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AbstractWe consider agents in a multi-agent system, each equippéd avi
Bayesian network model (BN) of its environment. We want tgerds to reach
consensus on one compromise network, which may not be @b a single one
of the BNs initially held by the agents, but rather a comborabf aspects from
each BN. The task can be characterized as the need for agemgsete on a spe-
cific state (a BN) of a variable with an enormous state spatedasible BNs).
The grandness of the task is reduced by the fact that BNs anpased of local
relationships, and it should therefore be possible to réaeltompromise by grad-
ually agreeing on parts of it. In the metaphor of the variatile agents should be
able to agree on successively smaller subsets of the enerstate space. However,
these same local relationship can interact, and undelisgutide extent to which
partial agreements affect the possible final compromisehiglaly complex task.
In this work we suggest using formal argumentation as theagag mechanism
for agents solving this task, and suggest an open-ended agproach that ensures
agents high quality compromises in an anytime fashion.
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1. Introduction

We investigate how Bayesian networks (BNs) can be used inlé-agent setting with
the help of argumentation theory. Previously the two metihagies have mainly been
studied together with a view to incorporating the efficiemnd precision of BNs into
argumentation theory (e.g. [1]), or as an exercise in cdimgmodels of one theory into
models of the other (e.g. [2] and [3]). Here, we envision ppirig each agent in a MAS
with a BN, as a model of the domain it is situated in, and ainraviding a framework
built on formal argumentation principles in which the agerstarting from their indi-
vidual domain models, can conclude on a single network sgrng their joint domain
knowledge. This would be useful in cases where the agengswekt occasionally and in
the meantime may make small changes to their models to reflgotising observations
of their surroundings. By using the two paradigms in this menwe hope to exploit the
strengths of BNs and of argumentation: Allowing individagknts to draw inferences in



face of noisy observations using their BNs, and having agexttact a consistent “truth”
from a set of conflicting ones through a distributed procesl bn argumentation.

The task of fusing several BNs into one compromise BN is maderetically inter-
esting by the fact that BNs by their graphical nature can l@ngosed into several lo-
cal relationships, and thus the aspect of gradually buildicompromise BN bottom up
is tempting. However, these very same local relationshdpsisteract in complex ways,
and the consequences of committing oneself to a partial comipe can be hard to esti-
mate. Maybe because of this difficulty, the task has prelyousinly been considered a
centralized one-off operation, with little consideratginen to these “cascading” effects.
Furthermore, the task has been addressed with an a priaifiggeview to what consti-
tutes an adequate compromise, with no apparent consentius goal of network fusion
among authors (see [4], [5], [6], and [7]). In this paper, veendbt commit ourselves to
a specific compromise objective. Rather, we establish argefnamework in which any
kind of compromise on BNs can be reached in a gradual maniitérilve exact nature
of the proceedings specified by some parameter functions.

As presented the setup may be confused with a negotiatidnlggm where the
agents would try to negotiate a compromise that is closedtoitidividually held beliefs.
However, unlike the standard negotiation setup, the pditiseoproblem cannot be val-
ued in isolation, and hence, to the individual agent theevaluan already agreed upon
partial compromise, will depend on the compromise choibasremain to be made. For
the same reason, the problem cannot be seen as a distribfitiegources, as the indi-
vidual agents utility of the “resources” would change adaog to how the remaining
ones are distributed. Instead, we hope only to provide teatsgvith the ability to deter-
mine the extent to which they commit themselves at each stépeiconstruction of the
compromise. That is, the main focus of our work is to proviue teasoning mechanism
individual agents can use for surveying the consequencesminitting to partial com-
promises. The advantages of our approach over previoudsiffwlude: That a general
purpose argumentation engine can be implemented and reusedtexts with different
definitions of compromise; that efficient distributed implentations are natural; that in
cases where agents almost agree a priori, little informateed to be shared among the
agents; and that anytime compromises can be achieved.

