Multi-context argumentative agents

Simon Parsons, Carles Sierra* and Nick R. Jennings
Department of Electronic Engineering,
Queen Mary and Westfield College,
University of London,

London E1 4NS, United Kingdom.

{S.D.Parsons,C.A.Sierra,N.R.Jennings}Oqmw.ac.uk.

December 14, 1997

Abstract

We propose a new approach to designing agents based upon multi-context
systems and argumentation. This approach allows the development of agent
architectures which have a formal model in logic and a direct link between that
model and its implementation. To exemplify our approach, we describe a case
study of this relationship for a particular class of agent model (namely the
strong realist Belief-Desire-Intention model).

1 Introduction

There are many ways of designing and building agent systems. However, the most
common means is probably through an agent architecture. The role of such architec-
tures is to define a separation of concerns—they identify the main functions which
ultimately give rise to the agent’s behaviour and they define the interdependencies
between them. This approach to system design affords all the traditional advantages
of modularisation in software engineering [28] and enables complex artifacts to be
designed out of simpler components. However, one problem with much of the work
on agent architectures is that it is somewhat ad hoc in nature. There is often lit-
tle connection between the specification of the architecture and its implementation.
This situation is clearly undesirable.

For this reason, our work seeks to provide a means of developing agent architec-
tures which have a clear link between their specification and their implementation.

*On sabbatical leave from Artificial Intelligence Research Institute—IITA, CSIC, Campus UAB,
08193 Bellaterra, Barcelona, Spain— thanks to a Spanish MEC grant PR95-313. Research partly
supported by the Spanish CICYT project SMASH, TIC96-1038-C04001.

To do this, we make use of multi-context systems [12], a framework which allows
distinct theoretical components to be defined and interrelated. We use different
contexts to represent different components of an agent architecture, and specify the
interactions between the components by means of the bridge rules between contexts.
This makes it possible to move directly from the specification of the architecture to
a formal description in terms of multi-context systems. Then, since each context
contains a set of statements in a logic along with the axioms of that logic, it is
possible to move directly to an implementation in which the various contexts are
concurrent theorem provers which exchange information. In such an implementation
each theorem prover component corresponds directly to one of the components of the
original architecture. This approach enforces a modular structure with well-defined
interfaces, and thus accords well with good software engineering practice.

This paper puts forward the idea of using multi-context systems as the link
between architecture and implementation by developing a multi-context description
of a Belief-Desire-Intention (BDI) agent. It also shows how this might work in
practice with reference to a running example of two agents negotiating. Finally, the
paper also discusses a system of argumentation which allows the agents to deal with
conflicting information and makes it possible for two or more agents to engage in
dialogues to resolve conflicts between them.

The remainder of the paper is structured in the following manner. Section 2
shows how multi-context systems can be used to specify agent architectures in gen-
eral and BDI architectures [23] in particular. Section 3 presents the argumentation
model and shows how it can be used to handle interactions between agents. Section 4
places our work in the context of previous work in the fields of multi-agent systems,
argumentation and multi-context systems. Finally, section 5 outlines a number of
issues which require further investigation.

2 Multi-context agents

An agent can be viewed as a multi-context system [12] in which each of the architec-
ture’s blocks is represented as a separate unit, an encapsulated set of axioms and an
associated deductive mechanism, whose interrelationships are precisely defined via
bridge rules, inference rules connecting units. To this end, section 2.1 indicates the
general method of using multi-context systems to specify agent architectures. Then
section 2.2 makes the discussion more concrete by indicating how a particular class
of agent architecture—namely a BDI agent—can be modelled with this approach.
Section 2.2 also provides an example of the BDI agent in action.

2.1 Generic multi-context agents

Using the multi-context approach, an agent architecture consists of the following
four components (see [19] for a formal definition):

uy:p(X.a)
uyT(literal(name(p),args(-..)))

ey
)

Figure 1: An example multi-context agent.

e Units: Structural entities representing the main components of the architec-
ture.

e Logics: Declarative languages, each with a set of axioms and a number of rules
of inference. Each unit has a single logic associated with it.

e Theories: Sets of formulae written in the logic associated with a unit.
e Bridge rules: Rules of inference which relate formulae in different units.

Figure 1 shows an example architecture in which the units are uy, uo, us and c. u;
contains a propositional logic, ug, usz and ¢ contain a first order logic. No specific
theories are given. The bridge rules are shown as arcs connecting the units.

Using the notation of [13], an agent is defined as a group of interconnected units
represented by a pair ({u;}icr, A) where I is the set of unit indices, u; is the unit
name given to the triplet (L;, A;, A;), where L;, A; and A; respectively are the
language, axioms and rules of inference defining the logic. The axioms, the rules of
inference, and the initial formulae in the theory generate the theory of the unit. A
is the set of all bridge rules between the units. Bridge rules can be understood as
rules of inference with premises and conclusions in (possibly different) units. For
instance:

Uyt p,u2: ¢
us : 0
means that formula # may be deduced in unit ug if formulae ¢ and ¢ are deduced
in units u; and uo respectively (see Figure 1). We will also write such rules as:

ULz, u2 1Y = uz: 0

where more convenient.
In our approach, bridge rules are used to enforce relations between the various
components of the agent architecture. For example in a BDI agent, a bridge rule

between the intention unit and the belief unit might be:
I:I(a) = B:B([I(x)])

meaning that if the agent has an intention « then it is aware of this fact. Note that
we take B, D and I to be predicates rather than modal operators. Therefore when
one predicate comes into the scope of another, for instance because of the action of
a bridge rule, it needs to be quoted using [-]. However, because it is clear where
quotation is necessary, we will omit its use for the remainder of the paper.

