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Abstract. Autonomous agents operating in complex dynamic en-
vironments need the ability to integrate robust plan execution with
higher level reasoning. This paper describes work to combine low
level navigation techniques drawn from mobile robotics with delib-
eration techniques drawn from intelligent agents. In particular, we
discuss the combination of a navigation system based on fuzzy logic
with a deliberator based on the belief/desire/intention (BDI) model.
We discuss some of the subtleties involved in this integration, and
illustrate it with an example.

1 INTRODUCTION

Milou the robot works in a food factory. He has to regularly goand
fetch two food samples (potato crisps) from two production lines in
two different rooms, A and B, and take them to an electronic tester
in the quality control lab. Milou must now plan his next delivery. He
decides to get the sample from A first, since room A is closer than
B. While going there, however, he finds the main door to that room
closed. Milou knows that there is another door that he could use,
but he considers the desirability of doing so. The alternative route
to A is hard for Milou, since it goes through a long narrow corridor
which is usually cluttered with boxes. Besides, doors usually do not
stay closed for long. Hence, Milou decides to go to B first, andcome
back to A later on. He goes to room B, picks up the potato crispsand
returns. The door to A is still closed, and this time Milou hasno other
choice than taking the difficult route. He does so, obtains the desired
crisps, and finally goes to the lab and completes his task.

Performing the above task requires the ability to navigate robustly
in real-world, unsimplified environments. Milou must be able to reli-
ably find his way, keep track of his own position, avoid any obstacles
in the cluttered corridor, and so on. However, this task alsorequires
some higher level capabilities, like reasoning about alternative ways
to perform a given task, and reconsidering available options in the
face of new events. The development of intelligent mobile robots
and their deployment in real-world environments will critically de-
pend on our ability to integrate these two aspects of the autonomous
navigation problem.

Today’s research on mobile robotics has produced a large number
of techniques for robust navigation in real environments inthe pres-
ence of uncertainty, for example [1, 5, 11]. These techniques typi-
cally focus on the navigation problem, and do not involve abstract
reasoning processes of the type encountered in the above scenario.
On the other hand, research in intelligent agency has resulted in a
number of powerful theories for reasoning about actions andplans.1 Department of Computer Science, University of Liverpool, Chad-
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University, S-70182̈Orebro, Sweden.http://www.aass.oru.se

Indeed, much of the research activity from the intelligent agent com-
munity in the mid-to-late 1980s was focussed around the problem
of designing agents that could achieve an effective balancebetween
deliberation (the process of deciding what to do) andmeans-ends
reasoning(the process of deciding how to do it) [3].

One particularly successful approach that emerged at this time was
the belief-desire-intention (BDI) paradigm [3, 7, 13]. The develop-
ment of theBDI paradigm was to a great extent driven by Bratman’s
theory of (human) practical reasoning [2], in whichintentionsplay a
central role. Put crudely, since an agent cannot deliberateindefinitely
about what courses of action to pursue, the idea is it should eventu-
ally commit to achieving certain states of affairs, and thendevote
resources to achieving them. These chosen states of affairsare inten-
tions, and once adopted, they play a central role in future practical
reasoning [2, 4].

A major issue in the design of agents that are based upon models
of intention is that of when toreconsiderintentions. An agent cannot
simply maintain an intention, once adopted, without ever stopping to
reconsider it. From time-to-time, it will be necessary to check, (for
example), whether the intention has been achieved, or whether it is
believed to be no longer achievable [4]. In such situations,it is neces-
sary for an agent to deliberate over its intentions, and, if necessary, to
change focus by dropping existing intentions and adopting new ones.

Clearly, an agent’s intention reconsideration policy willaffect its
performance, and the optimal policy for a given agent will beheavily
dependent upon its environment. There has been a certain amount of
work on this problem in the area of intelligent agents, from both a
formal [17] and an experimental [9, 16] perspective. However, most
of this work has concentrated on agents in environments which are
rather simple when compared to the environment Milou operates in.
Indeed, to our knowledge, there has been no work which attempts to
investigate intention reconsideration in environments which are both
complex and dynamic.

Our research aims to address this deficit, identifying suitable
mechanisms and strategies for intention reconsideration which work
well when combined with the kind of low-level control mechanisms
required by agents which operate in complex dynamic environments.
This paper describes one approach which combines a robust navi-
gation system based on fuzzy logic [14, 15] and aBDI system for
handling intentions. Before presenting the combination, however, we
discuss the problem of intention reconsideration with respect to the
formal model developed in [17].

