wherever possible, is called the
completedpattern ofB. The completed pattern ofB is thus a unique characterization of
B’s equivalence class as well. The set of all partially directed graphs overV that are
completed patterns of some BN thus constitute a complete andminimal encoding of all
probabilistic dependencies for distributions expressible by BNs overV . We denote this
set of completed patternsCV andC whenV is obvious from the context. [10] gave an
elegant characterization of the individual elements ofC. Next, we present how agreeing
on BNs pose problems.

2.2. Compromising On Bayesian Networks

The problem we are posing arises in a MAS containing a finite number of cooperating
agents. Each agenti has a BNBi over a common set of domain variablesV , which we
assume to be implicit in the remainder of the text. For ease ofexposition, we furthermore
assume that an arbitrary but fixed total ordering; over the variables is known by all
agents a priori. At some point agents1 tok decide to pool their knowledge, as represented
by B1 to Bk, into a new BNB∗. Facilitating this task is the problem addressed here. We
expectB1 to Bk to be large but somewhat similar (as each describe relationships among
the same variables), and therefore that having each agent communicate its entire model
to each other agent is inefficient. We focus solely on the graphical structure ofB∗

As all consistent extensions of a completed pattern imply the exact same indepen-
dence properties, it is reasonable to consider completed patterns as basic representations
of domain knowledge, if domain knowledge is taken to be independence properties as in
this text. That is, we only require the agents to agree on the completed patternG∗ ∈ C of
B∗.

To establish whether a graph is a good compromise for the agents, we need a mea-
sure for how well such graphs matches each ofB1 toBk. Furthermore, as we plan to build
this compromise gradually, we wish for this measure to be relative to an already agreed
partial compromise. For example, it may be the case that an important dependencybe-
tween two variables is already a consequence of a partial compromise, and further con-
nections between the two variables may then be of little value. Contrarily, had the partial
compromise not implied this dependency, connections that would ensure it are valuable.
In general, we cannot assume that a partially specified graphis suitable as representation
of a partial compromise, as this might include agreements onwhat shouldnot be part of
the final compromise. Therefore, we take a partial compromiseP ≡ (P+, P−) to be two
sets of sentences in some language, whereP+ describe aspects that should be true of the
compromise graph, andP− describe aspects that cannot be true.

3A triple of variables(X, Z, Y ) is a v-structure ifX andY are non-adjacent and both are parents ofZ.



For any three partial compromisesP , Pa, andPb, whereP+ ⊆ P a
+, P− ⊆ P a

−,
P+ ⊆ P b

+ andP− ⊆ P b
−, we assume that each agenti can compute itscompromise

scoressi(P ,Pa) andsi(P ,Pb) such thatsi(P ,Pa) > si(P ,Pb) iff Pa describesBi

better thanPb, given thatP has already been accepted as being descriptive ofBi. A
simple example ofsi((P+, P−), (P a

+, P b
−)) could be the number of features described

in P a
+ \P+ andP a

− \P−, which are consistent withBi, minus those that are not. A more
complex score could weigh each of these described features according to the empirical
evidence the agent has in favor of or against them. We will assumesi to be additive,
i.e. for any three partial compromisesP0, P1, andP2, whereP 0

+ ⊆ P 1
+ ⊆ P 2

+ and
P 0

− ⊆ P 1
− ⊆ P 2

−, it is the case thatsi(P
0,P2) = si(P

0,P1) + si(P
1,P2). Notice,

that here we do not attempt to define what it means to be a “better description”, since we
believe that this issue can be dependent on the actual setting in which the framework is
to be used, as stated in Section 1.