In general, the nature of the units will vary between architectures. For example,
a BDI agent may have units which represent theories of belief, desire and intention,
whereas an architecture based on a functional separation of concerns may have units
for cooperation, situation assessment and plan execution [15, 16]. However for the
purposes of this work, we assume that all agents have a dedicated communication
unit (C in Figure 1) which is responsible for enacting the agent’s communication
needs. We assume the existence of this unit because: (i) we want to encapsulate
the agent’s internal structure by having a unique and well defined interface with the
environment; and (ii) we wish to have a cognitive interpretation of the architecture—
the communication unit acts metaphorically as the agent’s sensors and actuators
(eyes, mouth and ears) by means of which the agent’s ‘mind’ is effectively situated
in the environment.

Since the communication unit deals with both incoming and outgoing messages,
we could split it into two units; one for incoming messages, and one for outgoing
messages. However we do not feel that this is necessary at the moment (though we
do not rule out the possibility in the future). The reason for this is that we would
like to keep the model relatively simple and so only introduce new units when either
(i) they are necessary to make different cognitive components (which is why we
have different units for desires and intentions) or (ii) they are necessary to capture
different logics (which is why we have different units for beliefs and desires). At the
moment we don’t feel that either of these conditions apply to the different parts of
the communication unit.

The formulae the agent can utter are determined by the language L¢ used by the
communication units. In turn, L¢ is the result of the nested embeddings that the
different bridge rules make between the languages of the various units. In this sense,
the bridge rules play a key role in the design of an architecture. As we will show in
section 2.2, important differences in behaviour can be attained simply by changing
the pattern of “combination” of the units. Moreover, interaction between agents is
carried out exclusively by the interchange of illocutions. Listening to an illocution
is a form of sensing and speaking is a form of action. Hence the communication unit
is responsible for making effective the actions—illocutions—selected to execute in
the negotiation with the other agents.

The set of formulae that a given unit may contain depends on the unit’s ini-
tial theory, axioms, inference rules and the incoming bridge rules. The formulae
introduced by a bridge rule depend on the formulae present at the unit(s) of the

premise(s) of the bridge rule. These may, in turn, depend on the bridge rules lead-
ing to that unit, and so on. The communication unit will receive formulae from
other agents that will extend its theory [27]. In order to allow for the definition of
flexible multi-agent communication—i.e. not tied to a fixed and predefined content
language—the language L. must be defined only partially. As one of the units is
partially defined, the propagation of formulae by bridge rules means the languages
of all the units must also be partial. The evolution of the reasoning process by the
application of bridge rules and the communication between agents extends these
languages incrementally. For example, we can fix the set of predicates to be used in
a certain language Lpoy, but leave the definition of Lpoy parametric with respect
to the terms the predicates may be applied over. By doing this, we underspecify
the signature of Lror. For instance, we can declare a metapredicate (7') and then
by means of bridge rules define which terms the predicate will apply over. The

following;:
ur:p

ug : T'(atom(p))

is a bridge rule which embeds atoms of the theory of unit w; into the propositional
metatheory of unit ug, and:

Uz : p(Xa a)
us : T(literal(name(p), args(variable(X), constant(a))))

does a similar job in the case of a first order language defined as a metalanguage
for ug in w3 (in a similar way to that in which it is done in OMEGA [1]). The
partial nature of the language is essential if the agents are to negotiate and argue
for these processes often involve the introduction of new concepts [27]. By definition,
therefore, the agent’s languages must be extensible.

An agent’s deductive mechanism, ;, can be thought of as the relation between
the utterances heard by the agent, the current theories of the agent’s units and the
utterances generated by the agent. This mechanism is realised by the use of an
execution model based on the following assumptions:

1. Concurrency. The execution of each unit is a non-terminating deductive pro-
cess (which may be formulated using dynamic logic [19]). All units execute
concurrently. Moreover, the bridge rules are also concurrent processes. They
examine the theories of the units in their premises for sets of formulae that
match them, whenever a new match is found the concluding formula is asyn-
chronously added to the theory of its associated unit.

2. Reactivity. The communication unit immediately processes (and thus adds to
its theory) all messages it receives from other agents. This enables the agent
to respond in an appropriate manner to important events which occur in the
environment in which it is situated [2, 11].

2.2 Multi-context BDI Agents

To provide a specific exemplar of the method of approach advocated in the previous
sub-section, we examine how a particular class of agent architecture—BDI agents—
can be modelled. This seems an appropriate choice because BDI agents are currently
of wide interest within the multi-agent system community. The particular theory of
BDI on which the architecture is based is that of Rao and Georgeff. This model has
evolved over time (as can be seen by comparing [24] and [25]) and in this section we
account for the most recent approach [25] where three modalities are distinguished:
B for beliefs—used to represent the state of the environment, D for desires—used to
represent the motivations of the agent, and I for intentions—used to represent the
ends (or goals) of the agent. In order to fit this kind of model into our multi-context
framework, we associate a separate unit for each of the modalities' (see Figure 2).

