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Abstract.
vironments need the ability to integrate robust plan exenutith
higher level reasoning. This paper describes work to coentow
level navigation techniques drawn from mobile roboticshwdelib-
eration techniques drawn from intelligent agents. In patér, we
discuss the combination of a navigation system based owy fogic
with a deliberator based on the belief/desire/intenti®ni] model.
We discuss some of the subtleties involved in this integratand
illustrate it with an example.

1 INTRODUCTION

Milou the robot works in a food factory. He has to regularlyayal
fetch two food samples (potato crisps) from two productioes in
two different rooms, A and B, and take them to an electrorstete
in the quality control lab. Milou must now plan his next deliy. He
decides to get the sample from A first, since room A is closanth
B. While going there, however, he finds the main door to thatrro
closed. Milou knows that there is another door that he cosle, u
but he considers the desirability of doing so. The alteveatoute
to A is hard for Milou, since it goes through a long narrow @or
which is usually cluttered with boxes. Besides, doors ughd not
stay closed for long. Hence, Milou decides to go to B first, amahe
back to A later on. He goes to room B, picks up the potato caspls
returns. The door to A is still closed, and this time Milou hasother
choice than taking the difficult route. He does so, obtaiesibsired
crisps, and finally goes to the lab and completes his task.

Performing the above task requires the ability to navigabestly
in real-world, unsimplified environments. Milou must beatd reli-
ably find his way, keep track of his own position, avoid anytables
in the cluttered corridor, and so on. However, this task edspires
some higher level capabilities, like reasoning about adtéve ways
to perform a given task, and reconsidering available optiorthe
face of new events. The development of intelligent mobileots
and their deployment in real-world environments will ardtily de-
pend on our ability to integrate these two aspects of thenamous
navigation problem.

Today'’s research on mobile robotics has produced a largdbaum
of techniques for robust navigation in real environmentghapres-
ence of uncertainty, for example [1, 5, 11]. These techrigypi-
cally focus on the navigation problem, and do not involvetians
reasoning processes of the type encountered in the abonarire
On the other hand, research in intelligent agency has ezbuit a
number of powerful theories for reasoning about actions@ads.
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Autonomous agents operating in complex dynamic en-Indeed, much of the research activity from the intelligeyéret com-

munity in the mid-to-late 1980s was focussed around thelpnob
of designing agents that could achieve an effective balarb&een
deliberation (the process of deciding what to do) antkans-ends
reasoning(the process of deciding how to do it) [3].

One particularly successful approach that emerged attiéswas
the belief-desire-intentionsp1) paradigm [3, 7, 13]. The develop-
ment of theBDI paradigm was to a great extent driven by Bratman’s
theory of (human) practical reasoning [2], in whicdlbentionsplay a
central role. Put crudely, since an agent cannot delibardédinitely
about what courses of action to pursue, the idea is it shoxddte-
ally commit to achieving certain states of affairs, and tlemote
resources to achieving them. These chosen states of affairsten-
tions, and once adopted, they play a central role in futuaetjmal
reasoning [2, 4].

A major issue in the design of agents that are based upon model
of intention is that of when teeconsiderintentions. An agent cannot
simply maintain an intention, once adopted, without evepging to
reconsider it. From time-to-time, it will be necessary tecdk (for
example), whether the intention has been achieved, or whétrs
believed to be no longer achievable [4]. In such situatidfisneces-
sary for an agent to deliberate over its intentions, ancgdfssary, to
change focus by dropping existing intentions and adoptavgones.

Clearly, an agent's intention reconsideration policy \afflect its
performance, and the optimal policy for a given agent wilhbavily
dependent upon its environment. There has been a certaumaim
work on this problem in the area of intelligent agents, froothba
formal [17] and an experimental [9, 16] perspective. Howereost
of this work has concentrated on agents in environmentshie
rather simple when compared to the environment Milou opsrat.
Indeed, to our knowledge, there has been no work which attetop
investigate intention reconsideration in environmentgctviare both
complex and dynamic.