2. Preliminaries And Problem Definition?
2.1. Bayesian Nets

A BN Bis an acyclic directed graph (DAG),? over a set of random variablds, along
with a conditional probability distribution for each vabie in V' given its parents irg;.
The joint probability distributior? overV, obtained by multiplying all these conditional
probability distributions, adheres to a number of conditib(in)dependence constraints
identifiable fromG alone. Any other BN’ with a graph implying the exact same con-
straints onP is said to beequivalento 5. [9] proved that the set of all BNs equivalent
to some BNB can be uniquely characterized by a partially directed gregiied the

1For actual examples and background on the topics, ideasalgadthms presented here and later, refer to

(8.

2We assume the reader is familiar with the basics of graphryheo



patternof B. The pattern of3 is constructed by taking the skeleton®fand directing
links as they appear if§ iff they participate in a v-structufe Any BN equivalent ta3
can be obtained from its pattern by exchanging links foraled arcs, while taking care
that no directed cycles are introduced, and that no v-sirastnot already found in the
pattern are introduced. Any DAG obtained from the patterthis manner is called a
consistent extensioof the pattern. The two constraints imply that not all péistiali-
rected graphs are patterns of some BN, and furthermore ¢ina¢ $inks in a pattern are
exchanged for similarly directed arcs in all consisteneastons of the pattern. Such
arcs and arcs found in the pattern are caltethpelled arcsand the partially directed
graph obtained by exchanging links for compelled arcs wlegrpossible, is called the
completedpattern of3. The completed pattern & is thus a unique characterization of
B’'s equivalence class as well. The set of all partially dieelcgraphs oveV that are
completed patterns of some BN thus constitute a completeramidhal encoding of all
probabilistic dependencies for distributions expressipl BNs ovelV. We denote this
set of completed patter&”” and¢ whenV is obvious from the context. [10] gave an
elegant characterization of the individual element€ oflext, we present how agreeing
on BNs pose problems.

2.2. Compromising On Bayesian Networks

The problem we are posing arises in a MAS containing a finitalmer of cooperating
agents. Each agefnthas a BNB; over a common set of domain variablgs which we
assume to be implicit in the remainder of the text. For eagxpbsition, we furthermore
assume that an arbitrary but fixed total orderingover the variables is known by all
agents a priori. At some point agentt k£ decide to pool their knowledge, as represented
by B; to By, into a new BNB,.. Facilitating this task is the problem addressed here. We
expectB; to By, to be large but somewhat similar (as each describe reldtippgamong
the same variables), and therefore that having each agemhoaicate its entire model
to each other agent is inefficient. We focus solely on the g structure o3,

As all consistent extensions of a completed pattern impdyetkact same indepen-
dence properties, it is reasonable to consider completiéelrpa as basic representations
of domain knowledge, if domain knowledge is taken to be imhelence properties as in
this text. That is, we only require the agents to agree ondhgpteted patterg, € € of
B..

To establish whether a graph is a good compromise for theteagee need a mea-
sure for how well such graphs matches eacBofo 5;,. Furthermore, as we plan to build
this compromise gradually, we wish for this measure to batired to an already agreed
partial compromiseFor example, it may be the case that an important dependsscy
tween two variables is already a consequence of a partiapoamise, and further con-
nections between the two variables may then be of littleeza@lontrarily, had the partial
compromise not implied this dependency, connections tlhaldwensure it are valuable.
In general, we cannot assume that a partially specified gsaglitable as representation
of a partial compromise, as this might include agreementstuoat shoulchotbe part of
the final compromise. Therefore, we take a partial compreffis= (P,., P_) to be two
sets of sentences in some language, wiiarelescribe aspects that should be true of the
compromise graph, anB_ describe aspects that cannot be true.