We could then give each of these units exactly the same interpretation as they are
given in the Rao and Georgeff model—what we will refer to as the direct interpre-
tation. This involves giving each modality a semantics in terms of possible worlds
and the relation between modalities as relations between the associated possible
worlds. This relation is often semantically modelled as inclusions between accessible
worlds and syntactically modelled as axioms in the form of implications between
the modalities. For instance, the fact that any intention-accessible world is also a
belief-accessible world—the agent believes what it intends—is syntactically repre-
sented as I(a) — B(a). These implications have different deductive readings from
each side of the connective (modus ponens or modus tollens) which is why some of
the architectures we propose associate two bridge rules (in opposite directions) with
each implication (see for instance Figure 2). In the direct interpretation the logics
in the B, D and I units embody the temporal logic CTL [8] (exactly as they do in
Rao and Georgeff’s model). In addition to the axioms of C'T'L which are common to
all the units, each unit has its own axioms encoding the behaviour of the modality.
In the examples of figure 2, for instance, the axioms are the set S5 for B, and K
for D and I. Each unit also contains the generalisation and modus ponens inference
rules.

This completes the discussion of the logics within each unit, and so we turn to
considering the bridge rules. As stated above, the set of bridge rules determine the
relationship between the modalities and hence the behaviour of the agent. Three
well established sets of relationships for BDI agents have been identified [25] (Figure
2):

e Strong realism. The set of intentions is a subset of the set of desires which in
turn is a subset of the beliefs. That is, if an agent does not believe something,
it will neither desire nor intend it [24].

o Realism. The set of beliefs is a subset of the set of desires which in turn is a

'n fact the general approach allows more than one unit for beliefs (as in [3]), desires or intentions
if deemed appropriate. In the examples presented, however, this is not necessary.

)
=D(9)

Figure 2: Different types of BDI agent. From left to right, the relations between
modalities correspond to strong realism, realism and weak realism.

subset of the set of intentions. That is, if an agent believes something, it both
desires and intends it [5].

o Weak realism. A case in between strong realism and realism. Agents do not
desire properties the negation of which are believed, do not intend proposi-
tions the negations of which are desired, and do not intend propositions the
negations of which are believed [22].

This completes the direct interpretation of the BDI model in terms of multi-context
systems. However, this is not the interpretation we use in our work. Instead we
prefer to build multi-context systems using an indirect interpretation in which the
B, D and I are taken as predicates, as hinted at in Section 2.1. Such systems again
have separate B, D and I units (along with a communication unit), and use the
same sets of bridge rules as discussed above (exactly which set depends upon the
kind of realism we want for our agents). To show exactly what we mean, we provide
the following example which will be referred to throughout the paper. It should be
noted that this example is intended to be illustrative rather than persuasive in that
it shows how simple BDI agents may be set up using our multi-context approach,
rather than showing that the agents can only be set up using our approach. Clearly
it is possible to set up the agents without making them BDI agents. Furthermore,
we acknowledge that the knowledge the agents use to reason about their world is
rather simplistic. We could, of course, use more realistic theories of actions and
planning but we feel that this would rather cloud the issue since:

(i) such a theory would make the example more complicated; and

(ii) the usefullness of both BDI models in general and our approach in particular
hinges more on the fact that they make it possible to clearly specify agents
in general than on the specifics of those agents’ approaches to representing
actions.

Example Consider the case of two home improvement agents which are strong
realists in the sense introduced above. All languages are first order, the operators
B, D, and I are represented as predicates with a subindex representing the agent,
and the formulae are prefixed by the name of the unit to which they belong.
Throughout the example there is some scope for confusion. The reason is that
there are two languages in operation here. The first is the language of the B, D and
I predicates in which the connectives are those of first order logic. The second is
the language quoted within the scope of the B, D and I predicates in which all the
connectives are just terms of the relevant predicates. In this language, conjunction
is as usual, but — does not represent material implication, Instead it represents the
relationship, admittedly a rather naive one, between the goals of the agent and the

means the agent has to achieve them.
Assume agent a has the intention of hanging a picture, and that it has various
beliefs about resources and how they can be used to hang mirrors and pictures:

I I,(Can(a, hang_picture)) (1)
B B,(Have(a, picture)) (2)
B B, (Have(a, screw)) (3)
B B, (Have(a, hammer)) (4)
B B, (Have(a, screwdriver)) (5)
B B,(Have(b,nail)) (6)
B B,(Have(X, hammer) A Have(X, nail) A Have(X, picture) —

Can(X, hang_picture)) (7)
B : B,(Have(X,screw) A Have(X, screwdriver) A Have(X, mirror) —
Can(X, hang-mirror)) (8)

Assume agent b wants to hang a mirror (and has this as an intention) and has
various beliefs about its resources and the action of hanging mirrors:

I I,(Can(b, hang_mirror)) 9)
B By(Have(b, mirror)) (10)
B By(Have(b, nail)) (11)
B By(Have(X, hammer) A Have(X, nail) A Have(X, mirror) —

Can(X, hang-mirror)) (12)

Both agents need a simple theory of action that integrates a model of the available
resources with their planning mechanism. This theory needs to model the following
ideas (with ¢ € {a,b}):

Ownership. When an agent (X) is the owner of an artifact (Z) and it gives Z to
another agent (Y), Y becomes its new owner:

B : Bi(Have(X,Z) A Give(X,Y,Z) — Have(Y, Z)) (13)

Unicity. When an agent (X) gives an artifact (Z) away, it no longer owns it 2:

B : B;(Have(X, Z) A Give(X,Y,Z) - ~Have(X, Z)) (14)

Benevolence. When an agent 7 has something (Z) that it does not intend to use
and is asked to give it to another agent (X), i adopts the intention of giving Z
to X. Naturally more complex cooperative strategies can be defined if desired:

B : B;(Have(i, Z) A —I;(Have(i, Z)) AN Ask(X,i,Give(i, X, Z)) —
Ii(Give(i, X, Z))) (15)

The following axioms represent a similarly simplistic theory of planning (but again
one which suffices for our example). In crude terms, when an agent believes that it
has the intention of doing something and has a rule for achieving that intention then
the pre-conditions of the rule become new intentions. Recall that the — between
the P; and @) is not material implication.