In addition to the compromise score, we also assume that the agents know thecom-
bination functionc : R

k → R, indicating how much trust should be put into the indi-
vidual agents’ models. Differences in trust can be justifiedby differences in experiences,
sensor accuracies, etc. Formally, we definec as follows: LetP , Pa, andPb be partial
compromises. If

c(s1(P ,Pa), . . . , sk(P ,Pa)) > c(s1(P ,Pb), . . . , sk(P ,Pb)),

whenPa is a better compromise thanPb for the group of agents1 to k, given that
they have already agreed onP , thenc is the combination function for agentsi to k.
(An obvious choice forc would be a linear combination of its inputs.) We refer to
c(s1(P ,Pa), . . . , sk(P ,Pa)) as thejoint compromise scoreof Pa givenP , and likesi,
we shall also assume thatc is additive.

With this notation in place, we can thus restate the problem more formally as finding
a partial compromiseP , which uniquely identifies some graphG∗ ∈ C, such that

c(s1((∅, ∅),P), . . . , sk((∅, ∅),P)) ≥ c(s1((∅, ∅),P ′), . . . , sk((∅, ∅),P ′)),

for all other partial compromisesP ′, which uniquely identifies a graphG′ ∈ C.
As presented here, it is clear that the problem is not of a simple binary nature, as

we are not trying to establish whether some proposition is true or not, and that we are
furthermore dealing with a setting in which more than two agents may interact. Conse-
quently, we cannot utilize the vast literature on dialecticproof theories directly. Rather,
the problem we are trying to solve is a distributed maximization over a super exponential
hypothesis space (C). Furthermore, as the worth of (partial) compromises are only speci-
fied in relation to already agreed upon compromises, the problem is of a highly dynamic
nature.

Our solution to the problem is divided into three parts. First, we create a finite lan-
guage with which graphs and some essential properties of these can be expressed; sec-
ond and most importantly, we construct an argumentation system with which the agents
can reason about consequences of committing to partial compromises; and thirdly, we
create an agora in which the agents can reach compromise graphs in an anytime fashion.
First, however, we describe the formal argumentation framework we have selected as a
reasoning mechanism.



2.3. Formal Argumentation Frameworks

Formal argumentation takes many forms, but here we see it as an approach to extracting
consistent knowledge from a possibly inconsistent knowledge base. No single methodol-
ogy has yet to stand out as the main approach to argumentation(see [11] for an overview
of a series of approaches), so it has been necessary to pick one from a large pool of these.
The framework we have picked for our purpose is the frameworkof [12] (which is a
proper generalization of that of [13]), as this is an abstract framework, which leaves the
underlying language unspecified, and thus does not force us to specify in advance the
reasons to which each agenti may attribute its belief in aspects ofBi.

An argumentation systemis defined as a pairA ≡ (A, ⊲), whereA is a set of
arguments, and⊲ ⊆ (2A \ {∅}) × A is an attack relation. The exact nature of an
argument is left unspecified, but examples could be “InB there is an arc fromX to Y and
Y andZ are adjacent, so there must be an arc fromY to Z” or “Because I have observed
r, I believe there is an arc fromX to Y in B”. For two sets of argumentsS ⊆ A and
S

′ ⊆ S and an argumentA, if S
′ ⊲A thenS is said toattackA. If no proper subset ofS′

attacksA, thenS′ is called aminimal attackon A. An example of an attack that would
make sense is “There is an arc fromX to Y in B”4⊲“There is an arc fromY to X in B”.

A semanticsof an argumentation framework is a definition of the arguments in the
framework that should be accepted by a rational individual.[13] and [12] work with a
wide range of semantics, but we only introduce those needed here: We define a set of
argumentsS ⊆ A as beingconflict-free, if there is no argumentA ∈ S such thatS
attacksA. We further define a single argumentA as beingacceptable with respect to
a set of argumentsS, if for each set of argumentsT ⊆ A, whereT ⊲ A, there is an
argumentB in T , such thatS attacksB. A conflict-free setS, where all arguments inS
are acceptable with respect toS, is calledadmissible.

A credulous semantics is that of apreferred extension, which is an admissible set that
is maximal wrt. set inclusion. Finally, an admissible setS is said to be astable extension,
if it attacks all arguments inA \S. Clearly, a stable extension is a preferred extension as
well.

