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Abstract. This paper is concerned with the combination of argumenta-

tion with the Dempster-Shafer theory of evidence. In particular, we show
how logical elements of evidence, associated with numerical degrees of

belief, can be combined into arguments.

1. Introduction

Trust is a mechanism for managing the uncertainty about autonomous entities
and the information they deal with. As a result, trust can play an important role
in any decentralized system, and particularly in multiagent systems, where agents
are often engage in competitive interactions. Following Castelfranchi and Falcone
[1], we believe that trust is based on reasons. We interpret this to mean that
there is an advantage in clearly identifying the sources of information and relating
these to the conclusions drawn from them, the sources and their connections to
the conclusion being the reasons. In prior work [15] we have described how to
track these relationships using argumentation, and to summarize the resulting
connections as a graph. These connections can then be presented to individuals
who have to make decisions based on information that comes from acquaintances
of varying trustworthiness.

The formal system in [15] combines work on propagating trust through a so-
cial network with argumentation, showing how the results of this propagation can
be linked to Dung-style [4] argumentation — where the arguments are structured
as in [5,12]. The result is a system in which one agent can reason using informa-
tion from other agents that it knows through the social network, assigning belief
to that information depending on how much the agents that are the source of the
information are trusted (as in [10]). A key issue in this work is the propagation of
numerical measures of trust, which in our work is input from the social network,
through the resulting argumentation. The system in [15] uses an approach based
on possibility theory [3]. In this paper we consider how we can combine our sys-
tem of argumentation with the Dempster-Shafer theory of evidence [13], in a way
that seamlessly connects with the use of Demspter-Shafer theory to model trust
in social networks [7].



2. Basic notation

We start with a predicate language L based on a set P of symbols with standard
connectives ∧, ∨,→, ¬ and standard semantics. We further constrain the domain
of any term of a predicate in P to be finite and no functional symbols are allowed
for any term of a predicate in P. In this way, we will have a finite set of grounded
predicates. For notational convenience, we also use P to denote the set of all
grounded predicates.

The set of truth assignments to all ground predicates is denoted by Ω = 2P

where Ω is taken as the frame of discernment. Following the standard seman-
tics, every formula θ ∈ L can be interpreted into a subset of truth assignments
to P, I(θ) ⊆ Ω. Two special symbols for “false” and “true” are FALSE with
I(FALSE) = ∅, and TRUE with I(TRUE) = Ω.

Two formulae φ and ϕ, denoted by φ ≡ ϕ, are equivalent iff I(φ) = I(ϕ),
and an inference rule δ for L is of the form:

δ =
p1, ..., pm

c
(1)

where p1, .., pm, c ∈ L. The pi are the set of premises of the rule, and a specific pi
is denoted by pi(δ). c is the conclusion of the rule, and is denoted by c(δ). The
set of all valid rules is denoted by ∆.

From this language, we construct a knowledge base K = 〈Σ,∆〉 consisting of
a set of formulae and a set of rules for reasoning with the formulae. Σ = {〈h,E〉}
is the set of formulae, where each formula h is associated with some supporting
evidence E, and ∆ = {〈δ, E〉} is a the set of rules, where each rule δ is also
associated with some supporting evidence. Our key notion is that of the evidence
argument :

Definition 1 An evidence argument is a pair 〈h,E〉, where h is a formula in L
and E = {e1, . . . , en} is a set of formulae in L.

E is called the supporting evidence for h, denoted by E(h). Every ei ∈ E(h) is a
indivisible element of the evidence for h, therefore it is called a focal element of the
evidence h1. It is possible that {〈h,E1〉, 〈h,E2〉} ⊆ Σ for the same formula h ∈ L
with two different sets of evidence E1 and E2. If such distinguishable repetitions
occur, we assume that we can identify different occurrences of h in Σ as different
pieces of information with the associated evidence denoted by E(h).

The key idea here is that the evidence associated with a formula θ ∈ L or a
rule δ ∈ ∆ summarises the data that shows the rule or formula holds. When we
reason with the formulae, which we do by using the rules, we will then propagate
the evidence, and so obtain the evidence that supports any conclusions. For every
pair 〈h,E〉 it is then the case that:

1. h = θ ∈ L or h = δ ∈ ∆; and
2. E = {e1, ..., en} is a set of evidence for h such that e1, ..., en ∈ L, ei 6≡ ej

for any i 6= j.