Our research aims to address this deficit, identifying bieta
mechanisms and strategies for intention reconsideratioohmvork
well when combined with the kind of low-level control mecksams
required by agents which operate in complex dynamic enmeonts.
This paper describes one approach which combines a robust na
gation system based on fuzzy logic [14, 15] andm@ system for
handling intentions. Before presenting the combinatianvédver, we
discuss the problem of intention reconsideration with eespo the
formal model developed in [17].

2 THE FORMAL MODEL

Following [17], our agents have two main data structurdselaf set
and arintention setAn agent’s beliefs represent information that the
agent has about its environment. Babe the set of all beliefs. For the
most part, the contents & will not be of concern to us here. How-



ever, it is often useful to suppose thatontains formulae of some
logic, so that, for example, itis possible to determine Wwbetwo be-
liefs are mutually consistent or not. An agent’s actionsrgt given
moment are guided by itsitention setand its intentions may be
thought of as states of affairs that the agent has committédng-
ing about. These may be structured in some way—for instamee i
hierarchy with high level intentions defined as a set of lolegel
intentions—and may be ordered. Formally, lidde the set of all in-
tentions. Again, we are not concerned here with the contefts
As with beliefs, however, it is often useful to assume th&tntions
are expressed in some sort of logical language. An agexced state
will then be a pair(b, i), whereb C B is a set of beliefs, andC |

is a set of intentions. Ldt = p(B) x p(l) be the set of all internal
states of the agent. We uk@with annotationst’, I, . . .) to stand for

has chosen to perform. Létc = {«, o/, ...} be the set of actions.
Formally, an action selection function is a mappiAag L — Ac.

Finally, we define an agent to be a 5-tugl$1, D, A, N, o),
where M is a meta-level control functior? is a deliberation func-
tion, A is an action selection functiop is a next-state function, and
lo € L is aninitial state

3 MILOU IN THEORY

Our intention in introducing this formal model is to shedhligipon
the problems one faces when attempting to integrate a leiegi-I
agent architecture like thed1 model with the concrete requirements
of a mobile robot. Consider Milou once again. In the abstraahs
used by theDI model we can consider Milou to have a set of possi-

members ofL. If | = (b,i), then we denote the belief component ble intentions:

of | by by, and the intention component loy For the formal model
we assume a fixed set of intentions which have been generated f
some set of desires in the usual way [3].

Agents do not operate in isolation: they are situateénwiron-

ments we can think of an agent’s environment as being everything

external to the agent. We assume that the environment ektern
the agent may be in any of a #&t= {e, ¢, ...} of states. For now
we assume that an agent knows what state the environmentis-in
knowledging that, in future work, we will have to take accbafithe
fact that any agent only has partial knowledge of the enviremnt.
Together, an agent and its environment make sypstemTheglobal
state of a system at any time is thus a pair containing the efahe
agent and the state of the environment. FormallyGlet E x L be
the set of all such global states. We gqgvith annotationsg, ¢, . . .)
to stand for members @.

Our agents have four main functional components, whichthege
generate their behaviour:reext-state functigna meta-level control
function a deliberation function and anaction function The next
statefunction can be thought of astelief revision functionOn the
basis of the agent’s current state and the state of the emuent, it
determines a new set of beliefs for the agent, which willudel any
new information that the agent has perceived. An agent's-stexe
function thus realises whatevperceptionthe agent is capable of.
Formally, a next-state function is a mapping: E x p(B) — o(B).

