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To do this, we make use of multi-context systems [12], a framework which allowsdistinct theoretical components to be de�ned and interrelated. We use di�erentcontexts to represent di�erent components of an agent architecture, and specify theinteractions between the components by means of the bridge rules between contexts.This makes it possible to move directly from the speci�cation of the architecture toa formal description in terms of multi-context systems. Then, since each contextcontains a set of statements in a logic along with the axioms of that logic, it ispossible to move directly to an implementation in which the various contexts areconcurrent theorem provers which exchange information. In such an implementationeach theorem prover component corresponds directly to one of the components of theoriginal architecture. This approach enforces a modular structure with well-de�nedinterfaces, and thus accords well with good software engineering practice.This paper puts forward the idea of using multi-context systems as the linkbetween architecture and implementation by developing a multi-context descriptionof a Belief-Desire-Intention (BDI) agent. It also shows how this might work inpractice with reference to a running example of two agents negotiating. Finally, thepaper also discusses a system of argumentation which allows the agents to deal withconicting information and makes it possible for two or more agents to engage indialogues to resolve conicts between them.The remainder of the paper is structured in the following manner. Section 2shows how multi-context systems can be used to specify agent architectures in gen-eral and BDI architectures [23] in particular. Section 3 presents the argumentationmodel and shows how it can be used to handle interactions between agents. Section 4places our work in the context of previous work in the �elds of multi-agent systems,argumentation and multi-context systems. Finally, section 5 outlines a number ofissues which require further investigation.2 Multi-context agentsAn agent can be viewed as a multi-context system [12] in which each of the architec-ture's blocks is represented as a separate unit, an encapsulated set of axioms and anassociated deductive mechanism, whose interrelationships are precisely de�ned viabridge rules, inference rules connecting units. To this end, section 2.1 indicates thegeneral method of using multi-context systems to specify agent architectures. Thensection 2.2 makes the discussion more concrete by indicating how a particular classof agent architecture|namely a BDI agent|can be modelled with this approach.Section 2.2 also provides an example of the BDI agent in action.2.1 Generic multi-context agentsUsing the multi-context approach, an agent architecture consists of the followingfour components (see [19] for a formal de�nition):2
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Figure 1: An example multi-context agent.� Units: Structural entities representing the main components of the architec-ture.� Logics: Declarative languages, each with a set of axioms and a number of rulesof inference. Each unit has a single logic associated with it.� Theories: Sets of formulae written in the logic associated with a unit.� Bridge rules: Rules of inference which relate formulae in di�erent units.Figure 1 shows an example architecture in which the units are u1, u2, u3 and c. u1contains a propositional logic, u2, u3 and c contain a �rst order logic. No speci�ctheories are given. The bridge rules are shown as arcs connecting the units.Using the notation of [13], an agent is de�ned as a group of interconnected unitsrepresented by a pair hfuigi2I ;�i where I is the set of unit indices, ui is the unitname given to the triplet hLi; Ai;�ii, where Li, Ai and �i respectively are thelanguage, axioms and rules of inference de�ning the logic. The axioms, the rules ofinference, and the initial formulae in the theory generate the theory of the unit. �is the set of all bridge rules between the units. Bridge rules can be understood asrules of inference with premises and conclusions in (possibly di�erent) units. Forinstance: u1 : '; u2 :  u3 : �means that formula � may be deduced in unit u3 if formulae ' and  are deducedin units u1 and u2 respectively (see Figure 1). We will also write such rules as:u1 : '; u2 :  ) u3 : �where more convenient.In our approach, bridge rules are used to enforce relations between the variouscomponents of the agent architecture. For example in a BDI agent, a bridge rule3



between the intention unit and the belief unit might be:I : I(�) ) B : B(dI(�)e)meaning that if the agent has an intention � then it is aware of this fact. Note thatwe take B, D and I to be predicates rather than modal operators. Therefore whenone predicate comes into the scope of another, for instance because of the action ofa bridge rule, it needs to be quoted using d�e. However, because it is clear wherequotation is necessary, we will omit its use for the remainder of the paper.In general, the nature of the units will vary between architectures. For example,a BDI agent may have units which represent theories of belief, desire and intention,whereas an architecture based on a functional separation of concerns may have unitsfor cooperation, situation assessment and plan execution [15, 16]. However for thepurposes of this work, we assume that all agents have a dedicated communicationunit (C in Figure 1) which is responsible for enacting the agent's communicationneeds. We assume the existence of this unit because: (i) we want to encapsulatethe agent's internal structure by having a unique and well de�ned interface with theenvironment; and (ii) we wish to have a cognitive interpretation of the architecture|the communication unit acts metaphorically as the agent's sensors and actuators(eyes, mouth and ears) by means of which the agent's `mind' is e�ectively situatedin the environment.Since the communication unit deals with both incoming and outgoing messages,we could split it into two units; one for incoming messages, and one for outgoingmessages. However we do not feel that this is necessary at the moment (though wedo not rule out the possibility in the future). The reason for this is that we wouldlike to keep the model relatively simple and so only introduce new units when either(i) they are necessary to make di�erent cognitive components (which is why wehave di�erent units for desires and intentions) or (ii) they are necessary to capturedi�erent logics (which is why we have di�erent units for beliefs and desires). At themoment we don't feel that either of these conditions apply to the di�erent parts ofthe communication unit.The formulae the agent can utter are determined by the language LC used by thecommunication units. In turn, LC is the result of the nested embeddings that thedi�erent bridge rules make between the languages of the various units. In this sense,the bridge rules play a key role in the design of an architecture. As we will show insection 2.2, important di�erences in behaviour can be attained simply by changingthe pattern of \combination" of the units. Moreover, interaction between agents iscarried out exclusively by the interchange of illocutions. Listening to an illocutionis a form of sensing and speaking is a form of action. Hence the communication unitis responsible for making e�ective the actions|illocutions|selected to execute inthe negotiation with the other agents.The set of formulae that a given unit may contain depends on the unit's ini-tial theory, axioms, inference rules and the incoming bridge rules. The formulaeintroduced by a bridge rule depend on the formulae present at the unit(s) of the4



