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tMe
hanism design is the e
onomi
 theoryof the design of e�e
tive resour
e allo
ationme
hanisms, su
h as au
tions. Traditionally,e
onomists have approa
hed design problemsby studying the analyti
 properties of di�er-ent me
hanisms. An alternative is to viewa me
hanism as the out
ome of some evolu-tionary pro
ess involving buyers, sellers andthe au
tioneer. As a �rst step in this alter-native dire
tion, we have applied geneti
 pro-gramming to the development of an au
tionpri
ing rule for double au
tions in a wholesaleele
tri
ity marketpla
e. For this purpose weadopted the multi-agent simulation model ofNi
olaisen, Petrov and Tesfatsion.1 Introdu
tionMu
h re
ent work in the �eld of Multi-Agent Systems(MAS) has fo
used on resour
e allo
ation problems,for example (Fatima & Wooldridge 2001; Jennings etal. 2001). These problems are espe
ially diÆ
ult tosolve eÆ
iently in an open system if the values whi
hagents pla
e on resour
es, or the values of their humanprin
ipals, are private and unobservable. In su
h asituation, the diÆ
ulty fa
ing somebody wishing togive the resour
es to those who value them most highlyis that parti
ipating agents 
annot ne
essarily be reliedupon to report their private values truthfully; there isnothing to prevent \greedy" agents from exaggeratingtheir resour
e requirements.Au
tion me
hanisms attempt to over
ome this diÆ-
ulty by having agents support their value-
laims withhard 
ash. Su
h me
hanisms 
an be designed so as toindu
e agents to reveal their true valuations, therebyenabling the allo
ation of resour
es to those agentswho genuinely value them most highly.

Designing me
hanisms to a
hieve spe
i�
 e
onomi
requirements, su
h as a
hieving market eÆ
ien
y ormaximising so
ial welfare, against self-interested in-telligent traders, is no trivial matter as 
an be seenfrom a

ounts of the au
tion design pro
ess for the re-
ent radio spe
trum au
tions in the UK (Klemperer2002). The e
onomi
 theory of me
hanism design ap-proa
hes the task of designing eÆ
ient resour
e allo-
ation me
hanisms by studying the formal, analyti
alproperties of alternative me
hanisms (Ja
kson 2000;Sandholm 1999). Be
ause of the 
omplexities involvedin market design problems, e
onomists are in
reasinglyturning to 
omputational methods in an attempt totake an engineering approa
h to \mi
roe
onomi
 de-sign" (Roth 2001).Our approa
h applies the notion of 
o-evolutionaryma
hine learning (Hillis 1992; Angeline & Polla
k1993; Miller & Cli� 1994) to the mi
roe
onomi
 designproblem. In su

essful appli
ations of 
o-evolution,populations of agents intera
t with ea
h other, an\arms ra
e" spiral develops wherein ea
h populationspurs the other(s) to advan
e and the result is 
ontin-uous learning for all populations. However, this hasbeen notoriously diÆ
ult to a
hieve. Often popula-tions settle into a medio
re stable state, rea
hing a lo-
al optima and being unable to move beyond it.Consequently, there is a growing body of work exam-ining the dynami
s of 
o-evolutionary learning envi-ronments in an attempt to identify phenomena that
ontribute to su

ess (Cli� & Miller 1995; Polla
k &Blair 1998; Fi
i
i & Polla
k 1998; Blair, Sklar, & Funes1999). The following aspe
ts are of parti
ular impor-tan
e:1. 
hoi
e of representation for individuals withinea
h population;2. de�nition of a �tness fun
tion for determiningwhi
h individuals in a population will reprodu
e;3. methodology and proportion for reprodu
tion;