Parsimony. If an agent believes that it does not intend something, it does not
believe that it will intend the means to achieve it.

B : Bl(_Jl(Q)) A B,'(Pl VANAN Pj VANAN Pn — Q) — ﬁB,(I,(PJ)) (16)

Reduction. If there is only one way of achieving an intention, an agent adopts the
intention of achieving its preconditions.

where R; A ... A R,, is not a permutation of P; A... A P,.

Unique Choice. If there are two or more ways of achieving an intention, only one
is intended. Note that we use sy to denote exclusive or.

BBz(IZ(Q))/\BZ(Pl/\/\PJ/\/\Pn—)Q)/\Bz(Rl/\/\Rm—)Q)—)

where Ry A ... A R, is not a permutation of P; A... A P,. As mentioned above, we
acknowledge that both the theory of action and the theory of planning are rather
naive. The interested reader is encouraged to substitute their own such theories if
desired.

So far, we have specified the initial states of the two agents (1-12) and provided
limited theories of action (13-15) and planning (16-18) to enable the agent to op-
erate. Finally, we require some domain dependent bridge rules to link inter-agent
communication and the agent’s internal states:

2 As it stands this formula appears contradictory. This is because we have, for simplicity, ignored
the treatment of time. Of course, the complete specification of this example (which is not our
main focus) would need time to be handled. We could do this by including time as an additional
argument to each predicate, in which case the unicity formula would read B : B;(Have(X, Z,t) A
Give(X,Y,Z,t) - ~Have(X, Z,t + 1)). Doing this would involve making the base logic for each
unit “time capable”, for instance by using the system introduced by Vila [30].

Request. When an agent (i) needs something (Z) from another agent (X), it asks
for it:
I: I(Give(X,i, Z)) = C : Ask(i, X, Give(X,i, Z)) (19)

Offer. When an agent (i) has the intention of offering something (Z) to another
agent (X), it informs the recipient of this fact:

I:I;(Give(i, X, Z)) = C : Tell(i, X, Give(i, X, Z)) (20)

Trust. When an agent (i) is told of a belief of another agent (X), it accepts that
belief:
C:Tell(X,i,Bx(v)) = B : Bi(¢) (21)

Awareness of intentions. Agents are aware of their intentions.

I: Ii(Oé) = B: B,(Il(a)) (22)
I:-I(a) = B : By(~Li(a)) (23)

Awareness of illocutions. Agents are aware of the requirements received by the
communication unit.
C:a= B:B;a) (24)

Impulsiveness. When an agent believes it has an intention, it adopts that inten-
tion.
B : Bi(Ii(a)) = I : I;(«a) (25)

a

We have now demonstrated how the multi-context approach can be used to specify
BDI agents. In particular, we have defined two home improvement agents which we
will return to after we have discussed the use we make of argumentation.

3 Agents and argumentation

The system of argumentation which we use is based upon that proposed by Fox and
colleagues [9, 17]. As with many systems of argumentation, it works by constructing
a series of logical steps (arguments) for and against propositions of interest and as
such may be seen as an extension of classical logic. In classical logic, an argument
is a sequence of inferences which prove that a conclusion is true. In the system of
argumentation adopted here, an argument is a sequence of inferences which suggest
that a conclusion may be true. The strength of such a suggestion is ascertained by
examining the propositions used in the relevant arguments. This form of argumen-
tation may be seen as a formalisation of work on informal logic and argumentation
in philosophy [29], though it should be stressed that it was developed independently.
It is summarised by the following schema:

L't (¢, G)

10

where I' is the set of formulae available for building arguments, - is a suitable
consequence relation, ¢ is the proposition for which the argument is made and G
indicates the set of formulae used to infer p, G C I". The pair (¢, G) may also be
extended to the triple (¢, G, «) to take account of the fact that ¢ may not be known
to be true by giving it a degree of belief « [17]. The kind of reasoning afforded by
argumentation is similar to that provided by labelled deductive systems [10], but
it differs in its use of the labels. Whilst most labelled deductive systems use their
labels to control inference, this system of argumentation uses the labels to determine
which of its conclusions are most valid.

The remainder of this section extends this system of argumentation to the multi-
agent case and demonstrates how it can be used within the agent architecture in-
troduced in section 2. Again this is described first in a general setting in section 3.1
and then for BDI agents in section 3.2.

3.1 Multi-context multi-agent argumentation

We fit argumentation into our multi-context agents by building arguments using the
rules of inference of the various units and the bridge rules between units. However,
there is an important difference between the system of argumentation we employ
and that used by other authors [6, 7, 18, 21]. This is as follows. Often the grounds of
an argument are just the formulae from which the argument is built; it is taken for
granted that the agent in question can build the necessary proof from the grounds
when desired. However, this assumption does not necessarily hold in multi-agent
systems. In particular, different agents may have different rules of inference within
their units and different bridge rules between them. This means that there is no
guarantee that other agents are able to reconstruct the proof for a formula from the
formulae on which it is based. Hence, the grounds must contain complete proofs, in-
cluding the rules of inference and the bridge rules employed and we need to augment
the notation for arguments to identify which rules of inference and which bridge rules
are employed. We do this by exploiting the fact that rules of inference and bridge
rules have a similar deductive behaviour and can be noted in an identical way. We
also need to identify the agent making the argument. We use:

kg

with d = a ..}, to mean that the formula ¢ is deduced by agent a from the set
of formulae I" by using the set of inference rules or bridge rules {ri,...,r,}. When
there is no ambiguity the name of the agent will be omitted. The following are
examples of the use of the notation to define deductive steps in agent a. In the first
the agent uses the “request” bridge rule (19) to create a request from an intention,
and in the second it applies an inference rule (mp stands for modus ponens) to two
formulae in unit I:

