
Arguments, dialogue, and negotiation
Leila Amgoud1 and Simon Parsons2 and Nicolas Maudet3

Abstract. In the past few years there have been a number of propos-
als for mechanisms for negotiation between agents that makeuse of
argumentation. These proposals have largely been vague on the sub-
ject of how the generation and interpretation of arguments fits into
the process of negotiation. This paper addresses this gap, proposing
a particular protocol which is suitable for negotiation, and illustrating
its use on an example from the literature.

1 Introduction

Negotiation is widely regarded as a key issue in building multi-agent
systems. In most agent applications, the autonomous components
need to interact with one another because of the inherent interdepen-
dencies which exist between them, and negotiation is the predomi-
nant mechanism for achieving this. In recent years, there have been
a number of suggestions for systems of negotiation based upon ar-
gumentation, including work by Parsons and Jennings [7, 10], Reed
[9], Sycara [11] and Tohmé [12].

All mechanisms for negotiation have at their heart an exchange of
offers. Agents make offers that they find acceptable and respond to
offers made to them. What distinguishes argumentation-based nego-
tiation from other approaches is the fact that offers can be supported
by arguments, which, broadly speaking, equate to explanations for
why the offer was made. This permits greater flexibility thanin other
negotiation schemes since, for instance, it makes it possible to per-
suade agents to change their view of an offer by introducing new
factors in the middle of a negotiation (just as a car salesperson might
throw in free insurance to clinch a deal).

While this use of argumentation is a common theme in all the work
mentioned above, none of those proposals explain when arguments
can be used within a negotiation and how they should be dealt with
by the agent that receives them. Thus the protocol for handling argu-
ments is missing. This paper fills the gap by proposing an argumenta-
tion protocol which permits the same kind of reasoning as thesystem
proposed in [7], and which can be used to underpin the negotiation
illocutions introduced in [10].

2 A system of argumentation

In this section we briefly introduce the system of argumentation
which forms the backbone of our approach. This is inspired bythe
work of Dung [5] but goes further in dealing with preferencesbe-
tween arguments. Further details are available in [1]. We start with
a possibly inconsistent knowledge base� with no deductive closure.1 Department of Electronic Engineering, Queen Mary and Westfield College,

University of London, London E1 4NS, United Kingdom2 Department of Computer Science, University of Liverpool, Chadwick
Building, Peach Street, Liverpool L69 7ZF, United Kingdom3 IRIT, ENSEEIHT, 2 rue C. Camichel, 31071 Toulouse Cedex, France

We assume� contains formulas of a propositional languageL. `
stands for classical inference and� for logical equivalence.

Definition 1 Anargumentis a pair (H; h) where h is a formula ofL
and H a subset of� such that i) H is consistent, ii) H̀ h and iii)
H is minimal, so no subset of H satisfying both i) and ii) exists. H is
called thesupportof the argument and h is itsconclusion.

In general, since� is inconsistent, arguments inA(�), the set of all
arguments which can be made from�, will conflict, and we make
this idea precise with the notion of undercutting:

Definition 2 Let (H1; h1) and (H2; h2) be two arguments ofA(�).(H1; h1) undercuts(H2; h2) iff 9h 2 H2 such that h� :h1. In other
words, an argument is undercut iff there exists an argument for the
negation of an element of its support.

To capture the fact that some facts are more strongly believed (or
desired, or intended, depending on the nature of the facts) we assume
that any set of facts has a preference order over it which derives from
the stratification of the knowledge base� into non-overlapping sets�1; : : : ;�n such that facts in�i are all equally preferred and are
more preferred than those in�j wherej > i. The preference level
of a nonempty subsetH of �, level(H), is the number of the highest
numbered layer which has a member inH.

Definition 3 Let (H1; h1) and (H2; h2) be two arguments inA(�).(H1; h1) is preferredto (H2; h2) according to Pref iff level(H1) �
level(H2).
We can now define the argumentation system we will use:

Definition 4 An argumentation system (AS) is a triplehA(�);Undercut;Prefi such thatA(�) is a set of the argu-
ments built from�, Undercut is a binary relation representing defeat
relationship between arguments, Undercut� A(�) � A(�), and
Pref is a (partial or complete) preordering onA(�)�A(�).�Pref

stands for the strict pre-order associated with Pref .