3A triple of variables(X, Z,Y") is a v-structure ifX andY” are non-adjacent and both are parents of



For any three partial compromis@s P¢, andP®, where P, C P, P C P,
P, C P}; and P_ C P?’, we assume that each agéntan compute itEompromise
scoress; (P, P*) ands; (P, P?) such thats;(P,P*) > s;(P,P®) iff P describesB;
better thanP?®, given thatP has already been accepted as being descriptivg; oA
simple example of;((Py, P-), (P{, P")) could be the number of features described
in P¢\ P, andP“ \ P_, which are consistent with;, minus those that are not. A more
complex score could weigh each of these described featooesding to the empirical
evidence the agent has in favor of or against them. We willmgss; to be additive,
i.e. for any three partial compromis@®’, P!, andP?, whereP{ C P! C P} and
P° C P! C P?,itis the case that;(P°, P?) = s;(P°, P!) + s;(PL,P?). Notice,
that here we do not attempt to define what it means to be a floseription”, since we
believe that this issue can be dependent on the actualgséttimhich the framework is
to be used, as stated in Section 1.

In addition to the compromise score, we also assume thagisknow theom-
bination functionc : R¥ — R, indicating how much trust should be put into the indi-
vidual agents’ models. Differences in trust can be justifigdiifferences in experiences,
sensor accuracies, etc. Formally, we defiras follows: LetP, P¢, andP? be partial
compromises. If

c(s1(P,PY), ..., s6(P,PY) > c(s1(P,P?),...,sx(P,P"),

whenP? is a better compromise thaR® for the group of agents to k, given that
they have already agreed dn thenc is the combination function for agenisto k.
(An obvious choice forc would be a linear combination of its inputs.) We refer to
c(s1(P,P?),...,sp(P,P*)) as thegoint compromise scoref P* given’P, and likes;,
we shall also assume thats additive.

With this notation in place, we can thus restate the problererformally as finding
a partial compromis@, which uniguely identifies some graptf € €, such that

c(s1((2,2),P),...,s:((5,9),P)) > c(s1((2,2),P),...,s:((5,9),P)),

for all other partial compromise®’, which uniquely identifies a grapll € €.

As presented here, it is clear that the problem is not of a leirbmary nature, as
we are not trying to establish whether some propositionue tor not, and that we are
furthermore dealing with a setting in which more than tworaggenay interact. Conse-
guently, we cannot utilize the vast literature on dialepticof theories directly. Rather,
the problem we are trying to solve is a distributed maxim@abver a super exponential
hypothesis space&}j. Furthermore, as the worth of (partial) compromises atg speci-
fied in relation to already agreed upon compromises, thelpnoks of a highly dynamic
nature.

Our solution to the problem is divided into three parts. f-ivge create a finite lan-
guage with which graphs and some essential properties sétb@&n be expressed; sec-
ond and most importantly, we construct an argumentatiotesysvith which the agents
can reason about consequences of committing to partial momipes; and thirdly, we
create an agora in which the agents can reach compromisesjrapn anytime fashion.
First, however, we describe the formal argumentation fraork we have selected as a
reasoning mechanism.



2.3. Formal Argumentation Frameworks

Formal argumentation takes many forms, but here we see it apgroach to extracting
consistent knowledge from a possibly inconsistent knogéduhse. No single methodol-
ogy has yet to stand out as the main approach to argumengaéeifil1] for an overview
of a series of approaches), so it has been necessary to pdkoon a large pool of these.
The framework we have picked for our purpose is the framevadrKl2] (which is a
proper generalization of that of [13]), as this is an absthi@nework, which leaves the
underlying language unspecified, and thus does not force apdcify in advance the
reasons to which each agenhay attribute its belief in aspects Bf.

An argumentation systens defined as a paid = (A,>), where A is a set of
argumentsand> C (24 \ {@}) x A is anattack relation The exact nature of an
argumentis left unspecified, but examples could b&3'there is an arc fronX to Y and
Y andZ are adjacent, so there must be an arc fiéito Z” or “Because | have observed
r, | believe there is an arc fronX to Y in B”. For two sets of argumentS C A and
S’ C S and an argumem, if S'> A thenS is said toattack A. If no proper subset o$’
attacksA, thenS’ is called aminimal attackon A. An example of an attack that would
make sense is “There is an arc frofto Y in B”“>“There is an arc fronY to X in B”.