4. sele
tion of learning experien
es for individuals(i.e., who intera
ts with whom, how many timesand how frequently);5. avoidan
e of 
ollusion1 wherein members of di�er-ent populations 
an work together to make non-optimal moves that may produ
e better short-term results for ea
h but 
ause the populationsas a whole to get stu
k in lo
al optima; and6. a 
learly de�ned vision of the lands
ape and howto measure progress so that one 
an even re
ognizeif a lo
al (or indeed global) optimum has beenrea
hed.We see eÆ
ient me
hanisms evolving through repeatedintera
tions between parti
ipants who may also beevolving individually | thus we believe that the 
o-evolutionary methodology is highly appropriate for ourproblem. In our work, we are using geneti
 program-ming (GP) (Koza 1992) to represent individuals withdi�erent roles in an au
tion: the au
tioneer, and thetwo types of traders (buyers and sellers). Through theintera
tions of the traders, individual and group trad-ing strategies evolve, as well as au
tion me
hanismsthemselves. We view the me
hanisms as \hosts" andthe trading strategies as \parasites"; as greedy, non-truthful strategies emerge, it would be hoped thatthe me
hanism population will adapt defenses, andthat strategy-proof, in
entive-
ompatible me
hanismswould evolve.Su
h an approa
h is the long-term aim of our resear
h,and to our knowledge we are the �rst to apply geneti
programming and 
o-evolution to me
hanism design.Here, we report our initial work towards this aim. Toprovide a multi-agent test-bed for su
h an approa
h wehave adopted the wholesale ele
tri
ity market au
tionsimulation model of (Ni
olaisen, Petrov, & Tesfatsion2001), hereafter referred to as NPT. In Se
tion 2, wedes
ribe the NPT model, and our work to repli
atetheir results. Se
tion 3 then des
ribes our use of ge-neti
 programming to 
o-evolve trading strategies forbuyers and sellers in these au
tions. Se
tion 4 presentssome of our preliminary results in using geneti
 pro-gramming to evolve au
tion pri
ing rules. The �nalse
tion 
on
ludes with a brief des
ription of our fu-ture resear
h.2 The NPT modelIn the NPT experiments (Ni
olaisen, Petrov, & Tesfat-sion 2001), a number of traders buy and sell ele
tri
ityin a dis
riminatory-pri
e 
ontinuous double au
tion.1Note that this is not ne
essarily the same as the notionof 
ollusion in au
tion theory.

Every trader has a private value for the ele
tri
ity thatthey trade; for buyers this is the pri
e that they 
anobtain in a se
ondary retail market and for sellers thisre
e
ts the 
osts asso
iated with generating the ele
-tri
ity. Trade in ele
tri
ity is a�e
ted by 
apa
ity 
on-straints; every trader has a �nite maximum 
apa
ityof ele
tri
ity that they 
an generate or pur
hase forresale. The market pro
eeds in rounds of trading. Inea
h round, all the traders are given the opportunityto bid in a random order. Ea
h trader sele
ts a pri
eand submits a bid or an ask at that pri
e and witha quantity equal to their generating 
apa
ity. Tradepro
eeds until the maximum number of au
tion roundsis rea
hed.Agents use a myopi
 reinfor
ement learning algorithmwhi
h is a modi�
ation of the Roth-Erev algorithm(Roth & Erev 1995); the learner 
hooses possible a
-tions from K possible mark-ups, and re
eives a re-ward dire
tly proportional to the pro�ts that resultfrom this o�er. The learner 
hooses a
tions by gen-erating random numbers a