Example 1 Let� = �1[�2[�3 with�1 = f:ag;�2 = fa; a!
bg and�3 = f:bg. Now,(f:ag;:a) and (fa; a ! bg; b) are two
arguments ofA(�). The argument(f:ag;:a) undercuts(fa; a !
bg; b). The preference level offa; a ! bg is 2 whereas the prefer-
ence level off:ag is 1, and so(f:ag;:ag)�Pref (fa; a! bg; b).
The preference order makes it possible to distinguish different types
of relation between arguments:

Definition 5 Let A, B be two arguments ofA(�).
B strongly undercutsA iff B undercuts A and it is not the case that
A�Pref B.

If B undercuts A then Adefends itselfagainst B iff A�Pref B.
A set of argumentsS defendsA if there is some argument inS
which strongly undercuts every argument B where B undercutsA
and A cannot defend itself against B.

Henceforth,CUndercut;Pref will gather all non-undercut arguments and
arguments defending themselves against all their undercutting argu-
ments. In [2], it was shown that the setS of acceptable arguments
of the argumentation systemhA(�);Undercut;Prefi is the least fix-
point of a functionF :S � A(�)F(S) = f(H; h) 2 A(�)j(H; h) is defended by Sg
Definition 6 The set ofacceptablearguments for an argumentation
systemhA(�);Undercut;Prefi is:S = [Fi�0(;)= CUndercut;Pref [h[Fi�1(CUndercut;Pref)i
An argument is acceptable if it is a member of the acceptable set.

Example 2 (follows Example 1) The argument(f:ag;:a) is in
CUndercut;Pref because it is preferred (according to Pref) to the unique
undercutting argument(fag; a). Consequently,(f:ag;:a) is inS. The argument(f:bg;:b) is undercut by(fa; a ! bg; b)
and does not defend itself. On the contrary,(f:ag;:a) undercuts(fa; a ! bg; b) and (f:ag;:a) �Pref (fa; a ! bg; b). Therefore,
CUndercut;Pref defends(f:bg;:b) and consequently(f:bg;:b) 2 S.

The set of acceptable arguments mutually defend one another:

Definition 7 Let A, B be two arguments ofA(�) andS � A(�),
then A disqualifiesB iff A strongly undercuts B and B does not
strongly undercut A.S strictly defendsA iff for all B such that B
strongly undercuts A, then there is a C2 S such that C disqualifies
B.

Theorem 1 8(H; h) 2 S;S strictly defends(H; h).
The proof of this theorem can be found in [1].

3 Argument and Dialogue

In practice we don’t need to enumerate all the set of acceptable argu-
ments in order to know the status of a given argument and this can be
exploited [1] to give a proof theory for the system. The basicidea is
to traverse the sequenceF1; :::;Fn in reverse. Consider thatA occurs
for the first time inFn. We start withA, and then for any argumentBi

which strongly undercutsA, we find an argumentAi in Fn�1 which
defendsA. Now, because of Theorem 1, we are only interested in the
strict defenders of an argument, and the strict defenders ofA will dis-
qualify theBi . The same process is repeated for each strict defender
until there is no strict defender or defeater.

We can think of this process in terms of a dialogue game between
two playersP and C. P makes the argument we are interested in
and its defenders and the playerC makes the counter-arguments or
defeaters.

Definition 8 An argument dialogue4 is a nonempty sequence of
moves, movei = (Playeri ;Argi)(i � 0) such that:4 In [1] this is called simply a “dialogue”; here we use the term“argument

dialogue” to distinguish these dialogues from those discussed later. We omit
the term “argument” when it is clear that we mean an argument dialogue.

a

a

a

aa
a

0

11

01 02

12

03

10a

a

a a

a a

0

10 11

02 03

a

a a

a a

0

10 11

01 03

a12

S1 S2

Figure 1. An argument dialogue tree and its candidate sub-trees

1. Playeri = P iff i is even, Playeri = C iff i is odd.
2. Player0 = P and Arg0 = A.
3. If Playeri = Playerj = P and i 6= j then Argi 6= Argj .
4. If Playeri = P, i > 1, then Argi disqualifies Argi�1.
5. If Playeri = C then Argi attacks Argi�1.

An argument dialogue treeis a finite tree where each branch is an
argument dialogue.

Example 3 Let hA;Undercut;Prefi be an AS such thatA = fa0; a01; a02; a10; a11; a12g, Undercut = f(a10; a0);(a01; a10); (a12; a02); (a02; a10); (a03; a11); (a11; a0)g. Let’s sup-
pose that a03 �Pref a11 �Pref a0, a01 �Pref a10 �Pref a0 and
a12 �Pref a02, a02 �Pref a10. We are interested in the status of
the argument a0. The corresponding argument dialogue tree is
presented in Figure 1 (left).