2 THE FORMAL MODEL

Following [17], our agents have two main data structures: abelief set
and anintention set. An agent’s beliefs represent information that the
agent has about its environment. LetBbe the set of all beliefs. For the
most part, the contents ofB will not be of concern to us here. How-



ever, it is often useful to suppose thatB contains formulae of some
logic, so that, for example, it is possible to determine whether two be-
liefs are mutually consistent or not. An agent’s actions at any given
moment are guided by itsintention set, and its intentions may be
thought of as states of affairs that the agent has committed to bring-
ing about. These may be structured in some way—for instance in a
hierarchy with high level intentions defined as a set of lowerlevel
intentions—and may be ordered. Formally, letI be the set of all in-
tentions. Again, we are not concerned here with the contentsof I .
As with beliefs, however, it is often useful to assume that intentions
are expressed in some sort of logical language. An agent’slocal state
will then be a pair(b; i), whereb � B is a set of beliefs, andi � I
is a set of intentions. LetL = }(B) � }(I) be the set of all internal
states of the agent. We usel (with annotations:l0; l1; : : :) to stand for
members ofL. If l = (b; i), then we denote the belief component
of l by bl , and the intention component byi l . For the formal model
we assume a fixed set of intentions which have been generated from
some set of desires in the usual way [3].

Agents do not operate in isolation: they are situated inenviron-
ments; we can think of an agent’s environment as being everything
external to the agent. We assume that the environment external to
the agent may be in any of a setE = fe; e0; : : :g of states. For now
we assume that an agent knows what state the environment is in, ac-
knowledging that, in future work, we will have to take account of the
fact that any agent only has partial knowledge of the environment.
Together, an agent and its environment make up asystem. Theglobal
state of a system at any time is thus a pair containing the state of the
agent and the state of the environment. Formally, letG = E� L be
the set of all such global states. We useg (with annotations:g; g0; : : :)
to stand for members ofG.

Our agents have four main functional components, which together
generate their behaviour: anext-state function, a meta-level control
function, a deliberation function, and anaction function. The next
statefunction can be thought of as abelief revision function. On the
basis of the agent’s current state and the state of the environment, it
determines a new set of beliefs for the agent, which will include any
new information that the agent has perceived. An agent’s next-state
function thus realises whateverperceptionthe agent is capable of.
Formally, a next-state function is a mappingN : E�}(B)! }(B).

The next component in our agent architecture is meta-level con-
trol. The idea here is that at any given instant, an agent has two
choices available to it. It can eitherdeliberate(that is, it can expend
computational resources deciding whether to change its focus), or
else it canact (that is, it can expend resources attempting to actu-
ally achieve its current intentions). Note that we assume the only
way an agent can modify its intentions is through explicit delibera-
tion. To represent the choices available to an agent, we willassume a
setC = fd; ag, whered denotes deliberation, anda denotes action.
The purpose of an agent’smeta-level control functionit to choose
between deliberation and action. If it chooses to deliberate, then the
agent subsequently deliberates; if its chooses to act, thenthe agent
subsequently acts. Formally, we can represent such strategies as func-
tionsM : L ! C.

Thedeliberationprocess of an agent is represented by a function
that, on the basis of an agent’s internal state, determines anew set of
intentions. Formally, we can represent this deliberative process via
a functionD : L ! }(I). If an agent decides to act, rather than
deliberate, then it is acting to achieve its intentions. To do so, it must
decidewhich action to perform. The action selection component of
an agent is essentially a function that, on the basis of the agent’s
current state, returns an action, which represents that which the agent

has chosen to perform. LetAc = f�; �0; : : :g be the set of actions.
Formally, an action selection function is a mappingA : L ! Ac.

Finally, we define an agent to be a 5-tuple(M;D;A;N ; l0),
whereM is a meta-level control function,D is a deliberation func-
tion,A is an action selection function,N is a next-state function, and
l0 2 L is aninitial state.