{I: I,(Give(b,a,nail))} Fap,,, C: Ask(a,b, Give(b, a,nail))
U:pl:p—=q} ‘o, 1:q

11

Making the rules of inference and bridge rules explicit means that they become
part of the argument. This then makes it possible to build arguments about the
applicability of such rules. As a result, agents which use different logics and which
therefore use different rules of inference and bridge rules are in principle able to
engage in argumentation about which rules are valid. However, to do this in practice
is complex since we need to find ways of representing the reasoning mechanism of
other agents within individual agents so that each agent has a model of the ways
in which its aquaintances reason. While it is one of our main lines of continuing
research, we will say little more about it in this paper.

At this point we should also say a few words about the relationship between our
description of arguments and the meta-theory of our agents. When we describe an
argument we are making a statement in the meta-theory of the agent concerned since
we are talking about what the agent may prove. Thus we could talk about arguments
in general purely in terms of statements in the meta-theories of agents. However,
we choose not to since we don’t think that it adds anything to the explanation, and
possibly even makes things less clear.

In the remainder of the paper we drop the ‘B :’, ‘D :* and ‘I :’, once again to
simplify the notation. With this in mind, we can follow [7] in defining arguments
and associated notions:

Definition 1 Given an agent a, an argument for a formula ¢ is a pair (¢, P) where
P ={s1,...,sp} and either s; is a formula in the theories of agent a or s; =T'; kg, 1
and p; € I'; is either a formula in the theories of a or the conclusion of a previous
step in P, and 1 is a formula in the language of a, and s, =Ty, Fq4, ©.

For the sake of readability, we will often refer to the conclusion of a deductive step
with the identifier given to the step. It is helpful to distinguish consistent arguments
(since we allow inconsistent ones even though we don’t make use of them):

Definition 2 We say that an argument (p, P) is consistent if there are no s;,s; € P
such that s; = L'y =g, ¢ and s; =T; I—dj -

We can now identify two useful classes of arguments, trivial and tautological:

Definition 3 An argument (@, P) is non-trivial if it is consistent.

Definition 4 An argument (o, P) is tautological if all deductive steps in P are built
using only rules of inference, bridge rules and axioms of the logics of the agent’s
units.

Clearly the notion of a tautological argument will vary between agents when agents
use different rules of inference and different bridge rules. Thus agents which use such
different rules will differ in the way in which they classify arguments. The effects of
this are, once again, out of the scope of this paper.

Now, because in argumentation a proof for a formula only suggests that the
formula may be true (rather than indicating that it is true), we can have arguments

12

for and against the same formula. In particular, given an argument for a formula,
there are two interesting types of argument against it; arguments which rebut it and
arguments which undercut it:

Definition 5 An argument (p;, P;) rebuts an argument (¢;, P;) if @; attacks ¢;.

Note that the notion of “attack” is defined in Section 3.2; for the moment it is
considered primitive, but can be thought of as meaning that the arguments disagree
over the truth of the proposition .

Definition 6 An argument (p;, P;) undercuts an argument (@;, P;) if there exists
sk € Pj such that (1) sy, is a formula and @; attacks sy, or (2) sp =Ty Fq, ¢ and
i attacks P

Relationships between arguments such as rebutting and undercutting have been
widely studied, for instance by [6, 18, 21, 31]. The notions that we use here are
broadly in line with the consensus on the issue. However, there is another form of
conflict between arguments which stems from the inclusion of rules of inference and
bridge rules in the argument. This is, as mentioned above, that one argument might
attack the use of a rule used to build another argument and, as also mentioned
above, we intend to discuss this matter in later papers.

It should be noted that, unlike the authors mentioned above, we do not present
a universal definition of what it means for one argument to attack another. We
firmly believe that the form of attack depends upon the underlying language, and
so, in our terms, will depend upon which units arguments are built in and what
the units represent. We discuss notions of attack relevant to BDI agents in Sec-
tion 3.2. Our motivation for classifying arguments in this way is that it allows us
to split arguments into classes of acceptability, again following [7] and our previous
work on argumentation in multi-agent systems [20]. We have, in order of increasing
acceptability:

A1l The class of all arguments that may be made from I'.
A2 The class of all non-trivial arguments that may be made from T'.

A3 The class of all arguments that may be made from I for propositions for which
there are no rebutting arguments that may be made from T.

A4 The class of all arguments that may be made from I" for propositions for which
there are no undercutting arguments that may be made from I'.

A5 The class of all tautological arguments that may be made from T'.

Informally, the idea is that arguments in higher numbered classes are more ac-
ceptable because they are less questionable. Thus, if we have an argument for a
proposition ¢ which is in class A4, and an argument for ¢ which is in A2, then the

13

better argument is that for ¢. Since any argument from any class is included in all
classes of lower acceptability, there is an order over the acceptability classes defined
by set inclusion:

A5(D) € A4(I) € A3(D) € Ao(I) C Ay ()

Thus arguments in smaller classes are more acceptable than arguments in larger
classes. Acceptability is important because it gives agents a way of deciding how to
revise what they know (see below). Clearly the acceptability class of an argument
is local to an agent since it is depends upon the database from which the argument
is built.