premise(s) of the bridge rule. These may, in turn, depend on the bridge rules lead-ing to that unit, and so on. The communication unit will receive formulae fromother agents that will extend its theory [27]. In order to allow for the de�nition ofexible multi-agent communication|i.e. not tied to a �xed and prede�ned contentlanguage|the language Lc must be de�ned only partially. As one of the units ispartially de�ned, the propagation of formulae by bridge rules means the languagesof all the units must also be partial. The evolution of the reasoning process by theapplication of bridge rules and the communication between agents extends theselanguages incrementally. For example, we can �x the set of predicates to be used ina certain language LFOL but leave the de�nition of LFOL parametric with respectto the terms the predicates may be applied over. By doing this, we underspecifythe signature of LFOL. For instance, we can declare a metapredicate (T ) and thenby means of bridge rules de�ne which terms the predicate will apply over. Thefollowing: u1 : pu2 : T (atom(p))is a bridge rule which embeds atoms of the theory of unit u1 into the propositionalmetatheory of unit u2, and: u2 : p(X; a)u3 : T (literal(name(p); args(variable(X); constant(a))))does a similar job in the case of a �rst order language de�ned as a metalanguagefor u2 in u3 (in a similar way to that in which it is done in OMEGA [1]). Thepartial nature of the language is essential if the agents are to negotiate and arguefor these processes often involve the introduction of new concepts [27]. By de�nition,therefore, the agent's languages must be extensible.An agent's deductive mechanism, `i, can be thought of as the relation betweenthe utterances heard by the agent, the current theories of the agent's units and theutterances generated by the agent. This mechanism is realised by the use of anexecution model based on the following assumptions:1. Concurrency. The execution of each unit is a non-terminating deductive pro-cess (which may be formulated using dynamic logic [19]). All units executeconcurrently. Moreover, the bridge rules are also concurrent processes. Theyexamine the theories of the units in their premises for sets of formulae thatmatch them, whenever a new match is found the concluding formula is asyn-chronously added to the theory of its associated unit.2. Reactivity. The communication unit immediately processes (and thus adds toits theory) all messages it receives from other agents. This enables the agentto respond in an appropriate manner to important events which occur in theenvironment in which it is situated [2, 11].5