3 MILOU IN THEORY

Our intention in introducing this formal model is to shed light upon
the problems one faces when attempting to integrate a high-level
agent architecture like theBDI model with the concrete requirements
of a mobile robot. Consider Milou once again. In the abstractterms
used by theBDI model we can consider Milou to have a set of possi-
ble intentions:

ic test 
risps ia take the short route to A
i f fet
h 
risps ia0 take the long route to A
i t taste 
risps ib go to B
i l go to the lab

These intentions are hierachically structured and ordered, with ic be-
ing composed ofi f followed by i t, and i f being composed ofia or
ia0 along withib and followed byi l. The lowest level of these inten-
tions have corresponding actions denoted by�a; �a0 ; �b; �l . Milou
also has a set of possible beliefs:

ba short route to A is viable bb door to B is open
ba0 long route to A is viable bf go to A �rst

Milou starts with the initial state:

l0 = (fba; ba0 ; bb; bfg; ficg)
so he has the intention to carry out his usual task of testing crisps,
and believes all is well with the world. Having no possible action,
Milou’s meta-level control functionM indicates he should deliber-
ate, and he generates a new set of intentionsfic; i f ; iag—to achieve
the intention of testing the crisps he must first fetch them and the first
step in this fetching is to go toA by the short route. At this pointM
decides to act, calls the action selection functionA, andA selects
action�a. As a result, Milou starts to go toA. Midway through this
action, Milou realises this action has failed because the door to A is
closed—that is, he revises his beliefs to getf:ba; ba0 ; bb;:bf g, andM then decides to deliberate. This deliberation generates a new set
of intentionsfic; i f ; ibg. M then chooses to act,A selects�b, and
Milou starts to execute�b. When this action is complete, there is,
once again, no action to execute, and the meta-level controller once
more decides to deliberate.

The reason for stepping through the example like this is to high-
light three particular issues that need to be solved in orderto useBDI

systems, which work at precisely this kind of level of detail, with mo-
bile robots. First, there is the issue of moving from intentions to ac-
tions. Although our description is a little abstract, assuming that there
is a single action to achieve each intention, it is close to the reality
of implementedBDI systems. For instance,PRS [6] works out how
to achieve intentions by pulling pre-compiled plans from a plan li-
brary. Mobile robots will require rather more sophisticated planners,
in particular planners which can plan robustly under the consider-
able uncertainty that real world mobile robots are subject to. Second,
there is the whole issue of when to deliberate as against whento act.
Experimental work on the problem [9, 16] has concentrated onthe
relationship between the speed of change of an environment and the



frequency of redeliberation. Our situation is more subtle—because
considerable effort can be expended in trying to achieve an intention
that is no longer achieveable (like trying to pass through a closed
door, outside which Milou will circle forever), it is necessary to be
able to detect the failure of a planduring execution. Third, there is
the need to handle uncertainty in Milou’s view of the world. While
the formal model assumes boolean beliefs—either Milou believes the
door toA is open or he believes it is closed—the reality is more com-
plex. All Milou will have is a degree of belief, based on sensor input,
that the door is open or closed. As discussed elsewhere, for example
[1, 5, 11], handling this uncertainty requires sophisticated models.
To solve these problems we turned to the use of Saffiotti’s ‘Thinking
Cap’ [14, 15].

4 FROM THEORY TO PRACTICE

The ‘Thinking Cap’ (TC)3 is a system for autonomous robot naviga-
tion based on fuzzy logic which has been implemented and validated
on several mobile platforms [14, 15]. The main ingredients of the TC

are:� a library of fuzzy behavioursfor indoor navigation, like obstacle
avoidance, wall following, and door crossing;� a context-dependent blendingmechanism that combines the rec-
ommendations from different behaviours into a tradeoff control;� a set ofperceptual routines, including sonar-based feature extrac-
tion, and detection of closed doors and blocked corridors;� an approximatemapof the environment, together with a position-
ing mechanism based on natural landmarks;� anavigation plannerthat generates a behaviour combination strat-
egy, called a B-plan, that achieves the given navigation goal; and� a monitor that reinvokes the planner whenever the current B-plan
is no longer adequate for achieving the current goal.

For the purposes of this paper, we regard theTC as a black box that
provides a robust navigation service, and that accepts goals of the
form ‘(goto X)’. There are however two characteristics ofTC that
are important here.

First, navigation goals inTC are fuzzy: in ‘(goto X)’, ‘ X’ is a fuzzy
location in the robot’s map. (More precisely, a goal is formally de-
fined in theTC framework as a fuzzy set of trajectories.) This means
that a goal inTC can be more or less satisfied, as measured by ade-
gree of satisfaction, a real number in the interval[0; 1℄. Typically, this
degree depends on the distance between the robot and the desired lo-
cation, but more complex goals may have more complex degreesof
satisfaction.