The argument dialogue tree can be considered as an AND/OR tree.
A node corresponding to the playerP is an AND node, and a node
corresponding to the playerC is an OR node. This is because an
argument is acceptable if it is defended against all its defeaters. The
edges of a node containing an argument ofP represent defeaters so
they all must be defeated. In contrast, the edges of a node containing
an argument ofC represent defenders ofP so it is sufficient that one
of them defeats the argument ofC.

Definition 9 A playerwins an argument dialogue iff he makes the
last argument in the dialogue.

A player who wins a dialogue does not necessarily win in all the sub-
trees of the dialogue tree. To formalize the winning of a dialogue tree,
the concept of a solution sub-tree is defined.

Definition 10 A candidate sub-treeis a sub-tree of an argument di-
alogue tree containing all the edges of each AND node and exactly
one edge of each OR node. Asolution sub-treeis a candidate sub-tree
whose branches are all won by P.

Thus the dialogue represented in example 3 has exactly two candi-
date sub-treesS1 andS2, Figure 1 (right).

Definition 11 P wins an argument dialogue iff the corresponding
dialogue tree has a solution sub-tree.

ThusP wins the dialogue presented in Figure 1 becauseS2 is a solu-
tion sub-tree.

Definition 12 An argument A isjustified iff there is an argument
dialogue tree whose root is A, and which is won by the player P.

Thus the argumenta0 is justified because the playerP won the dia-
logue tree. The main result from the proof theory is:

Theorem 2 Let hA;Undercut;Prefi be an argumentation system.
(i) 8x 2 A, if x is justified then each argument of P belonging to
the solution sub-tree is inS, in particular x. (ii) 8x 2 S, x is justi-
fied.

In other words, the dialogue process constructs all acceptable argu-
ments, and only constructs acceptable arguments and is thussound
and complete. The proof may be found in [1].

4 Towards multi-agent dialogues

The playersP andC in the argument dialogue are not real individ-
uals, they are merely a useful way of thinking about the construc-
tion of arguments. However, the idea of an argument dialoguecan
be extended to capture true dialogues by lettingP andC be separate
agents, as discussed in [3]. Here we extend that work by showing
how specific support for realistic negotiation dialogues ofthe kind
introduced in [7] and [10] can be added.

As in [7] we assume that each agent has a set of beliefs,B, a set of
desires,D, and a set of intentions,I . Each of these sets is equipped
with a (total or partial) preordering representing the preferences of
the agent5. The basic knowledge base of an agentP is then�B

P =
BP [DP [IP. Using�B

P, P can build arguments concerning its own
beliefs, desires and intentions as discussed above. However, we are
more concerned withP’s dialogical interactions with other agents.

To capture the dialogues between these agents we follow [3] in
using a variant of the dialogue system DC introduced by MacKenzie
[6]. In this scheme, agents make dialogical moves by asserting facts
into and retracting facts fromcommitment stores(CSs) which are
visible to other agents. Thus for a dialogue betweenP and another
agentC, each agent “knows” everything in its own knowledge base,
and everything in both commitment stores. Thus the overall knowl-
edge available toP at any point in time is�P = �B

P [�B0
C where�B0

C � �B
C and�B

C = BC [DC [IC. The contents of the two com-
mitment storesCS(P) andCS(C) can be considered to be the state
of the dialogue at any given point, and the CS of a single agentis the
set of things it has agreed to.

For the moment we deal with propositional knowledge and assume
we know that a particular propositioni is, for example, one ofP’s
intentions because it resides inIP, not because it is explicitly denoted
as such. We do this for notational simplicity, bearing in mind that
the problem of how to deal with first-order argumentation in which
beliefs, desires and intentions are explicitly denoted is considered in
depth in [8]. The latter also describes the logical machinery necessary
to maintain consistency between these parts of the knowledge base—
here we just assume the adoption of such techniques.

Despite these assumptions, the propositional language canuse-
fully be extended to represent the type of information exchanged be-
tween agents in negotiation. As discussed in [10], negotiations often
involve trade-offs with one agent accepting a request from another
agent provided that this last accepts its request. For example: “If you
let me use your laptop, I’ll let use my printer”, or “If you lend me a
hammer, I’ll give you a nail”. To make it easier to represent this kind
of information we introduce a new connective). Thus we have a
new languageL0 which contains propositional formulae and formu-
laep) q such thatp andq are propositional formulae. This connec-
tive allows us to capture “If you let me use your laptop, I’ll let you
use my printer” in the formulaLet uselaptop) Let useprinter
and the latter is a formula ofL0.5 For now we assume that the agents concerned share the same preferences.