2.2 Multi-context BDI AgentsTo provide a speci�c exemplar of the method of approach advocated in the previoussub-section, we examine how a particular class of agent architecture|BDI agents|can be modelled. This seems an appropriate choice because BDI agents are currentlyof wide interest within the multi-agent system community. The particular theory ofBDI on which the architecture is based is that of Rao and George�. This model hasevolved over time (as can be seen by comparing [24] and [25]) and in this section weaccount for the most recent approach [25] where three modalities are distinguished:B for beliefs|used to represent the state of the environment, D for desires|used torepresent the motivations of the agent, and I for intentions|used to represent theends (or goals) of the agent. In order to �t this kind of model into our multi-contextframework, we associate a separate unit for each of the modalities1 (see Figure 2).We could then give each of these units exactly the same interpretation as they aregiven in the Rao and George� model|what we will refer to as the direct interpre-tation. This involves giving each modality a semantics in terms of possible worldsand the relation between modalities as relations between the associated possibleworlds. This relation is often semantically modelled as inclusions between accessibleworlds and syntactically modelled as axioms in the form of implications betweenthe modalities. For instance, the fact that any intention-accessible world is also abelief-accessible world|the agent believes what it intends|is syntactically repre-sented as I(�) ! B(�). These implications have di�erent deductive readings fromeach side of the connective (modus ponens or modus tollens) which is why some ofthe architectures we propose associate two bridge rules (in opposite directions) witheach implication (see for instance Figure 2). In the direct interpretation the logicsin the B, D and I units embody the temporal logic CTL [8] (exactly as they do inRao and George�'s model). In addition to the axioms of CTL which are common toall the units, each unit has its own axioms encoding the behaviour of the modality.In the examples of �gure 2, for instance, the axioms are the set S5 for B, and Kfor D and I. Each unit also contains the generalisation and modus ponens inferencerules.This completes the discussion of the logics within each unit, and so we turn toconsidering the bridge rules. As stated above, the set of bridge rules determine therelationship between the modalities and hence the behaviour of the agent. Threewell established sets of relationships for BDI agents have been identi�ed [25] (Figure2): � Strong realism. The set of intentions is a subset of the set of desires which inturn is a subset of the beliefs. That is, if an agent does not believe something,it will neither desire nor intend it [24].� Realism. The set of beliefs is a subset of the set of desires which in turn is a1In fact the general approach allows more than one unit for beliefs (as in [3]), desires or intentionsif deemed appropriate. In the examples presented, however, this is not necessary.6
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Figure 2: Di�erent types of BDI agent. From left to right, the relations betweenmodalities correspond to strong realism, realism and weak realism.subset of the set of intentions. That is, if an agent believes something, it bothdesires and intends it [5].� Weak realism. A case in between strong realism and realism. Agents do notdesire properties the negation of which are believed, do not intend proposi-tions the negations of which are desired, and do not intend propositions thenegations of which are believed [22].This completes the direct interpretation of the BDI model in terms of multi-contextsystems. However, this is not the interpretation we use in our work. Instead weprefer to build multi-context systems using an indirect interpretation in which theB, D and I are taken as predicates, as hinted at in Section 2.1. Such systems againhave separate B, D and I units (along with a communication unit), and use thesame sets of bridge rules as discussed above (exactly which set depends upon thekind of realism we want for our agents). To show exactly what we mean, we providethe following example which will be referred to throughout the paper. It should benoted that this example is intended to be illustrative rather than persuasive in thatit shows how simple BDI agents may be set up using our multi-context approach,rather than showing that the agents can only be set up using our approach. Clearlyit is possible to set up the agents without making them BDI agents. Furthermore,we acknowledge that the knowledge the agents use to reason about their world israther simplistic. We could, of course, use more realistic theories of actions andplanning but we feel that this would rather cloud the issue since:(i) such a theory would make the example more complicated; and(ii) the usefullness of both BDI models in general and our approach in particularhinges more on the fact that they make it possible to clearly specify agentsin general than on the speci�cs of those agents' approaches to representingactions. 7



Example Consider the case of two home improvement agents which are strongrealists in the sense introduced above. All languages are �rst order, the operatorsB, D, and I are represented as predicates with a subindex representing the agent,and the formulae are pre�xed by the name of the unit to which they belong.Throughout the example there is some scope for confusion. The reason is thatthere are two languages in operation here. The �rst is the language of the B, D andI predicates in which the connectives are those of �rst order logic. The second isthe language quoted within the scope of the B, D and I predicates in which all theconnectives are just terms of the relevant predicates. In this language, conjunctionis as usual, but ! does not represent material implication, Instead it represents therelationship, admittedly a rather naive one, between the goals of the agent and themeans the agent has to achieve them.Assume agent a has the intention of hanging a picture, and that it has variousbeliefs about resources and how they can be used to hang mirrors and pictures:I : Ia(Can(a; hang picture)) (1)B : Ba(Have(a; picture)) (2)B : Ba(Have(a; screw)) (3)B : Ba(Have(a; hammer)) (4)B : Ba(Have(a; screwdriver)) (5)B : Ba(Have(b; nail)) (6)B : Ba(Have(X;hammer) ^Have(X;nail) ^Have(X; picture)!Can(X;hang picture)) (7)B : Ba(Have(X; screw) ^Have(X; screwdriver) ^Have(X;mirror) !Can(X;hang mirror)) (8)Assume agent b wants to hang a mirror (and has this as an intention) and hasvarious beliefs about its resources and the action of hanging mirrors:I : Ib(Can(b; hang mirror)) (9)B : Bb(Have(b;mirror)) (10)B : Bb(Have(b; nail)) (11)B : Bb(Have(X;hammer) ^Have(X;nail) ^Have(X;mirror)!Can(X;hang mirror)) (12)Both agents need a simple theory of action that integrates a model of the availableresources with their planning mechanism. This theory needs to model the followingideas (with i 2 fa; bg):Ownership. When an agent (X) is the owner of an artifact (Z) and it gives Z toanother agent (Y), Y becomes its new owner:B : Bi(Have(X;Z) ^Give(X;Y; Z)! Have(Y; Z)) (13)8