The next component in our agent architecture is meta-lewel ¢

ic test crisps ia  take the short route to A
it fetch crisps iy take the long route to A
it taste crisps ih gotoB

ii  go to the lab

These intentions are hierachically structured and ordevit i; be-
ing composed of; followed by i;, andis being composed of, or
iy along withi, and followed byi;. The lowest level of these inten-
tions have corresponding actions denotedoyo, , an, . Milou
also has a set of possible beliefs:

ba  short route to Ais viable by door to Bis open
by long route to Ais viable br go to Afirst

Milou starts with the initial state:
lo = ({ba, bar, b, bx }, {ic})

so he has the intention to carry out his usual task of testiisps
and believes all is well with the world. Having no possibl¢iar,
Milou’s meta-level control functionM indicates he should deliber-
ate, and he generates a new set of intentidpss, ia}—to achieve
the intention of testing the crisps he must first fetch thehthe first
step in this fetching is to go ta by the short route. At this pointA
decides to act, calls the action selection functibnand.A selects
actionaa. As a result, Milou starts to go tA. Midway through this

trol. The idea here is that at any given instant, an agent was t ,ction, Milou realises this action has failed because the oA is

choices available to it. It can eithdeliberate(that is, it can expend
computational resources deciding whether to change itssjoor

closed—that is, he revises his beliefs to §eba, by, by, —bx }, and
M then decides to deliberate. This deliberation generateweset

else it canact (that is, it can expend resources attempting to actu-q¢ intentions{ic, ir, iv}. M then chooses to actl selectsa, and

ally achieve its current intentions). Note that we assungedhly
way an agent can modify its intentions is through explicitldza-
tion. To represent the choices available to an agent, weagslime a
setC = {d, a}, whered denotes deliberation, areddenotes action.
The purpose of an agent'eeta-level control functioiit to choose
between deliberation and action. If it chooses to delileeridien the
agent subsequently deliberates; if its chooses to act, ttteeagent
subsequently acts. Formally, we can represent such seai@sgfunc-
tionsM : L — C.

Milou starts to executey,. When this action is complete, there is,
once again, no action to execute, and the meta-level ctertiaice
more decides to deliberate.

The reason for stepping through the example like this is gi-hi
light three particular issues that need to be solved in daleseBDI
systems, which work at precisely this kind of level of detaith mo-
bile robots. First, there is the issue of moving from intens to ac-
tions. Although our description is a little abstract, asswygithat there
is a single action to achieve each intention, it is close &ordality

Thedeliberationprocess of an agent is represented by a functions implementedsDI systems. For instancers [6] works out how

that, on the basis of an agent’s internal state, determinesvaset of
intentions. Formally, we can represent this deliberatinecess via

to achieve intentions by pulling pre-compiled plans fromlangi-
brary. Mobile robots will require rather more sophistichanners,

a functionD : L — p(l). If an agent decides to act, rather than iy particular planners which can plan robustly under thesitter-

deliberate, then it is acting to achieve its intentions. #®d, it must

able uncertainty that real world mobile robots are subjcsecond,

decidewhich action to perform. The action selection component of 16 is the whole issue of when to deliberate as against whet.

an agent is essentially a function that, on the basis of tleatagy
current state, returns an action, which represents thathihe agent

Experimental work on the problem [9, 16] has concentratethen
relationship between the speed of change of an environnmehtha



frequency of redeliberation. Our situation is more subtteeause
considerable effort can be expended in trying to achieveamiion
that is no longer achieveable (like trying to pass throughoaet
door, outside which Milou will circle forever), it is necesy to be
able to detect the failure of a platuring execution. Third, there is
the need to handle uncertainty in Milou’s view of the worldhNg
the formal model assumes boolean beliefs—either Milolelel the
door toAis open or he believes it is closed—the reality is more com-
plex. All Milou will have is a degree of belief, based on serisput,
that the door is open or closed. As discussed elsewherexdonge
[1, 5, 11], handling this uncertainty requires sophisgdamodels.
To solve these problems we turned to the use of Saffiotti'&fRihg
Cap’ [14, 15].

BDI Deliberator

Satisfaction T TAdcquacy llmcmions

Thinking Cap
+ :

Figure 1. Integration between BDI deliberator and the Thinking Cap.

Now theBDI model and the Thinking Cap represent two ends of the
spectrum as far as the mental abilities of an autonomoug iaxieo
concerned. Thac can construct plans to achieve a single high level
4 FROM THEORY TO PRACTICE intention (like ‘go to the lab’), but has no grasp of the semeeof
high level intentions necessary to carry out the robot'salgoals.