A semanticof an argumentation framework is a definition of the arguraémthe
framework that should be accepted by a rational individlia8] and [12] work with a
wide range of semantics, but we only introduce those needest hVe define a set of
argumentsS C A as beingconflict-freg if there is no argumenfi € S such thatS
attacksA. We further define a single argumenAtas beingacceptable with respect to
a set of arguments, if for each set of argumentE C A, whereT > A, there is an
argumentB in T', such thatS attacksB. A conflict-free setS, where all arguments i
are acceptable with respect is calledadmissible

A credulous semantics is that opeeferred extensigrwhich is an admissible set that
is maximal wrt. set inclusion. Finally, an admissible Sdt said to be atable extensign
if it attacks all arguments il \ S. Clearly, a stable extension is a preferred extension as
well.

In general it is hard to compute a preferred extension [14},ib [15] we have
adapted a technique of [16] to the problem of enumeratinéemed extensions of ar-
gumentation systems of [12]: Give# = (A, ), we define an4-candidateas a triple
(I,0,U = A\ (IUO)) where

e INO =g,

e every argument that is attacked bys in O, and

e every argument, for which there exist$® C I andB € I, suchthatS U A B,

isinO.
(Herel is supposed to capture the intuition of arguments thairatiee preferred exten-
sion, as opposed tut andunassigned.)

Given anA-candidateC = (I,0,U) and an argumemt € U the triplesC — A =
(I_A,O_A7 U_, = A\ (I_AUO_A)) andC+ A = (I+A, O,:4,Uipy = A\ (I+A U
O, 4)) are given by:

I ,=1, O_,=0UA I+AEIUA, and O+AEOUAC+A,

4To reduce clutter, we leave out { and } for singleton sets.



where A¢, 4 contains all arguments itV \ A which need to be IO, 4 in order for
C + A to be a candidate. Ifi does not participate in a minimal attack on itself (which is
the case for all arguments of the argumentation system wstiwan in this paper), then
bothC — A andC + A are A-candidates themselves, and we can thus constanctidate
trees where each node is a#t-candidate: Eactl-candidate” has two childrerf — A
andC + A, for some arbitrary choseA in U, except those candidates whé&/e= &,
which act as leaves in the tree. A candidate tree having dateli as root, is called a
C-tree

It can be proven that if is a preferred extension of, then there is a ledfT, O, @)
of any (o, @, A)-tree. Conversely, for any ledfl, O, @) in a (2, @, A)-tree, wherel
defends itself I is admissible. It follows that, by constructing an arbiyrée, @, A)-
tree, all preferred extensions can be enumerated.

3. Encoding Graphs

For the agents to conclude on the best comprogijsa formal languagé for express-
ing graphs and properties of graphs must be defined. Foresffigireasons we aim to
make this language finite and as small as possible, whileriagsthat it is still suffi-
ciently powerful to describe any graph and its memberslafusting.

First, we introduce a small languadé for encoding graphs:

Definition 1 (Simple Graph Language)rhe languagd.? is the set containing the sen-
tencesArc( X, Y),Arc(Y, X), Li nk( X, Y), andNonAdj acent ( X, Y) iff X and
Y (X ~ Y) are distinct variables.

A graph knowledge bass a set>9 C LY. Further:

Definition 2 (Consistent Graph Knowledgebase§jiven a graph knowledge ba%¥,

if it holds that for all pairs of variablesy andY’, whereX ~» Y, a maximum of one of
Arc(X,Y),Arc(Y, X), Li nk(X,Y),andNonAdj acent ( X, Y) isin X9, then we
call 39 a consistent graph knowledge base (CGK)

The graph encoded bp CGK X¢ is the graphG[X¢] resulting from starting with
the graph with no edges, and then for any two nolesndY (X ~» Y) adding an arc
fromX toY if Arc( X Y) isin X9, an arc fromY to X if Arc(Y, X) isin X9, or an
undirected edge ifi nk( X, Y) isin 39. It is easy to see that graph encoded by a CGK
is well-defined. Furthermore, given a gra@hhere exists at least one CGK, for whigh
is the encoded graph.