1The term “focal element” is appropriated from Dempster-Shafer theory [13] since the ei end

up playing the same role as the focal elements do in that theory.



p q

I(¬p ∧ ¬q) 0 0
I(¬p ∧ q) 0 1
I(p ∧ ¬q) 1 0

}
I(h1)I(p ∧ q) 1 1

(a)

p q

I(¬p ∧ ¬q) 0 0
I(¬p ∧ q) 0 1

}
I(h2)

I(p ∧ ¬q) 1 0
I(p ∧ q) 1 1

}
I(h2)

(b)

Figure 1. Truth tables for Example 1. (a) Truth table for h1. Obviously, b(h1) = m(E1, p)

because I(p) ⊆ I(h1), and d(h1) = m(E1,¬p∧q) because I(¬p∧q)∩I(h1) = ∅. (b) Truth table

for h2. We can see that b(h2) = m(E2,¬p ∧ q) because I(¬p ∧ q) ⊆ I(h2), d(h2) = m(E2,¬q)
because I(¬q) ∩ I(h2) = ∅, and u(h2) = m(E2, p) because I(p) ∩ I(h2) 6= ∅.

In addition we assume the existence of a probability mass function m(E) : E 7→
[0, 1] defined on E which satisfies the constraint:

m(E, e1) + ...+m(E, en) = 1

and for all φ 6∈ E, we set m(E, φ) = 0. In other words we associate some measure
of belief m(·) wth every item of evidence, with the goal that from these we can
calculate a measure for every h.

In Dempster-Shafer theory [13], it is this probability mass that is the focus,
and it is the probability mass that constitutes the evidence. In the work we
present here, the evidence is a combination of logical statements over which a
probability mass can be defined. As in standard Dempster-Shafer theory, we use
the probability mass to determine how much certain interesting hypotheses are
believed. In our case, these hypotheses are the conclusions of arguments2.

Definition 2 Given an evidence argument A = 〈h,E〉 for a formula h ∈ L, the
belief b(h), disbelief d(h), and the uncertainty u(h) of h are computed as follows:

b(h) = ΣI(ei)⊆I(h)m(E, ei) b(h) = Σei`hm(E, ei)

d(h) = ΣI(ei)∩I(h)=∅m(E, ei) d(h) = Σei`¬hm(E, ei)

u(h) = ΣI(ei)∩I(h)6=∅m(E, ei) u(h) = Σei 6`h and ei 6`¬hm(E, ei)

In other words (in the formulation on the left above), the belief in h is the sum
of the mass of the all focal elements in E that are part of the evidence for h.
Equivalently (in the formulation on the right above), the belief in h is the sum of
the mass of all the formulae that imply h. Disbelief and uncertainty are similarly
defined.

Example 1 Let 〈h1, E1〉 = 〈p, {p,¬p ∧ q}〉, where m(E1, p) = 0.4 and m(E1,¬p ∧
q) = 0.6. Then, as explained in Table 1(a):

2Though, as we discuss in Section 6, others have considered the connection between Dempster-
Shafer theory and logic, none before us have done as we will here focussed so much on the logical
structure of the evidence — this is is the reason that we distinguish our work as being about

symbolic Dempster Shafer theory.



b(h1) = 0.4, d(h1) = 0.6, and so u(h1) = 0.

Let 〈h2, E2〉 = 〈q, {¬p ∧ q,¬q, p}〉, where m(E2,¬p ∧ q) = 0.5, m(E2,¬q) = 0.3,
and m(E2, p) = 0.2. Then, as explained in Table 1(b):

b(h2) = 0.5, d(h2) = 0.3, and so u(h2) = 0.2.

3. Combining evidence

In reasoning about complex situations, we often find that we have to deal with
evidence from multiple sources. Dempster-Shafer theory provides several ways to
do this. In this paper we explore one, and will expand on others in a longer version
of this paper.

Conjunctive combination is the approach used to combine evidence from
sources in a way that has the characteristics of a logical and. For example, it is
appropriate to use it to fuse data from two sensors which both have to indicate
the presence of some object in order for us to infer that the object is there. Sup-
pose one sensor collects evidence of intrusion by detecting movement, a second
collects evidence based on temperature, and we need to establish the movement
of a warm body to detect intrusion. In this case, conjunctive combination should
be adopted to combine evidence from the two sensors.