In contrast, thesbl model (at least in so far as we have analysed it
with respect to intention reconsideration) is only coneerwith high
level intentions and whether or not they should be reconsitias its
beliefs about the world themselves change. These may beigechb

e a library offuzzy behaviourgor indoor navigation, like obstacle s shown in Figure 1.

The ‘Thinking Cap’ c)® is a system for autonomous robot naviga-
tion based on fuzzy logic which has been implemented andaisil
on several mobile platforms [14, 15]. The main ingredierithe TC
are:

avoidance, wall following, and door crossing; The BDI deliberator provides the deliberation functighin the

« acontext-dependent blendimgechanism that combines the rec- formal model, generating high-level intentions of the tygeto X)
ommendations from different behaviours into a tradeoffain ~ @nd sending them to thec. (In future versions, intentions may in-

e a set ofperceptual routinesincluding sonar-based feature extrac- clude manipulation or observation activities.) Tteimplements the
tion, and detection of closed doors and blocked corridors; action selection functiopd, receiving these intentions and consider-

e an approximatenapof the environment, together with a position- ing them as goals. For each goal, it generates a B-plan—eautr c
ing mechanism based on natural landmarks; sponds to an action in the formal model—and starts execuliba

« anavigation plannethat generates a behaviour combination strat-tWo components run as concurrent processes, with contet¢sypf
egy, called a B-plan, that achieves the given navigatiot; goal ~ 2S and 100ms respectively. _ _

e amonitorthat reinvokes the planner whenever the current B-plan  TheTc also monitors this execution, and switches to a new B-plan
is no longer adequate for achieving the current goal. if the current one turns out to be inadequate. During exenuthetc

recomputes the current degrees of satisfaction and adegwacy
For the purposes of this paper, we regardtheas a black box that  control cycle. These degrees are sent back tosthedeliberator.
provides a robust navigation service, and that acceptsgdahe  From the point of view of the deliberator, the degree of atison
form ‘(goto X)'. There are however two characteristicsTaf that  measures how much the current intention has been achievéthe
are important here. degree of adequacy measures how much this intention isczresi
First, navigation goals imc are fuzzy: in {goto X)',* X'isafuzzy  achievable. This information is thus part of the inpuftoln contrast
location in the robot's map. (More precisely, a goal is follnde-  to the standarépi model, however, this information is not given by
fined in theTc framework as a fuzzy set of trajectories.) This meanspjinary values, but by continuous measures made possibleshyse
that a goal inTc can be more or less satisfied, as measureddra  of fuzzy set theory in thec. It is these indicators of the state of
gree of satisfactiora real number in the intervid, 1]. Typically, this  the worldvis & visthe current intention which help the deliberator to
degree depends on the distance between the robot and theddesi  determine when it is appropriate to reconsider its interstio
cation, but more complex goals may have more complex degfees  Considering the formal model described above, we should not
satisfaction. that, at the moment, the belief $tis partitioned between thepI
Second, the ‘adequacy’ of the current B-plan which is meeilo  interpreter and thec. In particular, beliefs that are affected by the
by theTc is in fact adegree of adequacyagain measured by a num-  dynamic nature of the world—in this cabg, b, andb,—are stored
ber in[0, 1]. This degree of adequacy is the result of the compositionn the Tc and updated as a result of sensor readings. These beliefs are
of three terms: used to determine the degrees of satisfaction and adedUsEynore
1. a degree of ‘goodness’, that takes into account the prfora- ;tatic knowledge is kept _in thle_Dl deliberator and updated accord-
ing to the degrees of satisfaction and adequacy. It is thesesunes

tion available about the environment; for example, a B-pleat hich. i . Milou to ch f believin by
includes passing through a long and narrow corridor has d sma/nieh. In practice, cause Milou to change from believ go =
degree of goodness; when he finds thatb, is true. These measures, therefore, help to re-

2. adegree of ‘competence’, that dynamically considergrtit of Iatet thti sgntsort-.derlc\j/etd bepg&i& %" I.E:;d b;yv;uph ?re Z[qretcquln the
the preconditions of the B-plan in the current situatiom;eggam- Tc tothe intention determining beliex which Is stored in thebl

ple, if a door that has to be crossed is found closed this degreSyStem' . . .
drops to 0: and The deliberator also uses these values in two other impostzys.