Unicity. When an agent (X) gives an artifact (Z) away, it no longer owns it 2:B : Bi(Have(X;Z) ^Give(X;Y; Z)! :Have(X;Z)) (14)Benevolence. When an agent i has something (Z) that it does not intend to useand is asked to give it to another agent (X), i adopts the intention of giving Zto X. Naturally more complex cooperative strategies can be de�ned if desired:B : Bi(Have(i; Z) ^ :Ii(Have(i; Z)) ^ Ask(X; i;Give(i;X; Z))!Ii(Give(i;X; Z))) (15)The following axioms represent a similarly simplistic theory of planning (but againone which su�ces for our example). In crude terms, when an agent believes that ithas the intention of doing something and has a rule for achieving that intention thenthe pre-conditions of the rule become new intentions. Recall that the ! betweenthe Pi and Q is not material implication.Parsimony. If an agent believes that it does not intend something, it does notbelieve that it will intend the means to achieve it.B : Bi(:Ii(Q)) ^ Bi(P1 ^ : : : ^ Pj ^ : : : ^ Pn ! Q)! :Bi(Ii(Pj)) (16)Reduction. If there is only one way of achieving an intention, an agent adopts theintention of achieving its preconditions.B : Bi(Ii(Q)) ^Bi(P1 ^ : : : ^ Pj ^ : : : ^ Pn ! Q)^ :Bi(R1 ^ : : : ^ Rm ! Q)! Bi(Ii(Pj)) (17)where R1 ^ : : : ^Rm is not a permutation of P1 ^ : : : ^ Pn.Unique Choice. If there are two or more ways of achieving an intention, only oneis intended. Note that we use 5 to denote exclusive or.B : Bi(Ii(Q)) ^Bi(P1 ^ : : : ^ Pj ^ : : : ^ Pn ! Q) ^ Bi(R1 ^ : : : ^ Rm ! Q)!Bi(Ii(P1 ^ : : : ^ Pn))5Bi(Ii(R1 ^ : : : ^ Rm)) (18)where R1 ^ : : : ^Rm is not a permutation of P1 ^ : : : ^Pn. As mentioned above, weacknowledge that both the theory of action and the theory of planning are rathernaive. The interested reader is encouraged to substitute their own such theories ifdesired.So far, we have speci�ed the initial states of the two agents (1{12) and providedlimited theories of action (13{15) and planning (16{18) to enable the agent to op-erate. Finally, we require some domain dependent bridge rules to link inter-agentcommunication and the agent's internal states:2As it stands this formula appears contradictory. This is because we have, for simplicity, ignoredthe treatment of time. Of course, the complete speci�cation of this example (which is not ourmain focus) would need time to be handled. We could do this by including time as an additionalargument to each predicate, in which case the unicity formula would read B : Bi(Have(X;Z; t) ^Give(X;Y; Z; t) ! :Have(X;Z; t + 1)). Doing this would involve making the base logic for eachunit \time capable", for instance by using the system introduced by Vila [30].9



Request. When an agent (i) needs something (Z) from another agent (X), it asksfor it: I : Ii(Give(X; i; Z))) C : Ask(i;X;Give(X; i; Z)) (19)O�er. When an agent (i) has the intention of o�ering something (Z) to anotheragent (X), it informs the recipient of this fact:I : Ii(Give(i;X; Z))) C : Tell(i;X;Give(i;X; Z)) (20)Trust. When an agent (i) is told of a belief of another agent (X), it accepts thatbelief: C : Tell(X; i; BX('))) B : Bi(') (21)Awareness of intentions. Agents are aware of their intentions.I : Ii(�)) B : Bi(Ii(�)) (22)I : :Ii(�)) B : Bi(:Ii(�)) (23)Awareness of illocutions. Agents are aware of the requirements received by thecommunication unit. C : �) B : Bi(�) (24)Impulsiveness. When an agent believes it has an intention, it adopts that inten-tion. B : Bi(Ii(�)) ) I : Ii(�) (25)2We have now demonstrated how the multi-context approach can be used to specifyBDI agents. In particular, we have de�ned two home improvement agents which wewill return to after we have discussed the use we make of argumentation.3 Agents and argumentationThe system of argumentation which we use is based upon that proposed by Fox andcolleagues [9, 17]. As with many systems of argumentation, it works by constructinga series of logical steps (arguments) for and against propositions of interest and assuch may be seen as an extension of classical logic. In classical logic, an argumentis a sequence of inferences which prove that a conclusion is true. In the system ofargumentation adopted here, an argument is a sequence of inferences which suggestthat a conclusion may be true. The strength of such a suggestion is ascertained byexamining the propositions used in the relevant arguments. This form of argumen-tation may be seen as a formalisation of work on informal logic and argumentationin philosophy [29], though it should be stressed that it was developed independently.It is summarised by the following schema:� ` (';G)10