We have considered how different sets of preferences can be combined else-
where [4].

5 Dialogue moves

As mentioned above our work is inspired by MacKenzie’s system
DC. In that system, at each stage of the dialogue a participant has a
set of legal moves it can make—asserting facts, challengingconclu-
sions, asking for evidence, and so on. What we do here is to take a
subset of the moves from DC which we have found useful in agentdi-
alogues, and augment them with some new moves. We letM0denote
the complete set of moves. For each move we describe how the move
updates the CSs (the update rules), give the legal next stepspossi-
ble by the other agent (the dialogue rules), and detail the way that the
move integrates with the agent’s use of argumentation (the rationality
rules).

In the following descriptions, we suppose that agentP
addresses the move to the agentC. The AS is thereforehA(�P);Undercut;Prefi.
5.1 Basic dialogue moves

assert(p) wherep is any formula inL. This allows the exchange of
information, such as “the weather is beautiful” or “It is my intention
to hang a picture”.

rationality the agent uses the AS to check if there is an ac-
ceptable argument for the factp.

dialogue the other agent can respond with:

1. accept(p),
2. assert(:p),
3. challenge(p).

update CSi(P) = CSi�1(P) [fpg andCSi(C) = CSi�1(C).
This information is added to the CS of the agent making the
assertion.

Note thatC can only make a response if the rationality rule for
that response is satisfied. Thus it can only respond toassert(p) with
assert(:p) if it has an acceptable argument for:p.

assert(S) whereS is a set of formulae inL representing the support
of an argument. Note that in DC players can only assert one propo-
sitional formula so are unable to produce a supporting argument in
one step.

rationality the agent uses the AS to check if the related argu-
ment is acceptable.

dialogue the other agent can play:

1. accept(S),
2. assert(:q), whereq 2 S,

3. challenge(q), whereq 2 S,

4. promise(q) r), whereq 2 S.

update CSi(P) = CSi�1 [SandCSi(C) = CSi�1(C).
Informally, this means that the responding agent can acceptthe whole
support, challenge or deny an element of the support, or promise
something in exchange for an element of the support. The nexttwo
moves allow an agent to elicit a response.

question(p) wherep is a formula inL.

rationality There is no rationality condition.

dialogue The other player can:

1. assert(p),
2. assert(:p),
3. question(q),
4. request(q).

update CSi(P) = CSi�1(P) andCSi(C) = CSi�1(C).
question(p) denotesP asking if p is the case.C can answer either
affirmatively (if it can show it to be the case) or negatively,by asking
another question, or by making a request.

challenge(p) wherep is a formula inL.

rationality There is no rationality condition.

dialogue the other player can onlyassert(S) whereS is the
support of the argument(S; p), or S is the support of the
argument(S; h) such thatp belongs toSandh is one ofP’s
intentions.

update CSi(P) = CSi�1(P) andCSi(C) = CSi�1(C).
5.2 Negotiation moves

The following moves are negotiation specific—while not strictly nec-
essary for negotiation, they make it easier to capture some of the
statements we wish our agents to make.

request(p) wherep is any formula inL.

rationality P uses the AS to identify ap in �B0
C such thatp 2

H and(H; h) is an argument for one ofP’s intentions.

dialogue The other player can:

1. accept(p),
2. refuse(p),
3. challenge(p),
4. promise(q) p).

update CSi(P) = CSi�1(P) andCSi(C) = CSi�1(C) [fpg.
A request is stored in the CS of the receiving agent because,
if accepted, it becomes a commitment on that agent.

A requestis invoked when an agent cannot, or prefers not to, achieve
its intentions alone. The proposition requested differs from an as-
serted proposition in that it cannot be proved true or false—the deci-
sion on whether to accept it or not hinges upon the relation ithas to
C’s intentions (see below).

promise(p) q) wherep andq are formulae inL.

rationality P uses the AS to identify ap in �B0
C such that

p 2 H and(H; h) is an acceptable argument for one ofP’s
intentions, and to check that there is no acceptable argument(H0; h0) for one of its intentionsh0 such thatq 2 H0.

dialogue The other player can:

1. accept(p) q),
2. refuse(p) q),
3. promise(s) p),
4. challenge(q).

update CSi(P) = CSi�1(P) [fqg
andCSi(C) = CSi�1(C) [fpg.