We thus have that any graph can be efficiently encoded as a @@kKDefinition 2
allows us to distinguish the graph knowledge bases, whiatbeainterpreted as graphs,
from those that cannot. Next, we extehé into a language powerful enough for building
a reasoning engine about graphs and their membership statusn top:

Definition 3 (Graph Language)The graph languagd. is the set containing all sen-
tences inLY and

e ArcNot Al | owed( X, Y),

e DirectedPat h( X, Y),



Undi rect edPat h( X, Y),
Undi r ect edPat h( X, Y) Excl udi ng(Z, W,
—Di rect edPat h( X, Y),
=Undi r ect edPat h( X, Y), and
e —Undi rect edPat h( X, Y) Excl udi ng(Z, W,
for any choice of distinct variablésX, Y, Z, andW (Z ~» W). Sentences of the last
six kinds will be referred to agathsentences.

The sentences just introduced are supposed to be used aptesof attributes of
the graphs encoded by CGKar cNot Al | owed( X, Y) states that an arc frolX to
Y would not be strongly protectédwhich is required of all arcs in a completed pattern,
while the remaining sentences should be self-explanatogytUndi r ect edPat h-
(X, Y) Excl udi ng(Z, W states that there is no undirected path betw&eandY’, or
that any such path necessarily contains either 17).

As LY is a subset oL, it follows that a graph knowledge base is a set of sentences
in L as well, and given a sé& of sentences aol., we denote by9 the set N L9. In
particular Definition 2 is still applicable.

4. Graph Argumentation System

Building on the languagd. introduced above, we define an argumentation system for
distinguishing completed patterns that could be compresiier the agents. The sys-
tem that we construct enjoys the properties that a graph ierabmer of¢ iff there is a
preferred extension of the system which encodes this graph.

Definition 4 (Graph Argumentation SystemYhegraph argumentation systed? is the

tuple (L,>9 C (2L x L)), where>9 is defined as follows{ (A, B} is short-hand for any

one of( A, B) and( B, A)):

CAre( X YY) Arc(Y, X)

CAre( X Y)»? Li nk{ X, Y}

.Arc( X Y)? NonAdj acent { X, Y}

. Link(X, V)9 Arc{ X, Y}

. Li nk( X, Y)>? NonAdj acent { X, Y}

. NonAdj acent ( X, Y)9 Arc{ X, Y}

. NonAdj acent ( X, Y)Y Li nk{ X, Y}

. -DirectedPat h( X, Y)>? Di rect edPat h( X, Y)

. =Undi rect edPat h( X, Y)? Undi r ect edPat h( X, Y)

. —Undi rect edPat h( X, Y) Excl udi ng(Z, W>Y Undi r ect edPat h( X, Y) Excl u-
ding(Z, W

11. Arc( X, Y)Y —=Di rect edPat h( X, Y)

12. Li nk( X, Y)>? =Undi r ect edPat h{ X, Y}

13. Li nk( X, Y) 9 =Undi r ect edPat h{ X, Y} Excl udi ng(Z, W

14. {Di rect edPat h( X, Y),Di rect edPat h(Y, Z) }»? —Di r ect edPat h( X, Z)

15. {Di rect edPat h( X, Y),Undi rect edPat h{Y, Z} }»? —=Di r ect edPat h( X, Z)

A WOWNBRE
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5Throughout the text we assume that the implicit set of vée@W has at least five members. This assump-
tion can easily be lifted, albeit with a more complex notatio follow.

6An arc is strongly protected in a graghif it occurs in one of four specific sub-graphs @f See [10] for
details.