where � is the set of formulae available for building arguments, ` is a suitableconsequence relation, ' is the proposition for which the argument is made and Gindicates the set of formulae used to infer ', G � �. The pair (';G) may also beextended to the triple (';G; �) to take account of the fact that ' may not be knownto be true by giving it a degree of belief � [17]. The kind of reasoning a�orded byargumentation is similar to that provided by labelled deductive systems [10], butit di�ers in its use of the labels. Whilst most labelled deductive systems use theirlabels to control inference, this system of argumentation uses the labels to determinewhich of its conclusions are most valid.The remainder of this section extends this system of argumentation to the multi-agent case and demonstrates how it can be used within the agent architecture in-troduced in section 2. Again this is described �rst in a general setting in section 3.1and then for BDI agents in section 3.2.3.1 Multi-context multi-agent argumentationWe �t argumentation into our multi-context agents by building arguments using therules of inference of the various units and the bridge rules between units. However,there is an important di�erence between the system of argumentation we employand that used by other authors [6, 7, 18, 21]. This is as follows. Often the grounds ofan argument are just the formulae from which the argument is built; it is taken forgranted that the agent in question can build the necessary proof from the groundswhen desired. However, this assumption does not necessarily hold in multi-agentsystems. In particular, di�erent agents may have di�erent rules of inference withintheir units and di�erent bridge rules between them. This means that there is noguarantee that other agents are able to reconstruct the proof for a formula from theformulae on which it is based. Hence, the grounds must contain complete proofs, in-cluding the rules of inference and the bridge rules employed and we need to augmentthe notation for arguments to identify which rules of inference and which bridge rulesare employed. We do this by exploiting the fact that rules of inference and bridgerules have a similar deductive behaviour and can be noted in an identical way. Wealso need to identify the agent making the argument. We use:� `d 'with d = afr1;:::;rng, to mean that the formula ' is deduced by agent a from the setof formulae � by using the set of inference rules or bridge rules fr1; : : : ; rng. Whenthere is no ambiguity the name of the agent will be omitted. The following areexamples of the use of the notation to de�ne deductive steps in agent a. In the �rstthe agent uses the \request" bridge rule (19) to create a request from an intention,and in the second it applies an inference rule (mp stands for modus ponens) to twoformulae in unit I:fI : Ia(Give(b; a; nail))g `af19g C : Ask(a; b;Give(b; a; nail))fI : p; I : p! qg `afmpg I : q11



Making the rules of inference and bridge rules explicit means that they becomepart of the argument. This then makes it possible to build arguments about theapplicability of such rules. As a result, agents which use di�erent logics and whichtherefore use di�erent rules of inference and bridge rules are in principle able toengage in argumentation about which rules are valid. However, to do this in practiceis complex since we need to �nd ways of representing the reasoning mechanism ofother agents within individual agents so that each agent has a model of the waysin which its aquaintances reason. While it is one of our main lines of continuingresearch, we will say little more about it in this paper.At this point we should also say a few words about the relationship between ourdescription of arguments and the meta-theory of our agents. When we describe anargument we are making a statement in the meta-theory of the agent concerned sincewe are talking about what the agent may prove. Thus we could talk about argumentsin general purely in terms of statements in the meta-theories of agents. However,we choose not to since we don't think that it adds anything to the explanation, andpossibly even makes things less clear.In the remainder of the paper we drop the `B :', `D :' and `I :', once again tosimplify the notation. With this in mind, we can follow [7] in de�ning argumentsand associated notions:De�nition 1 Given an agent a, an argument for a formula ' is a pair ('; P ) whereP = fs1; : : : ; sng and either si is a formula in the theories of agent a or si = �i `di  and pj 2 �i is either a formula in the theories of a or the conclusion of a previousstep in P , and  is a formula in the language of a, and sn = �n `dn '.For the sake of readability, we will often refer to the conclusion of a deductive stepwith the identi�er given to the step. It is helpful to distinguish consistent arguments(since we allow inconsistent ones even though we don't make use of them):De�nition 2 We say that an argument ('; P ) is consistent if there are no si; sj 2 Psuch that si = �i `di  and sj = �j `dj : We can now identify two useful classes of arguments, trivial and tautological:De�nition 3 An argument (';P) is non-trivial if it is consistent.De�nition 4 An argument (';P) is tautological if all deductive steps in P are builtusing only rules of inference, bridge rules and axioms of the logics of the agent'sunits.Clearly the notion of a tautological argument will vary between agents when agentsuse di�erent rules of inference and di�erent bridge rules. Thus agents which use suchdi�erent rules will di�er in the way in which they classify arguments. The e�ects ofthis are, once again, out of the scope of this paper.Now, because in argumentation a proof for a formula only suggests that theformula may be true (rather than indicating that it is true), we can have arguments12



for and against the same formula. In particular, given an argument for a formula,there are two interesting types of argument against it; arguments which rebut it andarguments which undercut it:De�nition 5 An argument ('i;Pi) rebuts an argument ('j ;Pj) if 'i attacks 'j.Note that the notion of \attack" is de�ned in Section 3.2; for the moment it isconsidered primitive, but can be thought of as meaning that the arguments disagreeover the truth of the proposition '.De�nition 6 An argument ('i;Pi) undercuts an argument ('j ;Pj) if there existssk 2 Pj such that (1) sk is a formula and 'i attacks sk, or (2) sk = �k `dk  and'k attacks  Relationships between arguments such as rebutting and undercutting have beenwidely studied, for instance by [6, 18, 21, 31]. The notions that we use here arebroadly in line with the consensus on the issue. However, there is another form ofconict between arguments which stems from the inclusion of rules of inference andbridge rules in the argument. This is, as mentioned above, that one argument mightattack the use of a rule used to build another argument and, as also mentionedabove, we intend to discuss this matter in later papers.It should be noted that, unlike the authors mentioned above, we do not presenta universal de�nition of what it means for one argument to attack another. We�rmly believe that the form of attack depends upon the underlying language, andso, in our terms, will depend upon which units arguments are built in and whatthe units represent. We discuss notions of attack relevant to BDI agents in Sec-tion 3.2. Our motivation for classifying arguments in this way is that it allows usto split arguments into classes of acceptability, again following [7] and our previouswork on argumentation in multi-agent systems [20]. We have, in order of increasingacceptability:A1 The class of all arguments that may be made from �.A2 The class of all non-trivial arguments that may be made from �.A3 The class of all arguments that may be made from � for propositions for whichthere are no rebutting arguments that may be made from �.A4 The class of all arguments that may be made from � for propositions for whichthere are no undercutting arguments that may be made from �.A5 The class of all tautological arguments that may be made from �.Informally, the idea is that arguments in higher numbered classes are more ac-ceptable because they are less questionable. Thus, if we have an argument for aproposition ' which is in class A4, and an argument for  which is in A2, then the13