Broadly speaking, an agent will make a promise when it needs to
request something from another, and has something it does not need
(because the thing is not needed to achieve any intentions) which it
can offer in return. In replying to a promise, an agent can accept,
refuse, question why the requested thing is required, or suggest an
alternative trade (C replying withs) p is equivalent toP retracting
its initial promise and replacing it withp) s).

5.3 Responding moves

The following are moves which are made in response to requests and
assertions. The responses are context-specific, dependingon the type
of move made the turn before.

accept(p) wherep is a formula inL. After an assertion or request, an
agent can respond with an explicit acceptance.

rationality In response to an assertion,P uses its AS to check
if there is an acceptable argument forp. If so the move can
be played. In response to a request,P has to check that there
is no acceptable argument(H; h) for one of its intentionsh,
such thatp 2 H. In other words, it is only possible to accept
a request if it doesn’t invalidate the supporting argument for
one of its intentions6.

dialogue The other player can make any move exceptrefuse.

update CSi(P) = CSi�1(P) [fpg andCSi(C) = CSi�1(C).
accept(S) S is a set of formulae inL.

rationality P carries out the same rationality check for each
p 2 Sas it would if contemplatingaccept(p).

dialogue The other player can make any move exceptrefuse.

update CSi(P) = CSi�1(P) [SandCSi(C) = CSi�1(C).
Accepting a set of formulae is just like accepting many individually.

accept(p) q) wherep andq are any formulae inL.

rationality P carries out the same rationality check forp as it
would if contemplatingaccept(p).

dialogue The other player can make any move exceptrefuse.

update CSi(P) = CSi�1(P) [fpg
andCSi(C) = CSi�1(C) [fqg.

P checks thatp does not scupper any of its plans, but is trusting
enough to acceptq. A less trusting agent might at least subjectq
to some check it would actually findq useful. Up to now we have not
found this necessary.

refuse(p) wherep is any formula inL.

rationality P uses the AS to check if there is an acceptable
argument(H; h) for one of its intentionsh such thatp 2 H.

dialogue The other player can make any move exceptrefuse.

update CSi(P) = CSi�1(P)nfpg andCSi(C) = CSi�1(C).
ThusP will refuse requests which are necessary to achieve its inten-
tions. There is also arefusefor promises:

refuse(p) q) wherep andq are any formulae inL.6 As in [7] an argument for an intention is essentially a plan for achieving it,
so allowingp would invalidate this plan.

rationality P uses the AS to check if there is an acceptable
argument(H; h) for one of its intentionsh such thatp 2 H.

dialogue The other player can make any move exceptrefuse.

update CSi(P) = CSi�1(P)nfqg
andCSi(C) = CSi�1(C)nfpg.

As some proof of the utility ofM0we can show:

Theorem 3 The set of movesM0is sufficient to capture the commu-
nication language CL from [10].

Proof (sketch) [10] proposed a communication language CL which
contains the illocutionsrequest, accept, reject, offer, withdraw,
appeal, threaten, reward. The first three have obvious equivalents inM0, offer, withdrawandappealare syntactic sugar forasserts (both
of single propositions and of support sets), whilerewardandthreaten
can be captured bypromisesincepromise(:p) q) threatens to do
q unless the other doesp. 2
What this means is thatM0can be used as a means of implementing
the communication language CL in such a way that the protocolfor
building and interpreting arguments to support illocutions, lacking in
[10], is provided.

6 An example negotiation dialogue

To give a flavour of the kind of negotiations which can be captured
usingM0, we give an example based upon the home-improvement
agents introduced in [7] demonstrating that our approach permits the
same kind of reasoning. AgentP has the intention of hanging a pic-
ture, knows how to do this using a nail, but lacks a nail with which to
do this. AgentC has the intention of hanging a mirror, knows how to
do this, and has all the necessary resources to do so. One of these is
a lone nail, whichP has its eye on. The following dialogue ensues:

P: Please give me a nail.
C: No.
P: Why won’t you give it to me?
C: Because I want to hang a mirror and for that I need a nail.
P: I understand.