ording to a probabilitydistribution built up linearly from the 
umulative re-wards for ea
h possible a
tion. The modi�ed Roth-Erev algorithm (MRE) has three main parameters: rthe re
en
y parameter; e the experimentation param-eter and s(1) the s
aling parameter.NPT is interested in the market power that 
an be ex-er
ised by buyers or sellers under di�erent market 
on-ditions. Market power is de�ned as the di�eren
e be-tween a
tual pro�ts earned versus the theoreti
al prof-its available in 
ompetitive-equilibrium, expressed as aratio of the equilibrium pro�ts. The di�erent market
onditions are represented by two parameters: relative
on
entration (RCON) and relative 
apa
ity (RCAP).RCON is the ratio of the number of buyers (NB) tothe number of sellers (NS) and RCAP is the relativegenerating 
apa
ity of ea
h group.2.1 NPT resultsThe main results from NPT are summarised in Table1. Ea
h 
ell of the table 
orresponds to parti
ularvalues for RCON and RCAP. The out
ome under these
onditions is summarised by the variables:- Buyer MP { market power exer
ised by buyers- Seller MP { market power exer
ised by sellers- EÆ
ien
y { ratio of total pro�ts earned to totalpro�ts theoreti
ally available in 
ompetitive equi-librium, expressed as a per
entageBe
ause traders use sto
hasti
 strategies, the sensi-tivity of these out
omes to parti
ular values of thepseudo-random number generator (PRNG) seed is



tested by running the experiment 100 times with dif-ferent PRNG seeds on ea
h iteration. For ea
h variablewe present the average result, followed by the standarddeviation in parentheses.These results are signi�
ant be
ause they indi
ate thatthere are market biases inherent in the dis
riminatory-pri
e au
tion rules. For example, one would expe
tthat Seller MP should in
rease as RCAP in
reases, butthis is not what is found by experimentation. NPT
on
ludes that the inherent market-stru
ture is re-sponsible for failure of this hypothesis.2.2 Repli
ation of resultsThis s
enario was sele
ted for our resear
h be
ause ofthe fo
us on market power. As agents evolve su

essfulextra-marginal strategies, their market power indi
eswill in
rease. For example, if sellers were able to em-ploy 
ollusive pri
e-�xing strategies, we should expe
tto see their market power indi
es grow. Di�erent au
-tion rules may have di�ering abilities to 
ounter thiskind of ta
ti
; hen
e, market power out
omes are animportant quantative metri
 to 
onsider in assessingau
tion designs.We began our implementation of the NPT modelby attempting to repli
ate the results presented inthat paper. The software used to run the au
-tion experiments was written in Java. The soft-ware is available under an open-sour
e li
ense athttp://jasa.sour
eforge.net/. The 4-heap algo-rithm (Wurman, Walsh, & Wellman 1998) was used tomaintain au
tion state; all pri
e information was en-
oded using double-pre
ision 
oating point variablesand all quantity information was en
oded using inte-gers. The Mersenne Twister PRNG was used to gen-erate the random numbers required for MRE.The repli
ated results are presented in Table 2. Al-though similar market power and mean eÆ
ien
y out-
omes are obtained, the standard deviations we ob-tained for the eÆ
ien
y out
omes are 
onsiderablylarger than those reported in NPT. These results giveus some 
on�den
e that our experimental setup is a
-
urate, although we are 
ontinuing to try and tra
kdown the sour
e of these in
reased standard devia-tions.3 Co-evolution of Trading Strategiesusing Geneti
-ProgrammingWe next 
ompare the reinfor
ement learning algorithmused by NPT with 
o-evolution of trading strategiesusing geneti
 programming. In this work, we evolve aseparate population of strategies for ea
h trader in theele
tri
ity market s
enario. These strategies evolve in