In general it is hard to compute a preferred extension [14], but in [15] we have
adapted a technique of [16] to the problem of enumerating preferred extensions of ar-
gumentation systems of [12]: GivenA ≡ (A, ⊲), we define anA-candidateas a triple
(I, O, U ≡ A \ (I ∪ O)) where

• I ∩ O = ∅,
• every argument that is attacked byI is in O, and
• every argumentA, for which there existsS ⊆ I andB ∈ I, such thatS ∪ A ⊲ B,

is in O.

(HereI is supposed to capture the intuition of arguments that arein the preferred exten-
sion, as opposed toout andunassigned.)

Given anA-candidateC ≡ (I, O, U) and an argumentA ∈ U the triplesC − A ≡
(I−A, O−A, U−A ≡ A \ (I−A ∪O−A)) andC+A ≡ (I+A, O+A, U+A ≡ A \ (I+A ∪
O+A)) are given by:

I−A ≡ I, O−A ≡ O ∪ A I+A ≡ I ∪ A, and O+A ≡ O ∪ ∆C+A,

4To reduce clutter, we leave out { and } for singleton sets.



where∆C+A contains all arguments inU \ A which need to be inO+A in order for
C + A to be a candidate. IfA does not participate in a minimal attack on itself (which is
the case for all arguments of the argumentation system we construct in this paper), then
bothC −A andC+A areA-candidates themselves, and we can thus constructcandidate
trees, where each node is anA-candidate: EachA-candidateC has two childrenC − A

andC + A, for some arbitrary chosenA in U , except those candidates whereU = ∅,
which act as leaves in the tree. A candidate tree having candidateC as root, is called a
C-tree.

It can be proven that ifI is a preferred extension ofA, then there is a leaf(I, O, ∅)
of any (∅, ∅, A)-tree. Conversely, for any leaf(I, O, ∅) in a (∅, ∅, A)-tree, whereI
defends itself,I is admissible. It follows that, by constructing an arbitrary (∅, ∅, A)-
tree, all preferred extensions can be enumerated.

3. Encoding Graphs

For the agents to conclude on the best compromiseG∗, a formal languageL for express-
ing graphs and properties of graphs must be defined. For efficiency reasons we aim to
make this language finite and as small as possible, while ensuring that it is still suffi-
ciently powerful to describe any graph and its membership status inC.

First, we introduce a small languageL
g for encoding graphs:

Definition 1 (Simple Graph Language). The languageLg is the set containing the sen-
tencesArc(X,Y), Arc(Y,X), Link(X,Y), andNonAdjacent(X,Y) iff X and
Y (X ; Y ) are distinct variables.

A graph knowledge baseis a setΣg ⊆ Lg. Further:

Definition 2 (Consistent Graph Knowledgebases). Given a graph knowledge baseΣg,
if it holds that for all pairs of variablesX andY , whereX ; Y , a maximum of one of
Arc(X,Y), Arc(Y,X), Link(X,Y), andNonAdjacent(X,Y) is in Σ

g, then we
call Σg a consistent graph knowledge base (CGK).

The graph encoded bya CGKΣ
g is the graphG[Σg] resulting from starting with

the graph with no edges, and then for any two nodesX andY (X ; Y ) adding an arc
from X to Y if Arc(X,Y) is in Σ

g, an arc fromY to X if Arc(Y,X) is in Σ
g, or an

undirected edge ifLink(X,Y) is in Σ
g. It is easy to see that graph encoded by a CGK

is well-defined. Furthermore, given a graphG there exists at least one CGK, for whichG
is the encoded graph.