In terms of our framework, the following takes place. FirstP tries
to build an argument for its intention to hang the mirror and finds it
needs a nail to do this. As a result it makes the moverequest(nail),
which insertsnail into CS(C).C finds thatnail is part of its only
argument to achieve its own intention, so replies withrefuse(nail),
removing nail from its commitment store, andP responds with
challenge(nail). C answers the question with:

assert(mirror; nail; nail ^mirror ! hang mirror)
which has the effect of placing these formulae in CS(C).P has no
response which defeats this, soaccepts it, and the formulae are added
to CS(P). The dialogue may be extended along the lines of thatin [7]
with P promising to exchange a screw for the nail,promise(nail)
screw), C questioning why this is useful, andP asserting that it can
be used to hang the mirror.C cannot defeat this final assertion and so
accepts it.

7 Conclusion

This paper has introduced a set of dialogue moves based upon
MacKenzie’s system DC [6], and shown how these can be opera-
tionalized in terms of a system of argumentation. Thus each move is

both precisely defined in terms of the arguments an agent can build,
and it is clear what moves an agent is allowed to make at a given
point in time (this can be determined from the set of acceptable argu-
ments). The moves are a superset of those in [3], including additional
moves which simplify the handling of negotiation dialogues.

The resulting set of moves makes it possible to capture the kind
of negotiation exchanges proposed in [10] as the minimum suitable
set for argumentation-based negotiation, and to engage in the kind of
negotiations discussed in [7]. Thus these moves seem adequate for
supporting negotiations based on argumentation. Our approach is not
only equal in scope to those in [7, 10] (and indeed other argument-
based approaches) but goes somewhat beyond them in directlyrelat-
ing the arguments to the negotiation through the operationalisation of
the dialogue moves. As a result the moves are intimately connected
to the arguments that an agent makes and receives.

The flip-side of this close connection is that the moves “hardwire”
the way the agent behaves. For instance, they would need to bere-
vised to capture selfish agents who do not give up resources, or to
capture agents which accept arguments based on their place in the
social order as in [10]. Mechanisms for allowing more flexible social
attitudes are the topic of our current work, along with the extension of
the base language to something more expressive than propositional
logic.

Acknowledgements:This work was partially supported by the Com-
mission of the European Communities under contract IST-1999-
10948, Sustainable Lifecycles in Information Ecosystems.

REFERENCES
[1] L. Amgoud, Contribution a l’integration des préferences dans le

raisonnement argumentatif, Ph.D. dissertation, Thèse de doctorat de
l’Université Paul Sabatier, Toulouse, Juillet 1999.

[2] L. Amgoud and C. Cayrol, ‘On the acceptability of arguments in
preference-based argumentation framework’, inProceedings of the
14th Conference on Uncertainty in Artificial Intelligence, pp. 1–7,
(1998).

[3] L. Amgoud, N. Maudet, and S. Parsons, ‘Modelling dialogues using
argumentation’, inInternational Conference on Multi-Agent Systems,
Boston, MA, (2000).

[4] L. Amgoud and S. Parsons, ‘An argumentation framework for merging
conflicting knowledge bases’, Technical report, Department of Elec-
tronic Engineering, Queen Mary and Westfield College, (2000).

[5] P. M. Dung, ‘On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming andn-person games’,
Artificial Intelligence, 77, 321–357, (1995).

[6] J. MacKenzie, ‘Question-begging in non-cumulative systems’,Journal
of philosophical logic, 8, 117–133, (1979).

[7] S. Parsons and N. R. Jennings, ‘Negotiation through argumentation—a
preliminary report’, inProceedings of the 2nd International Conference
on Multi Agent Systems, pp. 267–274, (1996).

[8] S. Parsons, C. Sierra, and N. R. Jennings, ‘Agents that reason and nego-
tiate by arguing’,Journal of Logic and Computation, 8(3), 261—292,
(1998).

[9] C. Reed, ‘Dialogue frames in agent communication’, inProceedings of
the 3rd International Conference on Multi Agent Systems, pp. 246–253,
(1998).

[10] C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons, ‘Aframework for
argumentation-based negotiation’, inProceedings of the 4th Interna-
tional Workshop on Agent Theories, Architectures and Languages, pp.
167–182, (1997).

[11] K. Sycara, ‘Argumentation: Planning other agents’ plans’, in Proceed-
ings of the Eleventh International Joint Conference on Artificial Intel-
ligence, pp. 517–523, (1989).

[12] F. Tohmé, ‘Negotiation and defeasible reasons for choice’, in Proceed-
ings of the Stanford Spring Symposium on Qualitative Preferences in
Deliberation and Practical Reasoning, pp. 95–102, (1997).