ompetition with the simultaneously evolving strate-gies of other traders. For these experiments we madeuse of a Java-based evolutionary 
omputation system
alled ECJ.2 The s
enario is similar to the NPT exper-iments, but instead of using the modi�ed Roth-Erevalgorithm to sele
t pri
es, agents sele
t pri
es by eval-uating a fun
tion that was evolved using geneti
 pro-gramming (GP).ECJ implements a strongly-typed GP (Montana 1993)version of Koza's (Koza 1992) original system. Forall of the GP experiments in this paper, the standardKoza parameters were used in 
ombination with thestandard Koza GP operators. The fun
tions given inTables 3 and 4 were used as the GP fun
tion-set, andthe initial populations are generated randomly usingthese fun
tions. As is usually the 
ase with GP, in-dividuals are tree stru
tures 
omposed of these fun
-tions. We used six populations of GP-evolved strate-gies, that is one population for ea
h buyer and sellerin the market. Ea
h population 
ontained 100 tree-individuals. When breeding trees for the next gener-ation, the 
rossover operator is applied with a proba-bility of 0.9, and the reprodu
tion operator is appliedwith a probability of 0.1, as per standard Koza GP(Koza 1992). Individuals are sele
ted for breeding us-ing tournament sele
tion, with a tournament size of7.To evaluate the �tness of individuals in ea
h genera-tion, one member of ea
h population was randomly se-le
ted. The strategies that 
orresponded to these treeswere then played against ea
h other in a 10-round ver-sion of the ele
tri
ity market, and ea
h individual's�tness was set in proportion to the pro�ts obtainedfor the 
orresponding strategy. This 
ontinued untilall individuals in all populations had been evaluated,giving a �tness measure for ea
h individual. Note thatwherever evaluation of the tree resulted in a negativepri
e, or in a division by zero ex
eption, the pri
e wasset to 0 and this was used as the requisite bid or ask.These �tness values, established by 
ompetition be-tween populations are then used, as des
ribed above,to sele
t whi
h individuals from a single populationwill get to reprodu
e (both in terms of being 
opied tothe next generation and undergoing 
rossover).Initially, we are interested in whether high-eÆ
ien
yout
omes are sustained in this experiment. As withthe NPT experiments, high levels of market eÆ
ien
yindi
ate that overall, traders are su

essfully \dis
ov-ering" pro�ts that are available in the market. Wewould not ne
essarily expe
t to see stability, or grad-ual improvement, of ea
h strategy's individual pro�tsin this 
o-evolutionary s
enario. But if overall mar-2http://www.
s.umd.edu/proje
ts/plus/e
/e
j/



Relative Capacity
1/2 1.00 2.00

stdev stdev stdev
Buyer MP -0.13 (0.09) Buyer MP -0.15 (0.09) Buyer MP 0.10 (0.30)
Seller MP 0.55 (0.38) Seller MP 0.38 (0.33) Seller MP -0.10 (0.25)

2
Efficiency 99.81 (0.02) Efficiency 96.30 (0.05) Efficiency 99.88 (0.06)

Relative Buyer MP -0.22 (0.12) Buyer MP -0.13 (0.10) Buyer MP 0.13 (0.33)
Concentration Seller MP 0.80 (0.53) Seller MP 0.28 (0.35) Seller MP -0.10 (0.26)

1
Efficiency 92.13 (0.09) Efficiency 94.59 (0.07) Efficiency 100.00 (0.00)
Buyer MP -0.21 (0.12) Buyer MP -0.14 (0.08) Buyer MP 0.09 (0.24)
Seller MP 0.67 (0.46) Seller MP 0.30 (0.31) Seller MP -0.07 (0.19)

1/2
Efficiency 91.84 (0.09) Efficiency 94.24 (0.07) Efficiency 100.00 (0.00)Table 1: Original NPT market power and eÆ
ien
y out
omes for the best-�t MRE algorithm with 1000 au
tionrounds and parameter values s(1) = 9.00, r= 0.10, and e = 0.20. Refer to the original NPT paper for a detaileddes
ription of the MRE parameters: r the re
en
y parameter; e the experimentation parameter and s(1) thes
aling parameter.

Relative Capacity
1/2 1.00 2.00

stdev stdev stdev
Buyer MP -0.33 (0.07) Buyer MP -0.27 (0.08) Buyer MP 0.10 (0.11)
Seller MP 1.12 (0.31) Seller MP 0.72 (0.32) Seller MP -0.15 (0.10)

2
Efficiency 94.46 (3.87) Efficiency 95.04 (3.43) Efficiency 96.71 (0.51)

Relative Buyer MP -0.39 (0.07) Buyer MP -0.28 (0.08) Buyer MP 0.10 (0.08)
Concentration Seller MP 1.19 (0.40) Seller MP 0.76 (0.30) Seller MP -0.15 (0.07)