better argument is that for '. Since any argument from any class is included in allclasses of lower acceptability, there is an order over the acceptability classes de�nedby set inclusion: A5(�) � A4(�) � A3(�) � A2(�) � A1(�)Thus arguments in smaller classes are more acceptable than arguments in largerclasses. Acceptability is important because it gives agents a way of deciding how torevise what they know (see below). Clearly the acceptability class of an argumentis local to an agent since it is depends upon the database from which the argumentis built.3.2 Argumentation in BDI AgentsTo instantiate our argumentation model within the context of a particular agentarchitecture, like the one proposed in section 2.2, we need to say exactly when twoformulae attack one another. This is a rather more complex issue than is the casein single agent argumentation when two propositions attack one another if one isthe negation of the other. In our BDI agents, the complication comes largely fromthe \modalities" since there is no conict between an agent which believes ', thatis Bi('), and one which believes :', that is Bj(:'). Conicts only occur when:1. agents have opposite intentions (since then they actively intend to bring aboutincompatible results);2. one agent intends to change a particular mental state in another agent; inother words intends to persuade another agent to believe (or desire or intend)the negation of one of its current beliefs (respectively desires or intentions).That is:1. Ii(') attacks Ij(:'). For example, the fact \Carles intends to be Prime Min-ister", ICarles (Prime(Carles)), attacks the fact \Simon intends that Carles isnot Prime Minister", ISimon(:Prime(Carles)).2. Ii(Mj(')) attacks Mj(:'). For example, the fact \Kate intends that Simonbelieves that God exists", IKate(BSimon (God )), attacks the fact \Simon be-lieves that God does not exist", BSimon(:God ).In the �rst case Simon and Carles are in conict about who should be Prime Min-ister. In the second case there is a conict because Kate wants to change Simon'sbeliefs to a view that is the opposite of what he already believes. The second casecan be generalised so that Ii(Mj1(Mj2('))) attacks Mj1(:Mj2(')) and also attacksMj1(Mj2(:')) where jk is an agent identi�er. Thus we get the following de�nition:De�nition 7 Given agents i and j, we say that a formula 'i of the language ofagent i attacks a formula 'j of the language of agent j if one of following caseshold: 14



1. 'i = Ii(') and 'j = Ij(:')2. 'i = Ii(Mj1(Mj2(: : : (Mjn(')) : : :))) and 'j =Mj1(: : : (:Mjk(: : : (Mjn(')) : : :)) : : :) with 1 � k � n or 'j =Mj1(Mj2(: : : (Mjn(:')) : : :)).With this notion of attack, our use of rebut, undercut and the acceptability classesis a natural extension of the use proposed by Elvang-G�ranssen et al. [7] to themulti-agent case. The di�erence is as follows. The notion of attack proposed byElvang-G�ranssen et al. would recognise the conict between Ia(') and :Ia(')(which in our approach would be inconsistency), but would not identify the conictbetween Ia(') and Ib(:'). Our extension, by virtue of the fact that it looks insidethe modalities, is able to detect this latter type of attack. This is important becauseit is the latter form of attack that �gures most prominently in interactions betweenagents. Because it does not �gure greatly in the interaction between agents, at themoment we have nothing much to say about the handling of inconsistency withinour multi-context agents. However, it might well be the case that an agent will havecontradictory beliefs Ba(') and :Ba('), and if it becomes necessary to handle suchsituations, it seems likely that we can make use of the argument-based approachesto dealing with inconsistency which already exist (see for example [6, 7, 18, 21]).We should also point out that, even when handling contradictory arguments, theprocess of building arguments is monotonic. If we can build an argument for ', thenwe can always build an argument for it, even if we are able to build an argumentfor :' later. However, the process of coming to conclusions using arguments isnon-monotonic. If we have an argument for ' and no argument for :' then weconclude '. If later we can build an argument for :' which is more acceptable thanthe argument for ' then we change our conclusion to :'.Example (continued) Using the home improvement agents speci�ed earlier, weillustrate how argumentation is used by agents both to build up justi�ed plansof actions and to resolve conicts that arise between di�erent agents' plans. Forclarity we assume that agents can simply pass each other arguments, ignoring issuessuch as what language they are passed in and what the protocol for passing themis|such issues are discussed at length by the authors in [27].Step 1: Agent a tries to �nd a proof for Can(a; hang picture) because of its inten-tion Ia(Can(a; hang picture)). The only proof it can build is based on Ba(Have(a;nail)), which in turn, by the theory of planning, makes Ba(Ia(Give(b; a; nail))) true.This is transformed, by means of bridge rule 25, into Ia(Give(b; a; nail)). More for-mally, agent a builds an argument(Ia(Give(b; a; nail)); Pa)
15