We thus have that any graph can be efficiently encoded as a CGK,and Definition 2
allows us to distinguish the graph knowledge bases, which can be interpreted as graphs,
from those that cannot. Next, we extendLg into a language powerful enough for building
a reasoning engine about graphs and their membership statusof C on top:

Definition 3 (Graph Language). The graph languageL is the set containing all sen-
tences inLg and

• ArcNotAllowed(X,Y),
• DirectedPath(X,Y),



• UndirectedPath(X,Y),
• UndirectedPath(X,Y)Excluding(Z,W),
• ¬DirectedPath(X,Y),
• ¬UndirectedPath(X,Y), and
• ¬UndirectedPath(X,Y)Excluding(Z,W),

for any choice of distinct variables5 X , Y , Z, andW (Z ; W ). Sentences of the last
six kinds will be referred to aspathsentences.

The sentences just introduced are supposed to be used as descriptors of attributes of
the graphs encoded by CGKs:ArcNotAllowed(X,Y) states that an arc fromX to
Y would not be strongly protected6, which is required of all arcs in a completed pattern,
while the remaining sentences should be self-explanatory (e.g.¬UndirectedPath-
(X,Y)Excluding(Z,W) states that there is no undirected path betweenX andY , or
that any such path necessarily contains eitherZ or W ).

As Lg is a subset ofL, it follows that a graph knowledge base is a set of sentences
in L as well, and given a setΣ of sentences ofL, we denote byΣg the setΣ ∩ Lg. In
particular Definition 2 is still applicable.

4. Graph Argumentation System

Building on the languageL introduced above, we define an argumentation system for
distinguishing completed patterns that could be compromises for the agents. The sys-
tem that we construct enjoys the properties that a graph is a member ofC iff there is a
preferred extension of the system which encodes this graph.

Definition 4 (Graph Argumentation System). Thegraph argumentation systemAg is the
tuple(L, ⊲g ⊆ (2L × L)), where⊲g is defined as follows ({A,B} is short-hand for any
one of(A,B) and(B,A)):

1. Arc(X,Y)⊲g Arc(Y,X)
2. Arc(X,Y)⊲g Link{X,Y}
3. Arc(X,Y)⊲g NonAdjacent{X,Y}
4. Link(X,Y)⊲g Arc{X,Y}
5. Link(X,Y)⊲g NonAdjacent{X,Y}
6. NonAdjacent(X,Y)⊲g Arc{X,Y}
7. NonAdjacent(X,Y)⊲g Link{X,Y}
8. ¬DirectedPath(X,Y)⊲g DirectedPath(X,Y)
9. ¬UndirectedPath(X,Y)⊲g UndirectedPath(X,Y)

10. ¬UndirectedPath(X,Y)Excluding(Z,W)⊲g UndirectedPath(X,Y)Exclu-
ding(Z,W)

11. Arc(X,Y)⊲g ¬DirectedPath(X,Y)
12. Link(X,Y)⊲g ¬UndirectedPath{X,Y}
13. Link(X,Y)⊲g ¬UndirectedPath{X,Y}Excluding(Z,W)
14. {DirectedPath(X,Y), DirectedPath(Y,Z)}⊲g ¬DirectedPath(X,Z)
15. {DirectedPath(X,Y), UndirectedPath{Y,Z}}⊲g ¬DirectedPath(X,Z)

5Throughout the text we assume that the implicit set of variablesV has at least five members. This assump-
tion can easily be lifted, albeit with a more complex notation to follow.

6An arc is strongly protected in a graphG if it occurs in one of four specific sub-graphs ofG. See [10] for
details.



16. {UndirectedPath{X,Y}, DirectedPath(Y,Z)}⊲g ¬DirectedPath(X,Z)
17. {UndirectedPath{X,Y}, UndirectedPath{Y,Z}}⊲g ¬UndirectedPath-

{X,Z}
18. {UndirectedPath{X,Y}Excluding(Z,W), UndirectedPath{Y,U}Exclu-

ding(Z,W)}⊲g ¬UndirectedPath{X,U}Excluding(Z,W)
19. DirectedPath(X,Y)⊲g Arc(Y,X)
20. DirectedPath(X,Y)⊲g Link{X,Y}
21. UndirectedPath{X,Y}⊲g Arc(X,Y)
22. {UndirectedPath{X,Y}Excluding(W,Z), Link{X,W}, Link{Y,Z}, Non-