3.2 Argumentation in BDI Agents

To instantiate our argumentation model within the context of a particular agent
architecture, like the one proposed in section 2.2, we need to say exactly when two
formulae attack one another. This is a rather more complex issue than is the case
in single agent argumentation when two propositions attack one another if one is
the negation of the other. In our BDI agents, the complication comes largely from
the “modalities” since there is no conflict between an agent which believes ¢, that
is B;(¢p), and one which believes —¢p, that is Bj(—y). Conflicts only occur when:

1. agents have opposite intentions (since then they actively intend to bring about
incompatible results);

2. one agent intends to change a particular mental state in another agent; in
other words intends to persuade another agent to believe (or desire or intend)
the negation of one of its current beliefs (respectively desires or intentions).

That is:

1. I;(p) attacks I;(—p). For example, the fact “Carles intends to be Prime Min-
ister”, Icapes (Prime(Carles)), attacks the fact “Simon intends that Carles is
not Prime Minister”, Igjmon (—Prime(Carles)).

2. I;(M;(p)) attacks M;(—¢). For example, the fact “Kate intends that Simon
believes that God exists”, Ixqie(Bsimon(God)), attacks the fact “Simon be-
lieves that God does not exist”, Bgimon(—God).

In the first case Simon and Carles are in conflict about who should be Prime Min-
ister. In the second case there is a conflict because Kate wants to change Simon’s
beliefs to a view that is the opposite of what he already believes. The second case
can be generalised so that I;(M;, (Mj,(p))) attacks M;, (=Mj,(p)) and also attacks
M, (Mj,(—p)) where jj, is an agent identifier. Thus we get the following definition:

Definition 7 Given agents i and j, we say that a formula p; of the language of
agent ¢ attacks a formula @; of the language of agent j if one of following cases
hold:

14

1. @i = I;(p) and p; = I;(—yp)

2. pi = Li(Mj, (M, (. .. (M}, () -) and @j = Mjy (... (=M, (... (Mj, () - --)
).) with 1 <k <n orpj =M (M(...(Mj,(=p)...).

With this notion of attack, our use of rebut, undercut and the acceptability classes
is a natural extension of the use proposed by Elvang-Geranssen et al. [7] to the
multi-agent case. The difference is as follows. The notion of attack proposed by
Elvang-Ggranssen et al. would recognise the conflict between I,(¢) and —I,(y)
(which in our approach would be inconsistency), but would not identify the conflict
between I,(p) and I(—p). Our extension, by virtue of the fact that it looks inside
the modalities, is able to detect this latter type of attack. This is important because
it is the latter form of attack that figures most prominently in interactions between
agents. Because it does not figure greatly in the interaction between agents, at the
moment we have nothing much to say about the handling of inconsistency within
our multi-context agents. However, it might well be the case that an agent will have
contradictory beliefs B, (¢) and =By (), and if it becomes necessary to handle such
situations, it seems likely that we can make use of the argument-based approaches
to dealing with inconsistency which already exist (see for example [6, 7, 18, 21]).

We should also point out that, even when handling contradictory arguments, the
process of building arguments is monotonic. If we can build an argument for ¢, then
we can always build an argument for it, even if we are able to build an argument
for - later. However, the process of coming to conclusions using arguments is
non-monotonic. If we have an argument for ¢ and no argument for —¢ then we
conclude @. If later we can build an argument for ~¢ which is more acceptable than
the argument for ¢ then we change our conclusion to —p.

Example (continued) Using the home improvement agents specified earlier, we
illustrate how argumentation is used by agents both to build up justified plans
of actions and to resolve conflicts that arise between different agents’ plans. For
clarity we assume that agents can simply pass each other arguments, ignoring issues
such as what language they are passed in and what the protocol for passing them
is—such issues are discussed at length by the authors in [27].

Step 1: Agent a tries to find a proof for Can(a, hang_picture) because of its inten-
tion I,(Can(a, hang_picture)). The only proof it can build is based on B,(Have(a,
nail)), which in turn, by the theory of planning, makes B, (l,(Give(b, a,nail))) true.
This is transformed, by means of bridge rule 25, into I,(Give(b, a,nail)). More for-
mally, agent a builds an argument

(I.(Give(b, a,nail)), P,)

15

where P, is®:

{I.(Can(a, hang_picture))} B,(I,(Can(a, hang_picture))) (26)
{(26),(17), (M)} Fmp Ba(la(Have(a, nail))) (27)

{(6),(13)} Fmp Ba(Give(b,Y,nail) - Have(Y,nail)) (28)

{(28),(27), (A7)} Fmp Ba(la(Give(b, a,nail))) (29)

{(29)} Fas I.(Give(b,a,nail)) (30)

This is then converted into an action using bridge rule 19
{(30)} F19 Ask(a,b, Give(b,a,nail))

When agent a generates the argument (I,(Give(b,a,nail)), P,) it is placed in ac-
ceptability class A4 since a cannot build any undercutting arguments against it and
so a deems it to be a suitable suggestion to be passed to b.

Step 2: Unit C of agent b receives the formula Ask(a,b, Give(b, a,nail)), which, as
specified, brings with it the argument:

(14 (Give(b, a,nail)), {(26), (27), (28), (29), (30) })

Now, agent b has its own goal, I,(Can(b, hang_mirror)), which as we will see forms
the basis of its argument:

(I (—Give(b, a,nail)), Py)

where Pj:
{Iy(Can(b, hang-mirror))} Fa2 By(Ily(Can(b, hang-mirror))) (31)
{B81),(12), (A1)} Fmp By(Ip(Have(b, nail))) (32)
{(32),(14)} Fume Bp(lp(=Give(b, Y, nail))) (33)
{33)} Fp Bp(Iy(—Give(b, a,nail))) (34)

This argument rebuts the argument for I,(Give(b, a,nail)). This means that for
agent b both arguments are in class Ay (since they mutually rebut one another
but they are consistent). Assuming the agents are rational, and given that both
arguments are in the same class, b will probably prefer (by some utility analysis)
the second argument since this enables it to satisfy one of its intentions (adherence
to the argument proposed by a would clobber its intention of hanging the mirror)
and so will return the second argument to a.