Given a list of formula {p1, ..., pk} with a set of independent pieces of evidence
{E1, , ..., Ek} respectively, we can combine the evidence into a set of evidence for
the whole list {p1, ..., pk} in a conjunctive way:

E(p1 ∧ p2 ∧ ... ∧ pk) = E1 ⊗ E2 ⊗ . . .⊗ Ek = {e′}

such that e′ = e1,j1 ∧ e2,j2 ∧ ... ∧ ek,jk where ei,ji ∈ Ei, and

m(E1 ⊗ ...⊗ Ek, e′) =
Σe′≡

∧
i=1,...,k ei,ji

Πi=1,...,km(pi, ei,ji)

Σ〈e1,j1 ,...,ek,jk
〉∈Πi=1,...,kEi

Πi=1,...,km(pi, ei,ji)
,

Example 2 (Conjunctive combination) Let E1 = {p,¬p ∧ q} and E2 = {¬p ∧
q,¬q, p} with m(E1, p) = 0.4, m(E1,¬p ∧ q) = 0.6, m(E2,¬p ∧ q) = 0.5,
m(E2,¬q) = 0.3 and m(E2, p) = 0.2. Then:

E1 ⊗ E2

= {p ∧ (¬p ∧ q), p ∧ ¬q, p ∧ p,¬p ∧ q ∧ ¬p ∧ q,¬p ∧ q ∧ ¬q,¬p ∧ q ∧ p}

= {⊥, p ∧ ¬q, p,¬p ∧ q}

where:

m(E1 ⊗ E2,⊥) = 0.4× 0.5 + 0.6× 0.3 + 0.6× 0.2 = 0.5

m(E1 ⊗ E2, p ∧ ¬q) = 0.4× 0.3 = 0.12

m(E1 ⊗ E2, p) = 0.4× 0.2 = 0.08

m(E1 ⊗ E2,¬p ∧ q) = 0.6× 0.5 = 0.3



4. Deductive reasoning with evidence

Given that we want to combine the use of evidence with logical reasoning using
rules of the form in (1), the combination rules introduced above do not help us
directly. Rather we need to build on them to create combination rules for logical
combinations.

Property 3 Not ¬. Given an evidence argument 〈h,E〉, we can derive an evidence
argument 〈¬h,E〉 for ¬h such that:

b(¬h) = d(h) = ΣI(ei)∩I(h)=∅m(E, ei)

d(¬h) = b(h) = ΣI(ei)⊆I(h)m(E, ei)

u(¬h) = u(h) = ΣI(ei)∩I(h)6=∅m(E, ei)

In this case h and ¬h share the same evidence, but the belief and disbelief will
be computed differently given that evidence. Note that h and ¬h share the same
uncertainty.

The proofs of all the properties in this section follow quickly from the defini-
tions introduced above, and are omitted in the interests of space.

Property 4 And ∧. Given two evidence arguments 〈h1, E1〉 and 〈h2, E2〉 with in-
dependent evidence, we can derive evidence argument 〈h1 ∧ h2, E〉 for h1 ∧ h2

where E = E1 ⊗ E2.

Example 3 Following Example 1, let 〈h1, E1〉 = 〈p, {p,¬p∧ q}〉, where m(h1, p) =
0.4 and m(h1,¬p∧ q) = 0.6, and 〈h2, E2〉 = 〈q, {¬p∧ q,¬q, p}〉, where m(h2,¬p∧
q) = 0.5, m(h2,¬q) = 0.3, and m(h2, p) = 0.2. Then,

〈h1 ∧ h2, E1 ⊗ E2〉

= 〈p ∧ q, {p ∧ ¬p ∧ q, p ∧ ¬q, p,¬p ∧ q,¬p ∧ q ∧ ¬q, p ∧ ¬p ∧ q}〉

= 〈p ∧ q, {⊥, p ∧ ¬q, p,¬p ∧ q}〉

where m(E1⊗E2,⊥) = 0.5, m(E1⊗E2, p∧¬q) = 0.12, m(E1⊗E2, p) = 0.8, and
m(E1 ⊗ E2,¬p ∧ q) = 0.3. Then,

b(h1 ∧ h2) = 0

d(h1 ∧ h2) = m(E1 ⊗ E2,⊥) +m(E1 ⊗ E2, p ∧ ¬q) +m(E1 ⊗ E2,¬p ∧ q) = 0.92

u(h1 ∧ h2) = m(E1 ⊗ E2, p) = 0.08.

Property 5 GMP. Given m evidence arguments 〈h1, E1〉, 〈h2, E2〉,. . . , 〈hm, Em〉,
and an evidence argument for a rule:

〈δ =
h1, ..., hm

h
,Eδ〉

with independent evidence, we can derive an evidence argument 〈h,E〉 for h where
E = E1 ⊗ E2 ⊗ . . .⊗ Em ⊗ Eδ).



Thus both rules combine evidence using the conjunctive combination rule. Note
that while GMP has the form of the generalized modus ponens rule, it differs in
that our rules δ are defeasible rules, not material implications.