Adjacent{X,Z}, NonAdjacent{Y,W}}⊲g Link{W,Z}
23. {Arc(X,Y), NonAdjacent{X,Z}}⊲g Link{Y,Z}
24. ArcNotAllowed(X,Y)⊲g Arc(X,Y)
25. {Arc(Z,X), NonAdjacent{Z,Y}}⊲g ArcNotAllowed(X,Y)
26. {Arc(Z,Y), NonAdjacent{Z,X}}⊲g ArcNotAllowed(X,Y)
27. {Arc(X,Z), Arc(Z,Y)}⊲g ArcNotAllowed(X,Y)
28. {Link{X,Z},Arc(Z,Y),Link{X,W},Arc(W,Y),NonAdjacent{Z,W}}⊲g Arc-

NotAllowed(X,Y)

for all choices of distinct variablesX , Y , Z, W , andU where the sentences obtained
are inL.

Loosely speaking, ifΣ is a preferred extension ofAg, then Bullets 1–7 ensure that
Σ

g is a CGK; Bullets 8–18 make sure that the path sentences inΣ \ Σ
g are correct wrt.

G[Σg]; Bullets 19–28 ensure thatG[Σg] is a complete pattern, cf. [10]. More precisely
we have:

Lemma 1. LetΣ be conflict free wrt.Ag. ThenΣg is a CGK.

Theorem 1. LetΣ be a preferred extension ofAg. ThenG[Σg] is in C.

Theorem 2. If G is in C, then there is a stable extensionΣ ofAg, such thatG[Σg] = G.

These results are important since they guarantee that agents arguing under the re-
strictions specified byAg can be sure that their result is a completed pattern and that
they are not restricted from agreeing on any model a priori bythe relations ofAg. How-
ever, checking whether a set of arguments constitute a preferred extension is complex.
It involves checks for both admissibility and maximality. We therefore state a result that
yields a computationally efficient way of testing whether anadmissible set of arguments
of Ag is a preferred extension.

Theorem 3. LetΣ be a preferred extension ofAg. ThenΣ is a stable extension.

For proofs of all results and further elaborations, see [8].

5. Fusing Agoras

We now address the problem of having agents agree on a preferred extension ofAg,
given that each of them has its own prior beliefs, as expressed by the compromise score
functionsi, and that each know the combination functionc. There has not been a lot of
work done in dialectics for more than two agents, where the simple proponent/opponent
dualism does not suffice. The solution that we propose here isinspired by the Risk Ago-



ras of [17] and [18] and the traditional blackboard architecture of MAS of cooperating
agents, without being an actual instantiation of any of them. We construct afusing agora,
which is a framework in which the agents can debate. The agorahas the property that,
if agents are allowed to run the debate to conclusion, they end up with the best possible
compromise according to their joint compromise score, and that throughout the debate
they maintain a compromise, which improves as the debate progresses.

In the agora we shall take aAg-candidate(I, O, U) as a unique representatives of a
partial compromise(I, O). This is possible sinceI andO are subsets ofL, and thus both
contain sentences describing aspects of a graph as required, and furthermore,U is by
definition determined byI andO. Any leaf candidate representing a preferred extension,
then uniquely identifies a completed pattern, as guaranteedby Theorem 1. Agents can
explore all compromises by examining a(∅, ∅, L)-tree. Continually the agents take it
upon themselves to explore sub-trees of this tree, and mark other sub-trees as open for
investigation by other agents. The heuristics guiding the agents choices for exploration,
in addition tos1, . . . , sk andc, then determine the outcome.