Step 3: When agent a receives the argument from b it classifies both its original
argument and the incoming argument as class A since they are both rebutted (by

3In what follows, ‘mp’ stands for modus ponens, ‘mt’ stands for modus tollens and ‘pt’ stands
for particularisation, and we omit the axioms of the unit in which the deduction is made.

16

each other). Thus its original argument moves from A4 to A,. In response, agent a
generates a new argument which provides an alternative way of hanging the mirror
that will satisfy b’s goal without using the nail:

(Bo(—Iy(Have(b, nail))), P.)

where P! is*:

{-I,(Can(a, hang-mirror))} Faz3 Bg(—I,(Can(a, hang-mirror))) (35)
{(35),(16),(8)} Fmp —Ba(la(Have(a,screw)))
A =By (1,(Have(a, screwdriver))) (36)
{(36)} ks —I.(I,(Have(a, screwdriver)))
A =1, (I, (Have(a, screw))) (37)

{(36),(3),(5),(15)} Fumppt DBa(Ask(b,a,Give(a,b, screw)) —

I, (Give(a, b, screw)))

A B, (Ask(b, a, Give(a, b, screwdriver)) —
I, (Give(a, b, screwdriver))) (38)

{(38),(8)} Fmp Ba(Ask(b,a,Give(a,b,screw))
A Ask(b, a, Give(a, b, screwdriver))
— Can(b, hang_mirror)) (39)
{(18),(39),(12)} Fup Bu(—Iy(Have(b,nail))) (40)

This argument is classified in A4 since a can neither rebut nor undercut it. Agent
a then sends this latest argument to b as a counterproposal. Agent b cannot build
any arguments which attack this new argument and so it is classified as being in
Ay4. Given the strength of the new argument, b accepts it. Here the crucial point
is that b cannot construct a rebuttal for the new argument as a subargument of its
previous argument because it can no longer use the reduction planning rule (17).
This is because b has now acquired a new rule for hanging mirrors (as part of the
new argument). Moreover, the second argument can no longer be maintained for
the same reason, so a’s original argument is reclassified as being in A4. Hence agent
a will receive the nail, agent b will ask for the screw and the screwdriver and both
will reach their goals. O

Note that step 37 is crucial in the construction of the undercutting argument. This

step depends upon the fact that agent ¢ has the bridge rules associated with strong
realism and so can go from =B, (I, (Have(a, screw))) to =Dy (I, (Have(a, screw)))
and hence to —1,(I,(Have(a, screw))). If the agent did not have these bridge rules
(for instance if it had those of realism or weak realism) ¢ would not have been
able to come up with its final suggestion. This gives some hint of the flexibility of
our approach and shows that changing some basic assumptions about the relations
between the units makes a substantial difference to the behaviour of the agents.

*s1’ stands for the set of bridge rules associated with strong realism.

17

4 Related work

This paper has dealt with a number of topics from various research areas—including
argumentation-based reasoning, formal models of agent architectures, and multi-
context systems. In this section we take a brief look at related work in these three
areas. Traditionally work on argumentation-based reasoning has concentrated on
the operation of a single agent which argues with itself in order to establish its
beliefs [6, 7, 18, 21]. As indicated and discussed in section 3, this basic approach
and framework needed to be extended to account for the multi-agent case in which
several traditional assumptions do not hold. Previous work which has produced
formal models of agent architectures (eg AMARS [14], Agent0 [26] and GRATE* [15])
has failed to carry forward the clarity of the specification into the implementation—
there is a leap of faith required between the two. Our work, on the other hand,
maintains a clear link between specification and implementation as demonstrated
by the ease of implementing the deduction mechanism used in the example. There
are also differences between our work and previous work on using multi-context
systems to model agents’ beliefs. In the latter [13], different units, all containing a
belief predicate, are used to represent the beliefs of the agent and the beliefs of all
the acquaintances of the agent. The nested beliefs of agents may lead to tree-like
structures of such units (called belief contexts). Such structures have then been used
to solve problems like the three wise men [3]. In our case, however, any nested beliefs
are included in a single unit and we provide a more comprehensive formalisation of
an autonomous agent in that we additionally show how attitudes other than belief
can be incorporated into the architecture.

5 Conclusions and future work

This paper has demonstrated how multi-context agents which use argumentation-
based reasoning might be developed. The examples show how agents capable of
flexible and sophisticated argumentation can be specified both in general terms
and in terms of a particular type of agent (namely a BDI agent). We have shown
how agents can construct arguments to justify their proposals and how agents can
exchange arguments to help guide their problem solving behaviour towards mutually
acceptable solutions. Moreover, by basing our framework on multi-context systems
we are able to show a clear link to potential implementations of agents which are
built in the manner we have advocated. This link can be achieved by implementing
the various units as concurrent theorem provers with connections between them as
specified by the bridge rules. This gives a very natural connection between the
formal model and implementation—one we claim is more natural than in many
other cases and which is the major benefit of our approach. There are a number of
other benefits in terms of the practical implementation of our agents which follow
from using the multi-context approach [4]. First, the modular organisation of the
architecture’s components (in our case the BDI modalities) in different units reduces

18

the complexity of the theorem proving mechanism. Second, it is easier to define
proof strategies as combinations of the simple deductive elements in the system
(local reasoning in the units and the application of bridge rules) than it is to have a
monolithic, all encompassing approach.