16. {Undi r ect edPat h{ X, Y},Di r ect edPat h(Y, Z) }»9 —-Di r ect edPat h( X, Z)
17. {Undi r ect edPat h{ X, Y}, UndirectedPat h{Y, Z} }»¢ —Undi r ect edPat h-
{X, z}
18. {Undi r ect edPat h{ X, Y} Excl udi ng(Z, W, Undi r ect edPat h{Y, U} Excl u-
di ng(Z, W }>? —Undi r ect edPat h{ X, U} Excl udi ng(Z, W
19. DirectedPat h( X, )7 Arc(Y, X
20. Di rect edPat h( X, Y)Y Li nk{X, Y}
21. Undi rect edPat h{ X, Y}>? Arc(X,Y)
22. {Undi r ect edPat h{ X, Y} Excl udi ng(W Z), Li nk{X, W, Link{Y, Z}, Non-
Adj acent { X, Z}, NonAdj acent {Y, W }>? Li nk{ W Z}
23. {Arc(X, Y),NonAdj acent { X, Z} }»9 Li nk{ Y, Z}
24. ArcNot Al | owed( X, V)9 Arc( X, Y)
25. {Arc(Z, X),NonAdj acent { Z, Y} }>9 Ar cNot Al | owed( X, Y)
26. {Arc(Z, Y),NonAdj acent {Z, X} }>9 ArcNot Al | owed( X, Y)
27. {Arc(X, Z),Arc(Z,Y) }>? ArcNot Al | owed( X, Y)
28. {Li nk{ X, Z} ,Arc(Z, Y),Li nk{ X, W,Arc(W Y),NonAdj acent { Z, W }»>? Arc-
Not Al | owed( X, Y)
for all choices of distinct variableX’, Y, Z, W, andU where the sentences obtained
arein L.

Loosely speaking, i& is a preferred extension 049, then Bullets 1-7 ensure that
39 is a CGK; Bullets 8—18 make sure that the path sentencEs\if2? are correct wrt.
G[X9]; Bullets 19-28 ensure th&{X¢] is a complete pattern, cf. [10]. More precisely
we have:

Lemma 1. Let X be conflict free wrt.A9. ThenXx? is a CGK.
Theorem 1. Let X be a preferred extension of?. ThenG[X9] isin €.
Theorem 2. If G is in €, then there is a stable extensi&hof .47, such thag[X9] = G.

These results are important since they guarantee thatsageniing under the re-
strictions specified by49 can be sure that their result is a completed pattern and that
they are not restricted from agreeing on any model a priothigyrelations of49. How-
ever, checking whether a set of arguments constitute ampeefextension is complex.

It involves checks for both admissibility and maximalityeWherefore state a result that
yields a computationally efficient way of testing whetheeamissible set of arguments
of AY is a preferred extension.

Theorem 3. Let X be a preferred extension gf¢. ThenX is a stable extension.

For proofs of all results and further elaborations, see [8].

5. Fusing Agoras

We now address the problem of having agents agree on a prdfertension of49,
given that each of them has its own prior beliefs, as exptelsgehe compromise score
functions;, and that each know the combination functioMhere has not been a lot of
work done in dialectics for more than two agents, where thgké proponent/opponent
dualism does not suffice. The solution that we propose hensjgred by the Risk Ago-



ras of [17] and [18] and the traditional blackboard architee of MAS of cooperating
agents, without being an actual instantiation of any of théf@construct &using agora
which is a framework in which the agents can debate. The dgasahe property that,
if agents are allowed to run the debate to conclusion, thelyugnwith the best possible
compromise according to their joint compromise score, dad throughout the debate
they maintain a compromise, which improves as the debatggsses.

In the agora we shall take 4?-candidaté I, O, U) as a unique representatives of a
partial compromis¢l, O). This is possible sinc€ andO are subsets ak, and thus both
contain sentences describing aspects of a graph as regairédurthermorelU is by
definition determined by andO. Any leaf candidate representing a preferred extension,
then uniquely identifies a completed pattern, as guararigeheorem 1. Agents can
explore all compromises by examining &, &, L)-tree. Continually the agents take it
upon themselves to explore sub-trees of this tree, and nthgk sub-trees as open for
investigation by other agents. The heuristics guiding tenés choices for exploration,
in addition tosy, . . ., s ande, then determine the outcome.