3. adegree of ‘conflict’, that measures the conflict betwéenbie- First, tot: etclldag?ﬁ mc: 'ﬁbt'm? tot dellbera.tg. T\;VO ?];I;i;)o.ssmle
haviours which are currently executing in parallel. causes that lead the deliberalor {0 reconsicer its intes () an
increase in the value of satisfaction; and (ii) a drop in thkie of
3http://ww. aass. oru. se/ “asaf fi o/ Sof t war e/ TC/ adequacy. Second, it uses the values in the deliberatielfi é#s a




Test-Crisps Test-Crisps
Fetch-Crisps Fetch-Crisps

Taste-Crisps Taste-Crisps
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Goto A - GotoB -+ GotoLab - GotoB - Goto A -+ Goto Lab

Figure 2. Two intention trees for our example task.
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Figure 3. Milou has the intentior{goto A), but this turns out to be difficult
to achieve, and adopts the new intent{goto B).

means of comparing the available options. If this deliberatesults
in a new intention being adopted, it is passed tottheAs we shall
see below, considering degrees instead of binary valuewslihe
deliberator to make more informed decisions.

5 EXPERIMENTAL RESULTS

By way of validation of our approach, we report an experinvemtre
we execute the potato crisp scenario in a simulated envieohrive
have used the Nomadic simulator, which includes simulatiotne
sonar sensors and some moderate sensor and positionieg Tiois
experiment is meant to illustrate the concepts and meamanis-
volved in our integrated approach to robot deliberation aadiga-
tion in a reasonably realistic environment (although itazriake the
place of real experiments on a live rolfoffhe successive phases of
the simulated run are shown in Figures 3, 4, and 5. Figure @sho
the values of adequacy and of satisfaction of the currexggating
intention at each moment of the run.

I -
-_.— N

Figure 4. Milou has the intentiorf{goto A) once more.
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Figure 5. Both previous intentions are fulfilled, and Milou adopts the

intention(goto Lab).

must be open, the degree of adequacy of this plan drops tg0rg=6

at about 20s). Thac notices the problem, generates a new B-plan
that goes through the second door, and starts executingvietrr,
this B-plan has a low degree of goodness because it incluaksing
through the cluttered corridor. This causes a drop of thejaatey
level to a low value of 0.2. Thepi deliberator notices this and re-
considers its options. Since the current intention turngwbe diffi-
cult (but not impossible) to achieve, and there is an altermavay to
perform the task (Figure 2 right), the deliberator decidesaitch to
this alternative and to reverse the order of visiting the prnauction
lines. Hence, it sends the new intentigoto B) to theTc (Figure 6

at 30 s). The c generates a new B-plan for this intention and swaps it
in. Poor Milou then stops his journey to the lower corridavip (3)

in Figure 3), turns around, heads to room B, and eventuadighes
the collection point in front of conveyer belt B.

Initially, the BDI deliberator considers the new task and decides a The achievement of the intentiqgoto B) is reflected in the rise

strategy, represented by the intention tree shown in Figuiteft).
The details of how this is done are not relevant here (the iddis
cate other intentions, like picking up the crisps, which geare);
it suffices to note that the intentions have a temporal osdeich is
that of a left to right depth-first traversal of the tree. Tledilserator
then passes the first intenti¢goto A) to TC, which generates a suit-
able B-plan for it. In this case there are two possible B-plame for
each possible door leading to A, and theselects the one with the
highest degree of (expected) goodness. Sincethknows about
the low degree of traversability of the lower corridathe selected

of the satisfaction level (Figure 6 at 755s). This is noticgdhe BDI
deliberator, which then sends the next intention to tlkee in our
case, this is again the intenti¢goto A). Since the information about
closed doors inside thec is transient, therc again generates a B-
plan for this intention which involves going through the mdioor.
Milou finds his way from room B, but unfortunately he finds thes
door is still closed (Figure 4).