The agora can work in a variety of ways, depending on the behavior of the individual
agents (a vanilla algorithm for an individual agent is provided later in Algorithm 1), but
basically builds on two elements, which we assume each agentcan access in a synchro-
nized fashion only: Apool of candidatesC and acurrent best result〈I∗, sI∗〉. C consists
of pairs〈C, s〉, whereC is anAg-candidate and thus a sub-tree of a(∅, ∅, L)-tree, ands
is a real value.I∗ is either the empty set or a preferred extension ofAg, andsI∗ is a real
value. Initially,C contains only one element〈(∅, ∅, L), 0〉, and〈I∗, sI∗〉 is 〈∅,−∞〉.

Each agenti can utter the following locutions:

• ExploreFromPooli(〈C, s〉) — where〈C, s〉 is a member ofC. The meaning of the
locution is that agenti takes upon itself the responsibility to investigate the pre-
ferred extensions in aC-tree, assuming thatC has a joint compromise score of
s.

• PutInPooli(〈C, s〉) — whereC is anAg-candidate, ands is a real value. The mean-
ing of the locution is that agenti wants someone else to investigate the preferred
extensions in aC-tree, and thatC has a joint compromise score ofs.

• UpdateBesti(〈I, s〉) — whereI is a subset ofL, ands is a real value. The meaning
of the locution is that agenti has identified a preferred extensionI with a joint
compromise scores higher thansI∗ .

• AskOpinioni(C1, C2) — whereC1 andC2 areAg-candidates. The meaning of the
locution is that agenti needs to knowsj(C1, C2) for all other agentsj.

• StateOpinioni(C1, C2, sδ) — whereC1 andC2 areAg-candidates, andsδ is a real
value. The meaning of the locution is thatsi(C1, C2) is sδ.

The rules governing which locutions individual agents can utter, as well as their effects,
we present as a set of pre and post conditions:

• ExploreFromPooli(〈C, s〉)
∗ Pre:〈C, s〉 is in C.
∗ Post:〈C, s〉 is removed fromC

• PutInPooli(〈C, s〉)
∗ Pre: There is no〈C′, s′〉 in C such thatC is a sub-tree of someC′-tree.
∗ Post:〈C, s〉 is in C.

• UpdateBesti(〈I, s〉)



∗ Pre:s > sI∗ .
∗ Post:〈I∗, sI∗〉 is set to〈I, s〉.

LocutionsAskOpinioni() andStateOpinioni() have no pre or post conditions attached.

Algorithm 1 Vanilla algorithm for agenti
1: 〈C, s〉 ←SELECTCANDIDATE (C)
2: ExploreFromPooli(〈C, s〉)
3: C′ , (I ′, O′, U ′)←PRUNE(C)
4: if U

′ = ∅ then
5: if PREFERREDEXTENSION(I ′) then
6: AskOpinioni(C, C′)
7: si ← si(C, C

′)
8: wait for StateOpinionj (C, C′, sj)∀j 6= i

9: s′ ← c(s1, . . . , sk) + s

10: if s′ > sI∗ then
11: UpdateBesti(〈C′, s′〉)

12: go to1
13: else
14: A←SELECTARGUMENT(C′)
15: AskOpinioni(C, C′ + A)
16: AskOpinioni(C, C′ − A)
17: s+

i ← si(C, C
′ + A)

18: s−i ← si(C, C
′ − A)

19: wait for StateOpinionj (C, C′ + A, s+

j ) and StateOpinionj (C, C′ − A, s−j )∀j 6= i

20: s+ ← c(s+

1 , . . . , s+

k )
21: s− ← c(s−1 , . . . , s−k )
22: if s+ > s− then
23: PutInPooli(〈C′ −A, s + s−〉)
24: C ← C′ + A

25: s← s + s+

26: else
27: PutInPooli(〈C′ + A, s + s+〉)
28: C ← C′ − A

29: s← s + s−

30: go to3

The basic algorithm in Algorithm 1 corresponds to an exhaustive search, if it is
followed by all agents. The search is gradual in two senses: The longer the search goes
on, the average candidate inC will have more elements in itsI andO sets, and thus
be closer to describing a full compromise, and the current compromise held inI∗ will
have an increasingly higher score. Of course, in order for the search to be a success, each
agenti would also need to keep an eye out forAskOpinionj(·)’s uttered by other agents,
and reply to these withStateOpinioni(·). It is relatively easy to verify that agents using
Algorithm 1 are uttering locutions in accordance with the pre and post conditions of the
fusing agora.