Second, the ‘adequacy’ of the current B-plan which is monitored
by theTC is in fact adegree of adequacy, again measured by a num-
ber in[0; 1℄. This degree of adequacy is the result of the composition
of three terms:

1. a degree of ‘goodness’, that takes into account the prior informa-
tion available about the environment; for example, a B-planthat
includes passing through a long and narrow corridor has a small
degree of goodness;

2. a degree of ‘competence’, that dynamically considers thetruth of
the preconditions of the B-plan in the current situation; for exam-
ple, if a door that has to be crossed is found closed this degree
drops to 0; and

3. a degree of ‘conflict’, that measures the conflict between the be-
haviours which are currently executing in parallel.3 http://www.aass.oru.se/~asaffio/Software/TC/

Figure 1. Integration between aBDI deliberator and the Thinking Cap.

Now theBDI model and the Thinking Cap represent two ends of the
spectrum as far as the mental abilities of an autonomous robot are
concerned. TheTC can construct plans to achieve a single high level
intention (like ‘go to the lab’), but has no grasp of the sequence of
high level intentions necessary to carry out the robot’s overall goals.
In contrast, theBDI model (at least in so far as we have analysed it
with respect to intention reconsideration) is only concerned with high
level intentions and whether or not they should be reconsidered as its
beliefs about the world themselves change. These may be combined
as shown in Figure 1.

The BDI deliberator provides the deliberation functionD in the
formal model, generating high-level intentions of the type(goto X)
and sending them to theTC. (In future versions, intentions may in-
clude manipulation or observation activities.) TheTC implements the
action selection functionA, receiving these intentions and consider-
ing them as goals. For each goal, it generates a B-plan—each corre-
sponds to an action in the formal model—and starts execution. The
two components run as concurrent processes, with control cycles of
2s and 100ms respectively.

TheTC also monitors this execution, and switches to a new B-plan
if the current one turns out to be inadequate. During execution, theTC

recomputes the current degrees of satisfaction and adequacy every
control cycle. These degrees are sent back to theBDI deliberator.
From the point of view of the deliberator, the degree of satisfaction
measures how much the current intention has been achieved, and the
degree of adequacy measures how much this intention is considered
achievable. This information is thus part of the input toD. In contrast
to the standardBDI model, however, this information is not given by
binary values, but by continuous measures made possible by the use
of fuzzy set theory in theTC. It is these indicators of the state of
the worldvis à visthe current intention which help the deliberator to
determine when it is appropriate to reconsider its intentions.

Considering the formal model described above, we should note
that, at the moment, the belief setB is partitioned between theBDI

interpreter and theTC. In particular, beliefs that are affected by the
dynamic nature of the world—in this caseba, ba0 andbb—are stored
in theTC and updated as a result of sensor readings. These beliefs are
used to determine the degrees of satisfaction and adequacy.The more
static knowledge is kept in theBDI deliberator and updated accord-
ing to the degrees of satisfaction and adequacy. It is these measures
which, in practice, cause Milou to change from believingbf to :bf

when he finds that:ba is true. These measures, therefore, help to re-
late the sensor-derived beliefsba, ba0 andbb which are stored in the
TC to the intention determining beliefbf which is stored in theBDI

system.
The deliberator also uses these values in two other important ways.

First, to decidewhen it is time to deliberate. Two of the possible
causes that lead the deliberator to reconsider its intentions are: (i) an
increase in the value of satisfaction; and (ii) a drop in the value of
adequacy. Second, it uses the values in the deliberation itself as a
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Figure 2. Two intention trees for our example task.
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Figure 3. Milou has the intention(goto A), but this turns out to be difficult
to achieve, and adopts the new intention(goto B).

means of comparing the available options. If this deliberation results
in a new intention being adopted, it is passed to theTC. As we shall
see below, considering degrees instead of binary values allows the
deliberator to make more informed decisions.

5 EXPERIMENTAL RESULTS

By way of validation of our approach, we report an experimentwhere
we execute the potato crisp scenario in a simulated environment. We
have used the Nomadic simulator, which includes simulationof the
sonar sensors and some moderate sensor and positioning noise. This
experiment is meant to illustrate the concepts and mechanisms in-
volved in our integrated approach to robot deliberation andnaviga-
tion in a reasonably realistic environment (although it cannot take the
place of real experiments on a live robot)4. The successive phases of
the simulated run are shown in Figures 3, 4, and 5. Figure 6 shows
the values of adequacy and of satisfaction of the currently executing
intention at each moment of the run.