5. Propagating evidence within an argumentation framework

Having shown how to combine evidence during inference, we can go on to consider
how evidence is propagated as arguments are constructed. The propagation of
evidence allows us to identify conclusions along with the evidence that supports
them. This not only allows us to compute the belief in conclusions, but—unlike
other approaches which only manipulate the numerical values during reasoning—
allows the symbolic evidence itself to be used in reaching further conclusions.
Using the framework from [15], we consider an argument to be a graph constructed
by chaining elements of ∆:

Definition 6 A rule network R is a directed hypergraph 〈V r, Er〉 where (1) the set
of vertices V r are elements of L; (2) the set of edges Er are inference rules δ;
(3) the initial vertices of an edge δ ∈ Er are the premises of the rule; and (4) the
terminal vertex of that edge is the corresponding conclusion c.

Definition 7 For a given knowledge base K = 〈Σ,∆〉, a rule network R = 〈V r, Er〉
is a proof network if and only if every premise of each δ ∈ Er is either a member
of Σ or the conclusion of some δ′ ∈ Er.

Definition 8 A tree argument A from a knowledge base K and a rule base ∆ is a
pair 〈h,E〉 where E = 〈V r, Er〉 is a proof network for h, and h is the only leaf of
E.

Note that a tree argument 〈h, 〈V r, Er〉〉 is just an evidence argument, albeit one
with some additional structure in terms of the associated graph. This structure
places some restrictions on what arguments meet the conditions of Definition 8,
and not all evidence arguments will be tree arguments. Given that the construc-
tion of a tree argument is equivalent to repeated applications of the GMP rule
from Property 5, we can easily obtain a form of soundness result:

Proposition 9 If an argument 〈h, 〈V r, Er〉〉 is constructed from a knowledge base
〈Σ,∆〉, using the Not, And and GMP rules, then the conclusion h follows from
the application of a sequence of rules from ∆, and the premises are grounded on
facts in Σ.

We can compute the evidence associated with h from the evidence arguments for
the elements of H:

Proposition 10 If an argument 〈h, 〈V r, Er〉〉 is constructed from a knowledge base
K, then:

E(h) =
⊗

p∈P (h)

E(p)⊗
⊗
δ∈Er

E(δ)



This follows immediately from Property 5 and the structure of 〈h, 〈V r, Er〉〉.
Finally, the system is complete in the sense that applying GMP will build all

the tree arguments that can be built from a knowledge base 3.

6. Related work

This work starts with the association of basic probability mass with elements
of a knowledge base and shows how beliefs measures may be derived for argu-
ments constructed from that knowledge base, and then how those measures can
be used to construct a preference-based argumentation system. In this way our
work connects with existing approaches to preference-based argumentation, but
allows the preference order to be established from what the agent knows, rather
than assuming the existence of some pre-defined order. (And as discussed in [6],
the measures we use here can be learned by the agent).

This work also connects to approaches that combining deductive reasoning
and Dempster-Shafer, a connection that goes back to [2,14]. For example, [9]
showed that it was possible to associate probability mass with formulae, reason
with the formulae, and compute measures like belief in the conclusions of the
reasoning. However, this approach has a limited notion of an argument — an
argument is just a conjunction of literals — and the work is only concerned
with the construction of arguments and the computation of belief. Our notion
of an argument is closer to that in the argumentation literature. Further, as the
longer version of this paper will show, our approach can be connected to Dungian
semantics for argumentation systems, allowing our work to go beyond [9].

A more recent approach to combining argumentation and Dempster-Shafer
theory is [11], which builds on subjective logic [8], a logic that incorporates
measures from Dempster-Shafer theory. [11] established argumentation semantics
solely based on the evidence and belief/disbelief/uncertainty, but its connection
to Dung’s argumentation semantics is not clear [11, Section 5], and, like [9], the
focus is more on establishing the strength of individual arguments. We believe our
approach has a stronger connection with the standard argumentation semantics,
as well as fitting into our graphical approach to argumentation [15].

7. Summary

This paper has provided the foundations for a system of argumentation that
combines logical reasoning and the Dempster-Shafer theory. The system allows
arguments to be constructed from formulae in a predicate logic, each of which has
a numerical measure associated with it, measures expressed using the Dempster-
Shafer theory. These measures are appropriately combined as the formulae are
constructed into arguments. The work is set in the context of a wider effort to
use argumentation to reason in an environment when sources of information are

3The existence of such a completeness result can be seen from the analogy between our rules
and Horn clauses, and the completeness of GMP for inference from sets of definite Horn clauses.

A proof of this result will be given in the long version of this paper.



of varying trustworthiness. Well-founded approaches to reasoning about the trust
in individuals have already been established and several of us have developed
an approach that quantifies trust using the Dempster-Shafer theory [7]. Other
among us have described how such reasoning about trust can be used as input
for argumentation-based reasoning [15]. The work decribed here will allow for a
seamless integration by providing a means to propagate the values established by
the trust reasoning system through the resulting argumentation.
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