As before, therc generates an alternative B-plan going through
the lower corridor and starts to execute it. This producesaatit
drop in the adequacy level, which is noticed by #m deliberator

B-plan is the one that goes through the main door of A, the ane o (Figure 6 at 160 s). However, this time there is no altereatition,

its left wall. Milou starts executing this B-plan from thenler left
corner, as indicated by (1) in Figure 3.

When Milou arrives at this door (2), the sonars detect thatithor
is closed. Since one of the assumptions in the B-plan is lieadidor

4 We are currently in the process of implementing our integtatystem on a
Nomad 200.

5 Currently, this information is stored in the map; in the fetuthe robot may
acquire this knowledge during exploration.

so the deliberator decides to keep with the current intantwen

though it is difficult to achieve. The navigation functioitigks of the

TC allow Milou to safely, if slowly, get around the obstaclesda
reach the collection point in front of conveyer belt A.

The first two intentions are now fulfilled, and tle®! delibera-
tor sends the last ongoto Lab) to theTc. Again, theTc tries the
main door first. This time we are lucky, since someone hasafigtu
opened this door, and Milou eventually finds his way to the thabs
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Figure 6.

Measures of adequacy (top) and satisfaction (bottom) setfitebr ¢ to the deliberator during the run. The arrows indicate tHie®ation points,

and the new intentions generated.

completing the mission (Figure 5).
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6 DISCUSSION

This paper extends two lines of work; work on intention rexidn
eration, and work on integrating low-level navigation arighler- [
level reasoning. It extends existing work on intention resideration
[9, 16, 17], by considering more complex environments, iifigng [2]
a whole range of issues which have not been so apparent befor%]
These include the need to build and execute robust planshihe
ity to detect the partial failure of those plans, the abitdymeasure

the impossibility of achieving current intentions in theepence of  [4]
uncertain information, and the ability to use uncertairiéfglabout

the environment in the deliberation process. Having idiectithese 5]
issues, we have proposed a solution based on the integitian 6]

traditionalBDI system with the Thinking Cap software.

There are already a number of proposals which us®i@pproach
to integrate low-level navigation and higher-level reasgnFor ex- 7]
ample, in [8, 10, 12pRrslike systems are used to arbitrate low-level
processes. Our proposal departs from these approachesimayhwe
partition the responsibilities between the Thinking Cag HreBDI
deliberation system. We rely on the underlying navigatibilitees
of the TC to take care of fuzzy behaviour arbitration and blending in

8]

9
a sophisticated way. And we limit the role of the delibenatsystem o
to take care of higher level decisions about which overallgetion
goal should be pursued next. This partition allows us to niake  [10]

ter use of the respective powers of the and of theBDI level. In
particular, by passing performance measures from the Ibovére 11
upper level we allow the latter to take more abstract, ydtfatly
informed, decisions.

There are two important ways in which our approach can beldeve
oped. First, the information passed by theto theBDI level could

[12]

be much richer, including, for example, the reasons why ddB-p [13]
has (partially) failed, the conditions that would incre@tsdevel of
adequacy, or indications about the existence of altemd&iplans  [14]
and their degrees of adequacy. This would helpgbe system in
its deliberation (for instance in determining whether togan in- 15]

tention or try to achieve it later). Second, the choice ofdtrategy
used to decide when tlep1 should deliberate and when it should let
the TC do its job depends on the characteristics of the environment

and it may itself be the result of another, higher level detibion. (16]
Including this idea in our framework would lead to a ‘towemoéta-
controllers’ similar to the one suggested in [17]. Such agregach  [17]

would allow the robot to dynamically adjust its policy fordediber-
ation if it finds that the policy is incorrect with respect te current
environment. We are currently working on both these devalapts.
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