Initially, the BDI deliberator considers the new task and decides a
strategy, represented by the intention tree shown in Figure2 (left).
The details of how this is done are not relevant here (the dotsindi-
cate other intentions, like picking up the crisps, which we ignore);
it suffices to note that the intentions have a temporal order,which is
that of a left to right depth-first traversal of the tree. The deliberator
then passes the first intention(goto A) to TC, which generates a suit-
able B-plan for it. In this case there are two possible B-plans, one for
each possible door leading to A, and theTC selects the one with the
highest degree of (expected) goodness. Since theTC knows about
the low degree of traversability of the lower corridor,5 the selected
B-plan is the one that goes through the main door of A, the one on
its left wall. Milou starts executing this B-plan from the lower left
corner, as indicated by (1) in Figure 3.

When Milou arrives at this door (2), the sonars detect that the door
is closed. Since one of the assumptions in the B-plan is that the door4 We are currently in the process of implementing our integrated system on a

Nomad 200.5 Currently, this information is stored in the map; in the future, the robot may
acquire this knowledge during exploration.
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Figure 4. Milou has the intention(goto A) once more.
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Figure 5. Both previous intentions are fulfilled, and Milou adopts the
intention(goto Lab).

must be open, the degree of adequacy of this plan drops to 0 (Figure 6
at about 20 s). TheTC notices the problem, generates a new B-plan
that goes through the second door, and starts executing it. However,
this B-plan has a low degree of goodness because it includes passing
through the cluttered corridor. This causes a drop of the adequacy
level to a low value of 0.2. TheBDI deliberator notices this and re-
considers its options. Since the current intention turns out to be diffi-
cult (but not impossible) to achieve, and there is an alternative way to
perform the task (Figure 2 right), the deliberator decides to switch to
this alternative and to reverse the order of visiting the twoproduction
lines. Hence, it sends the new intention(goto B) to theTC (Figure 6
at 30 s). TheTC generates a new B-plan for this intention and swaps it
in. Poor Milou then stops his journey to the lower corridor (point (3)
in Figure 3), turns around, heads to room B, and eventually reaches
the collection point in front of conveyer belt B.

The achievement of the intention(goto B) is reflected in the rise
of the satisfaction level (Figure 6 at 75 s). This is noticed by theBDI

deliberator, which then sends the next intention to theTC: in our
case, this is again the intention(goto A). Since the information about
closed doors inside theTC is transient, theTC again generates a B-
plan for this intention which involves going through the main door.
Milou finds his way from room B, but unfortunately he finds thatthe
door is still closed (Figure 4).

As before, theTC generates an alternative B-plan going through
the lower corridor and starts to execute it. This produces a drastic
drop in the adequacy level, which is noticed by theBDI deliberator
(Figure 6 at 160 s). However, this time there is no alternative option,
so the deliberator decides to keep with the current intention, even
though it is difficult to achieve. The navigation functionalities of the
TC allow Milou to safely, if slowly, get around the obstacles, and
reach the collection point in front of conveyer belt A.

The first two intentions are now fulfilled, and theBDI delibera-
tor sends the last one(goto Lab) to theTC. Again, theTC tries the
main door first. This time we are lucky, since someone has actually
opened this door, and Milou eventually finds his way to the lab, thus
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Figure 6. Measures of adequacy (top) and satisfaction (bottom) sent by the TC to the deliberator during the run. The arrows indicate the deliberation points,
and the new intentions generated.

completing the mission (Figure 5).

6 DISCUSSION

This paper extends two lines of work; work on intention reconsid-
eration, and work on integrating low-level navigation and higher-
level reasoning. It extends existing work on intention reconsideration
[9, 16, 17], by considering more complex environments, identifying
a whole range of issues which have not been so apparent before.
These include the need to build and execute robust plans, theabil-
ity to detect the partial failure of those plans, the abilityto measure
the impossibility of achieving current intentions in the presence of
uncertain information, and the ability to use uncertain beliefs about
the environment in the deliberation process. Having identified these
issues, we have proposed a solution based on the integrationof a
traditionalBDI system with the Thinking Cap software.

There are already a number of proposals which use aBDI approach
to integrate low-level navigation and higher-level reasoning. For ex-
ample, in [8, 10, 12]PRS-like systems are used to arbitrate low-level
processes. Our proposal departs from these approaches in the way we
partition the responsibilities between the Thinking Cap and theBDI

deliberation system. We rely on the underlying navigation abilities
of theTC to take care of fuzzy behaviour arbitration and blending in
a sophisticated way. And we limit the role of the deliberation system
to take care of higher level decisions about which overall navigation
goal should be pursued next. This partition allows us to makebet-
ter use of the respective powers of theTC and of theBDI level. In
particular, by passing performance measures from the lowerto the
upper level we allow the latter to take more abstract, yet still fully
informed, decisions.