Algorithm 1 calls a number of functions, which we only describe informally:
PRUNE(C ≡ (I, O, U)) uses pruning rules to investigate whether there is an argument
A in U such that eitherC + A or C − A contains no leaves with preferred extensions.
If this is the case, the method invokes itself recursively onthe sub-tree that did not get



pruned away, until no further branches can be pruned. Some general pruning rules are
given in [15], and more can be established for the specific case ofAg.
SELECTCANDIDATE (C) picks a promising candidate fromC. A promising candidate
could be one with a high score annotated, since these encode good partial compromises,
or candidates with smallU sets, as these represent partial compromises that are nearly
complete. If all agents use the same criteria for picking promising candidates, this se-
lection can be sped up by implementing the pool as a sorted list. SELECTCANDIDATE (·)
is one of the areas where heuristics limiting the search space can be implemented. For
instance, it makes sense to allow agents to abstain from exploring the sub-tree rooted at
a candidate if it cannot contain compromises that are consistent with their own BN. This
would mean that in cases where agents agree on all or most of the aspects ofG∗ only few
candidates would need to be explored.
PREFERREDEXTENSION(I) is a Boolean valued function that returns true if the conflict-
free setI is a preferred extension ofAg. The task of answering this is simplified by The-
orem 3, as it states thatI is a preferred extension iffI attacks each argument inL \ I.
SELECTARGUMENT(C ≡ (I, O, U)) simply selects an elementA of U . This selection
can be based on the agent’s own score increase going fromC to C + A or C − A, or it
might involve negotiations or argumentation with other agents.

Of course, the debate in the agora can be stopped at any time, and G[Ig
∗ ] will then

be the best compromise encountered so far, as it is only ever replaced by compromises
having a higher joint compromise score.

It is worth stressing that Algorithm 1 is a vanilla algorithm, and that the agora is
open for more aggressive behaviour. One such behaviour could be to have agents skip the
asking for opinions part in Lines 14 to 22 for most additions of arguments (and basing the
decision only on the agents own beliefs), and only ask when the agent itself is indifferent.
Another behaviour could be to never perform Lines 23 and 27, which would correspond
to a myopic greedy construction of the compromise. Alternatively, these two lines could
be carried out only when the difference betweens+ and s− is very small. We could
even have setups where the agents show different behaviours, or where individual agents
change behaviour during debate depending on their available resources and utility of a
good compromise. Moreover, the agora does not require that agents wait for a candidate
to be in the pool, before somebody can start exploring this candidate; so even when one
agent is pursuing an aggressive strategy and fails to leave candidates for others to explore,
other agents can still decide to explore these. The point is,that no matter what behaviour
is requested, the basics of the agora and the agents remains the same.

6. Conclusion

We have introduced a problem which we believe is a challenging one for the argumen-
tation community, due to its mix of complexity and conditional decomposability as well
as its origin in conflicting knowledge bases. Our own solution enables agents to judge
the possible compromises resulting from a partial compromise, by constructing a candi-
date tree rooted in this partial compromise, and the agora wehave proposed ensures that
such exploration can take place in a distributed fashion. One problem with the vanilla
algorithm we have given, is that agents exploring a branch ofa candidate-tree can end
up putting a lot of candidates into the pool of candidates. The space requirements for



storing the pool of candidates can be prohibitive, so it might be required that the can-
didates in the pool are defined in relation to each other, which imposes restrictions on
which candidates an agent can choose to explore, as these areremoved from the pool.
Furthermore, it might be necessary to construct heuristicsfor thinning the pool of candi-
dates. These issues, as well as finding good heuristics for selecting candidates to explore
are challenging topics for future research.
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