where Pa is3:fIa(Can(a; hang picture))g `22 Ba(Ia(Can(a; hang picture))) (26)f(26); (17); (7)g `mp Ba(Ia(Have(a; nail))) (27)f(6); (13)g `mp Ba(Give(b; Y; nail)! Have(Y; nail)) (28)f(28); (27); (17)g `mp Ba(Ia(Give(b; a; nail))) (29)f(29)g `25 Ia(Give(b; a; nail)) (30)This is then converted into an action using bridge rule 19f(30)g `19 Ask(a; b;Give(b; a; nail))When agent a generates the argument (Ia(Give(b; a; nail)); Pa) it is placed in ac-ceptability class A4 since a cannot build any undercutting arguments against it andso a deems it to be a suitable suggestion to be passed to b.Step 2: Unit C of agent b receives the formula Ask(a; b;Give(b; a; nail)), which, asspeci�ed, brings with it the argument:(Ia(Give(b; a; nail)); f(26); (27); (28); (29); (30)g)Now, agent b has its own goal, Ib(Can(b; hang mirror)), which as we will see formsthe basis of its argument: (Ib(:Give(b; a; nail)); Pb)where Pb: fIb(Can(b; hang mirror))g `22 Bb(Ib(Can(b; hang mirror))) (31)f(31); (12); (17)g `mp Bb(Ib(Have(b; nail))) (32)f(32); (14)g `mt Bb(Ib(:Give(b; Y; nail))) (33)f(33)g `pt Bb(Ib(:Give(b; a; nail))) (34)This argument rebuts the argument for Ia(Give(b; a; nail)). This means that foragent b both arguments are in class A2 (since they mutually rebut one anotherbut they are consistent). Assuming the agents are rational, and given that botharguments are in the same class, b will probably prefer (by some utility analysis)the second argument since this enables it to satisfy one of its intentions (adherenceto the argument proposed by a would clobber its intention of hanging the mirror)and so will return the second argument to a.Step 3: When agent a receives the argument from b it classi�es both its originalargument and the incoming argument as class A2 since they are both rebutted (by3In what follows, `mp' stands for modus ponens, `mt' stands for modus tollens and `pt' standsfor particularisation, and we omit the axioms of the unit in which the deduction is made.16



each other). Thus its original argument moves from A4 to A2. In response, agent agenerates a new argument which provides an alternative way of hanging the mirrorthat will satisfy b's goal without using the nail:(Ba(:Ib(Have(b; nail))); P 0a)where P 0a is4:f:Ia(Can(a; hang mirror))g `23 Ba(:Ia(Can(a; hang mirror))) (35)f(35); (16); (8)g `mp :Ba(Ia(Have(a; screw)))^ :Ba(Ia(Have(a; screwdriver))) (36)f(36)g `sr :Ia(Ia(Have(a; screwdriver)))^ :Ia(Ia(Have(a; screw))) (37)f(36); (3); (5); (15)g `mp;pt Ba(Ask(b; a;Give(a; b; screw))!Ia(Give(a; b; screw)))^Ba(Ask(b; a;Give(a; b; screwdriver)) !Ia(Give(a; b; screwdriver))) (38)f(38); (8)g `mp Ba(Ask(b; a;Give(a; b; screw))^Ask(b; a;Give(a; b; screwdriver))! Can(b; hang mirror)) (39)f(18); (39); (12)g `mp Ba(:Ib(Have(b; nail))) (40)This argument is classi�ed in A4 since a can neither rebut nor undercut it. Agenta then sends this latest argument to b as a counterproposal. Agent b cannot buildany arguments which attack this new argument and so it is classi�ed as being inA4. Given the strength of the new argument, b accepts it. Here the crucial pointis that b cannot construct a rebuttal for the new argument as a subargument of itsprevious argument because it can no longer use the reduction planning rule (17).This is because b has now acquired a new rule for hanging mirrors (as part of thenew argument). Moreover, the second argument can no longer be maintained forthe same reason, so a's original argument is reclassi�ed as being in A4. Hence agenta will receive the nail, agent b will ask for the screw and the screwdriver and bothwill reach their goals. 2Note that step 37 is crucial in the construction of the undercutting argument. Thisstep depends upon the fact that agent a has the bridge rules associated with strongrealism and so can go from :Ba(Ia(Have(a; screw))) to :Da(Ia(Have(a; screw)))and hence to :Ia(Ia(Have(a; screw))). If the agent did not have these bridge rules(for instance if it had those of realism or weak realism) a would not have beenable to come up with its �nal suggestion. This gives some hint of the exibility ofour approach and shows that changing some basic assumptions about the relationsbetween the units makes a substantial di�erence to the behaviour of the agents.4`sr' stands for the set of bridge rules associated with strong realism.17