A number of issues raised in this paper require further investigation. Most
prominent amongst these is the need to produce an implementation which supports
both the generic definition of agent architectures and the specific instantiations
for particular types of agent. Secondly, the notion of attacking inference steps, as
discussed in section 3.1, needs to be more fully elaborated to both ascertain whether
it is useful and whether it can be achieved in a tractable manner. Thirdly, the means
by which agents generate and rate arguments needs to be expanded. Acceptability
classes provide a means of ordering arguments, but it is likely that we will require
the ability to provide a more fine-grained ranking (see step 2 of the final example).
Finally, agents need effective internal mechanisms for tracking and maintaining their
arguments and propagating changes in their preferences as their knowledge changes
over time (as illustrated in step 3 of the final example).

References

[1] G. Attardi and M. Simi. A formalisation of viewpoints. Fundamenta Informat-
icae, 23(2,3,4):149-174, 1995,

[2] R. A. Brooks. Intelligence without reason. In Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence, pages 569-595, 1991.

3] A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The
approach and a case study. In Proceedings of the 3rd International Workshop
on Agent Theories, Architectures and Languages, 1994.

[4] A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts III: To-
wards the mechanization. In Proceedings of the IJCAI Workshop on Modelling
Context in Knowledge Representation and Reasoning in Artificial Intelligence,
pages 35-45, 1995.

[5] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213-261, 1990.

[6] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence, 77:321-357, 1995.

[7] M. Elvang-Ggransson, P. Krause, and J. Fox. Dialectic reasoning with incon-
sistent information. In Proceedings of the 9th Conference on Uncertainty in
Artificial Intelligence, pages 114-121, 1993.

19

8]

[9]

[21]

E. A. Emerson. Temporal and Modal Logic. In J van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 996-1071. Elsevier, 1990.

J. Fox, P. Krause, and S. Ambler. Arguments, contradictions and practical
reasoning. In Proceedings of the 10th European Conference on Artificial Intel-
ligence, pages 623-627, 1992.

D. Gabbay. Labelled Deductive Systems. Oxford University Press, Oxford, UK,
1996.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceed-
ings of the 6th National Conference on Artificial Intelligence, pages 677-682,
1987.

F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics (or: How we
can do without modal logics). Artificial Intelligence, 65:29-70, 1994.

F. Guinchiglia. Contextual reasoning. In Proceedings of the IJCAI Workshop
on Using Knowledge in Context, 1993.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time
reasoning and system control. IEEE Expert, 7(6), 1992.

N. R. Jennings. Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions. Artificial Intelligence, 75:195-240, 1995.

N. R. Jennings, E. H. Mamdani, J. Corera, 1. Laresgoiti, F'. Perriolat, P. Skarek,
and L. Z. Varga. Using ARCHON to develop real-word DAI applications Part
1. IEEFE Ezpert, 11:64-70, 1996.

P. Krause, S. Ambler, M. Elvang-Ggransson, and J. Fox. A logic of argumenta-
tion for reasoning under uncertainty. Computational Intelligence, 11:113-131,
1995.

R. Loui. Defeat among arguments: a system of defeasible inference. Computa-
tional Intelligence, 3:100-106, 1987.

P. Noriega and C. Sierra. Towards layered dialogical agents. In Proceedings
of the 3rd International Workshop on Agents Theories, Architectures and Lan-
guages, pages 157-171, 1996.

S. Parsons and N. R. Jennings. Negotiation through argumentation—a prelim-
inary report. In Proceedings of the International Conference on Multi Agent
Systems, pages 267-274, 1996.

J. L. Pollock. Justification and defeat. Artificial Intelligence, 67:377-407, 1994.

20

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

A. Rao and M. Georgeff. Asymmetry thesis and side-effect problems in linear
time and branching time intention logics. In Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence, 1991.

A. Rao and M. Georgeff. BDI agents: From theory to practice. In Proceedings
of the 1st International Conference on Multi-Agent Systems, pages 312-319,
1995.

A. S. Rao and M. P. Georgeff. Modeling Rational Agents within a BDI-
Architecture. In Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning, pages 473-484, 1991.

A. S. Rao and M. P. Georgeff. Formal Models and Decision Procedures for
Multi-Agent Systems. Technical Note 61, Australian Artificial Intelligence In-
stitute, 1995.

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92,
1993.

C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for
argumentation-based negotiation. In Proceedings of the 4th International Work-
shop on Agent Theories, Architectures and Languages, 1997.

I. Sommerville. Software Engineering. Addison Wesley, Wokingham, UK, 1992.

F. H. van Eemeren, R. Grootendorst, F. S. Henkemans, J. A. Blair, R. H. John-
son, E. C. W. Krabbe, C. Plantin, D. N. Walton, C. A. Willard, J. Woods, and
D. Zarefsky. Fundamentals of Argumentation Theory: A Handbook of Historical

Backgrounds and Contemporary Developments. Lawrence Erlbaum Associates,
Mahwah, NJ, 1996.

L. Vila. On temporal representation and reasoning in knowledge-based systems.
IITA Monographies, Barcelona, Spain, 1994.

G. Vreeswijk. The feasibility of defeat in defeasible reasoning. In Proceedings of
the 1st International Conference on Knowledge Representation and Reasoning,
pages 526-534, 1989.

21