The agora can work in a variety of ways, depending on the hehafithe individual
agents (a vanilla algorithm for an individual agent is po®md later in Algorithm 1), but
basically builds on two elements, which we assume each agerdccess in a synchro-
nized fashion only: Apool of candidate€ and acurrent bestresultl,, sy, ). C consists
of pairs(C, s), whereC is an.A?-candidate and thus a sub-tree dfa @, L)-tree, ands
is a real valuel, is either the empty set or a preferred extensiom6f andsy, is a real
value. Initially, C contains only one elemefta, @, L), 0), and(I,, s1,) is (&, —o00).

Each agent can utter the following locutions:

e ExploreFromPoal(C, s)) — where(C, s) is a member o”'. The meaning of the
locution is that agent takes upon itself the responsibility to investigate the pre
ferred extensions in &-tree, assuming that has a joint compromise score of
S.

e PutInPoo}((C, s)) — whereC is an.49-candidate, and is a real value. The mean-
ing of the locution is that agertwants someone else to investigate the preferred
extensions in &-tree, and thaf has a joint compromise score af

e UpdateBes((Z, s)) — wherel is a subset oL, ands is a real value. The meaning
of the locution is that agenithas identified a preferred extensidrwith a joint
compromise score higher thansy, .

e AskOpinionR(Cy,Cs) — whereC; and(C, are . A9-candidates. The meaning of the
locution is that agentneeds to know; (C1, C2) for all other agentg.

e StateOpiniopCy, Cs, ss) — whereC; and(C, are A9-candidates, angs is a real
value. The meaning of the locution is thatC;, Cz) is ss.

The rules governing which locutions individual agents ctiaryas well as their effects,

we present as a set of pre and post conditions:

e ExploreFromPoal(C, s))

* Pre:(C,s)isinC.
* Post:(C, s) is removed fromC

e PutinPool((C, s))

* Pre: There is ndC’, s’y in C such that is a sub-tree of som&-tree.
x Post:(C, s)isinC.
e UpdateBes((1, s))



* Preis > sy,.
x Post:(I,,sy,) is setto(l, s).
LocutionsAskOpinion() andStateOpiniog() have no pre or post conditions attached.

Algorithm 1 Vanilla algorithm for agent
1. (C,s) «SELECTCANDIDATE(C)
2: ExploreFromPoql({C, s))
3:C' & (I'O',U’") +—PRUNE(C)
4: if U' = @ then

5 if PREFERREIEXTENSION(I’) then

6: AskOpinion(C,C’)

7: si — si(C,C")

8: wait for StateOpinion(C,C’, s;)Vj # i
o: s «—c(s1,...,85) + s

10: if s > sy, then

11: UpdateBes((C’, s'))

12: gotol

13: else

14: A «—SELECTARGUMENT(C)
15:  AskOpinion(C,C’ + A)

16:  AskOpinion(C,C’ — A)

170 sf «— si(C,C' + A)

18: s; «— s;(C,C"' — A)

k3

19:  wait for StateOpinion(C,C’ + A, s}) and StateOpinion(C,C’ — A, s; )Vj # i

20: sTe—c(sT,...,s)

21: §T—c(S7,.., 85 )

22: if sT > s~ then

23: PutinPool ((C' — A, s+ s7))
24: C—C+A

25: s—s+sT

26: else

27: PutinPool((C' + A, s + s))
28: C—C—-A

29: S—Ss+s5

30: goto3

The basic algorithm in Algorithm 1 corresponds to an exhagessearch, if it is
followed by all agents. The search is gradual in two sensks:l@nger the search goes
on, the average candidate @ will have more elements in it§ and O sets, and thus
be closer to describing a full compromise, and the currentmomise held inf, will
have an increasingly higher score. Of course, in order fesstrarch to be a success, each
agent; would also need to keep an eye out &skOpinion(-)'s uttered by other agents,
and reply to these witlstateOpiniog(-). It is relatively easy to verify that agents using
Algorithm 1 are uttering locutions in accordance with the pnd post conditions of the
fusing agora.