4 Related workThis paper has dealt with a number of topics from various research areas|includingargumentation-based reasoning, formal models of agent architectures, and multi-context systems. In this section we take a brief look at related work in these threeareas. Traditionally work on argumentation-based reasoning has concentrated onthe operation of a single agent which argues with itself in order to establish itsbeliefs [6, 7, 18, 21]. As indicated and discussed in section 3, this basic approachand framework needed to be extended to account for the multi-agent case in whichseveral traditional assumptions do not hold. Previous work which has producedformal models of agent architectures (eg dMARS [14], Agent0 [26] and GRATE* [15])has failed to carry forward the clarity of the speci�cation into the implementation|there is a leap of faith required between the two. Our work, on the other hand,maintains a clear link between speci�cation and implementation as demonstratedby the ease of implementing the deduction mechanism used in the example. Thereare also di�erences between our work and previous work on using multi-contextsystems to model agents' beliefs. In the latter [13], di�erent units, all containing abelief predicate, are used to represent the beliefs of the agent and the beliefs of allthe acquaintances of the agent. The nested beliefs of agents may lead to tree-likestructures of such units (called belief contexts). Such structures have then been usedto solve problems like the three wise men [3]. In our case, however, any nested beliefsare included in a single unit and we provide a more comprehensive formalisation ofan autonomous agent in that we additionally show how attitudes other than beliefcan be incorporated into the architecture.5 Conclusions and future workThis paper has demonstrated how multi-context agents which use argumentation-based reasoning might be developed. The examples show how agents capable ofexible and sophisticated argumentation can be speci�ed both in general termsand in terms of a particular type of agent (namely a BDI agent). We have shownhow agents can construct arguments to justify their proposals and how agents canexchange arguments to help guide their problem solving behaviour towards mutuallyacceptable solutions. Moreover, by basing our framework on multi-context systemswe are able to show a clear link to potential implementations of agents which arebuilt in the manner we have advocated. This link can be achieved by implementingthe various units as concurrent theorem provers with connections between them asspeci�ed by the bridge rules. This gives a very natural connection between theformal model and implementation|one we claim is more natural than in manyother cases and which is the major bene�t of our approach. There are a number ofother bene�ts in terms of the practical implementation of our agents which followfrom using the multi-context approach [4]. First, the modular organisation of thearchitecture's components (in our case the BDI modalities) in di�erent units reduces18



the complexity of the theorem proving mechanism. Second, it is easier to de�neproof strategies as combinations of the simple deductive elements in the system(local reasoning in the units and the application of bridge rules) than it is to have amonolithic, all encompassing approach.A number of issues raised in this paper require further investigation. Mostprominent amongst these is the need to produce an implementation which supportsboth the generic de�nition of agent architectures and the speci�c instantiationsfor particular types of agent. Secondly, the notion of attacking inference steps, asdiscussed in section 3.1, needs to be more fully elaborated to both ascertain whetherit is useful and whether it can be achieved in a tractable manner. Thirdly, the meansby which agents generate and rate arguments needs to be expanded. Acceptabilityclasses provide a means of ordering arguments, but it is likely that we will requirethe ability to provide a more �ne-grained ranking (see step 2 of the �nal example).Finally, agents need e�ective internal mechanisms for tracking and maintaining theirarguments and propagating changes in their preferences as their knowledge changesover time (as illustrated in step 3 of the �nal example).References[1] G. Attardi and M. Simi. A formalisation of viewpoints. Fundamenta Informat-icae, 23(2,3,4):149{174, 1995.[2] R. A. Brooks. Intelligence without reason. In Proceedings of the 12th Interna-tional Joint Conference on Arti�cial Intelligence, pages 569{595, 1991.[3] A. Cimatti and L. Sera�ni. Multi-agent reasoning with belief contexts: Theapproach and a case study. In Proceedings of the 3rd International Workshopon Agent Theories, Architectures and Languages, 1994.[4] A. Cimatti and L. Sera�ni. Multi-agent reasoning with belief contexts III: To-wards the mechanization. In Proceedings of the IJCAI Workshop on ModellingContext in Knowledge Representation and Reasoning in Arti�cial Intelligence,pages 35{45, 1995.[5] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Arti�cialIntelligence, 42:213{261, 1990.[6] P. M. Dung. On the acceptability of arguments and its fundamental role innonmonotonic reasoning, logic programming and n-person games. Arti�cialIntelligence, 77:321{357, 1995.[7] M. Elvang-G�ransson, P. Krause, and J. Fox. Dialectic reasoning with incon-sistent information. In Proceedings of the 9th Conference on Uncertainty inArti�cial Intelligence, pages 114{121, 1993.19
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