There are two important ways in which our approach can be devel-
oped. First, the information passed by theTC to theBDI level could
be much richer, including, for example, the reasons why a B-plan
has (partially) failed, the conditions that would increaseits level of
adequacy, or indications about the existence of alternative B-plans
and their degrees of adequacy. This would help theBDI system in
its deliberation (for instance in determining whether to drop an in-
tention or try to achieve it later). Second, the choice of thestrategy
used to decide when theBDI should deliberate and when it should let
the TC do its job depends on the characteristics of the environment,
and it may itself be the result of another, higher level deliberation.
Including this idea in our framework would lead to a ‘tower ofmeta-
controllers’ similar to the one suggested in [17]. Such an approach
would allow the robot to dynamically adjust its policy for redeliber-
ation if it finds that the policy is incorrect with respect to its current
environment. We are currently working on both these developments.

Acknowledgements:This work benefitted from discussions with
Dimiter Driankov and was partially supported by Queen Mary and
Westfield College, and the Swedish KK Foundation.

REFERENCES
[1] R. C. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA,

1998.
[2] M. E. Bratman,Intentions, Plans, and Practical Reason, Harvard Uni-

versity Press: Cambridge, MA, 1987.
[3] M. E. Bratman, D. J. Israel, and M. E. Pollack, ‘Plans and resource-

bounded practical reasoning’,Computational Intelligence, 4, 349–355,
(1988).

[4] P. R. Cohen and H. J. Levesque, ‘Intention is choice with commitment’,
Artificial Intelligence, 42, 213–261, (1990).

[5] D. Driankov and A. Saffiotti eds.,Fuzzy logic techniques for au-
tonomous vehicle navigation, Springer, Berlin, Germany, 2000.

[6] M. P. Georgeff and F. F. Ingrand, ‘Decision-making in an embedded
reasoning system’, inProceedings of the International Joint Conference
on Artificial Intelligence, pp. 972–978, Detroit, Michigan, (1989).

[7] M. P. Georgeff and A. L. Lansky, ‘Reactive reasoning and planning’, in
Proceedings of the Sixth National Conference on Artificial Intelligence,
pp. 677–682, Seattle, Washington, (1987).

[8] F. F. Ingrand, R. Chatila, R. Alami, and F. Robert, ‘PRS: ahigh level su-
pervision and control language for autonomous mobile robots’, in Pro-
ceedings of the International Conference on Robotics and Automation,
Minneapolis, MN, (1996).

[9] D. Kinny and M. P. Georgeff, ‘Commitment and effectiveness of situ-
ated agents’, inProceedings of the International Joint Conference on
Artificial Intelligence, pp. 82–88, Sydney, Australia, (1991).

[10] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti,‘The Saphira
architecture: A design for autonomy’,Journal of Experimental and
Theoretical Artificial Intelligence, 9, 215–235, (1997).

[11] D. Kortenkamp, P. Bonasso, and R. Murphy eds.,Artificial Intelligence
and Mobile Robots, MIT Press, Cambridge, MA, 1998.

[12] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny, ‘UM-PRS: an im-
plementation of the procedural reasoning system for multirobot appli-
cations’, inProceedings of theAIAA/NASA Conf. on Robots in Field,
Factory, Service and Space, (1994).

[13] A. S. Rao and M. Georgeff, ‘Decision procedures for BDI logics’,Jour-
nal of Logic and Computation, 8(3), 293–344, (1998).

[14] A. Saffiotti, K. Konolige, and E. H. Ruspini, ‘A multivalued-logic ap-
proach to integrating planning and control’,Artificial Intelligence, 76,
481–526, (1995).

[15] A. Saffiotti, E. H. Ruspini, and K. Konolige, ‘Blending reactivity and
goal-directedness in a fuzzy controller’, inProceedings of the 2nd IEEE
International Conference on Fuzzy Systems, pp. 134–139, San Fran-
cisco, CA, (1993).

[16] M. Schut and M. Wooldridge, ‘Intention reconsideration in complex
environments’, inProceedings of International Conference on Au-
tonomous Agents, (2000 (to appear)).

[17] M. Wooldridge and S. Parsons, ‘Intention reconsideration reconsid-
ered’, inIntelligent Agents V, eds., J. P. Müller, M. P. Singh, and A. Rao,
Springer-Verlag, Berlin, Germany, (1999).