Algorithm 1 calls a number of functions, which we only deberinformally:

PRUNE(C = (I,0,U)) uses pruning rules to investigate whether there is an aggim
A in U such that eithe€ + A or C — A contains no leaves with preferred extensions.
If this is the case, the method invokes itself recursivelyttoa sub-tree that did not get



pruned away, until no further branches can be pruned. Somergepruning rules are
given in [15], and more can be established for the specifie 0égl9.
SELECTCANDIDATE(C) picks a promising candidate frod'. A promising candidate
could be one with a high score annotated, since these encadipgrtial compromises,
or candidates with smalll sets, as these represent partial compromises that areg nearl
complete. If all agents use the same criteria for pickingwising candidates, this se-
lection can be sped up by implementing the pool as a sorte®lsECTCANDIDATE (-)

is one of the areas where heuristics limiting the searchespan be implemented. For
instance, it makes sense to allow agents to abstain fronoexglthe sub-tree rooted at
a candidate if it cannot contain compromises that are ctamgisith their own BN. This
would mean that in cases where agents agree on all or most esfyects ofi,. only few
candidates would need to be explored.

PREFERREEXTENSION(I) is a Boolean valued function that returns true if the cotiflic
free setl is a preferred extension of9. The task of answering this is simplified by The-
orem 3, as it states thdtis a preferred extension iff attacks each argumenti\ I.
SELECTARGUMENT(C = (I, 0,U)) simply selects an elemert of U. This selection
can be based on the agent’s own score increase goingdrim® + A orC — A, or it
might involve negotiations or argumentation with otherrige

Of course, the debate in the agora can be stopped at any tid&,[&’] will then
be the best compromise encountered so far, as it is only epéaaed by compromises
having a higher joint compromise score.

It is worth stressing that Algorithm 1 is a vanilla algorithend that the agora is
open for more aggressive behaviour. One such behavioud b@uio have agents skip the
asking for opinions part in Lines 14 to 22 for most additioharguments (and basing the
decision only on the agents own beliefs), and only ask wheagent itself is indifferent.
Another behaviour could be to never perform Lines 23 and 2ii¢clvwould correspond
to a myopic greedy construction of the compromise. Altduedy, these two lines could
be carried out only when the difference betweenand s~ is very small. We could
even have setups where the agents show different behavavurbere individual agents
change behaviour during debate depending on their avail@siources and utility of a
good compromise. Moreover, the agora does not require geatta wait for a candidate
to be in the pool, before somebody can start exploring thiglickate; so even when one
agentis pursuing an aggressive strategy and fails to leadidates for others to explore,
other agents can still decide to explore these. The poitttés,no matter what behaviour
is requested, the basics of the agora and the agents rerhaisare.

6. Conclusion

We have introduced a problem which we believe is a challengime for the argumen-
tation community, due to its mix of complexity and conditiddecomposability as well
as its origin in conflicting knowledge bases. Our own solutmables agents to judge
the possible compromises resulting from a partial compseity constructing a candi-
date tree rooted in this partial compromise, and the agorhave proposed ensures that
such exploration can take place in a distributed fashiore Problem with the vanilla
algorithm we have given, is that agents exploring a branch cdndidate-tree can end
up putting a lot of candidates into the pool of candidate® $pace requirements for



storing the pool of candidates can be prohibitive, so it mlgh required that the can-
didates in the pool are defined in relation to each other, lWwhigposes restrictions on
which candidates an agent can choose to explore, as thesenaoged from the pool.
Furthermore, it might be necessary to construct heuriicghinning the pool of candi-
dates. These issues, as well as finding good heuristicslemtsgy candidates to explore
are challenging topics for future research.
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