1
Efficiency 91.01 (7.61) Efficiency 95.34 (3.26) Efficiency 96.63 (0.47)
Buyer MP -0.38 (0.09) Buyer MP -0.27 (0.08) Buyer MP 0.04 (0.07)
Seller MP 0.84 (0.45) Seller MP 0.72 (0.29) Seller MP -0.10 (0.06)

1/2
Efficiency 84.86 (9.93) Efficiency 94.62 (3.92) Efficiency 96.79 (0.42)Table 2: Repli
ated market power and eÆ
ien
y out
omes for the best-�t MRE algorithm with 1000 au
tionrounds and parameter values s(1) = 9.00, r = 0.10 and e = 0.20

Fun
tion Arguments Return-type Des
ription+ (+ number number) number Addition� (� number number) number Subtra
tion= (= number number) number Division� (� number number) number Multipli
ation1 none number 1DoubleERC none number A double pre
ision 
oating point ephemeralrandom 
onstant in the range (0..1).QuoteBidPri
e none number The 
urrent bid quoteQuoteAskPri
e none number The 
urrent ask quoteTable 3: GP fun
tions 
ommon to all fun
tion-sets



Fun
tion Arguments Return-type Des
ription< (< number number) boolean Less-than fun
tion= (= number number) boolean Equals fun
tion> (> number number) boolean Greater-than fun
tionTrue none boolean TruePrivateValue none number The agent's private valuation forele
tri
ityNand (Nand boolean boolean) boolean Not-and boolean operatorIfElse (IfElse boolean number number) number Return 2nd argument if 
ondi-tion is true, otherwise return 3rdargument.Table 4: Additional GP fun
tions used in evolving trading strategies
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Figure 1: Evolution of mean eÆ
ien
y for RCON=1 and RCAP=1 over 10,000 generations using a �xeddis
riminatory-pri
ing au
tioneer, and 6 sub-populations of 
o-evolving strategies ea
h of size 100.ket eÆ
ien
y does de
line temporarily, we would ex-pe
t the 
o-evolving strategy set as a whole to adaptand reaquire the \lost" pro�ts; thus if strategy sub-populations are su

essfully adapating to new market
onditions, we would expe
t to see market eÆ
ien
yremain stable at near to 100%.Figure 1 shows the evolution of the mean market ef-�
ien
y for ea
h generation of the experiment in the
ase RCAP=1 and RCON=1 over 10,000 generations.Note that by generation 2000, the market eÆ
ien
yhas be
ome stable, and the mean eÆ
ien
y is 74.3.The use of 
o-evolution to evolve trading strategiesis not new in experimental e
onomi
s; for example,see (Pri
e 1997). Our interest in 
o-evolving strate-gies was to verify that su
h an approa
h worked forthis s
enario, and also as a step towards the use of


o-evolutionary te
hniques to evolve trading strategiesand au
tion rules|in other words to evolve me
ha-nisms along with the best way to trade within them.To our knowledge no one has yet done this, and ourpreliminary work towards doing this will be the fo
usof the next se
tion.4 Co-evolution of Au
tion Pri
ingRules and StrategiesAn additional population of au
tioneers was intro-du
ed into our experiment. These agents were derivedfrom the au
tioneer 
lasses that we implemented forour previous experiments, but instead of using thestandard 
ode to set the 
learing pri
e for a giventransa
tion, they used a fun
tion that was evolvedusing GP. The set of fun
tions used for the au
tion
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Figure 2: Evolution of mean eÆ
ien
y for RCON=1 and RCAP=1 over 10,000 generations using an au
tioneerwith a GP-evolved pri
ing rule, and 6 additional populations of 
o-evolving strategies.pri
ing rule 
onsists of those fun
tions in Tables 3 and5. The �tness for the au
tioneer population was setproportional to the total pro�ts earned in the market.Intuitively, the au
tioneer population 
an be thoughtto be \learning" au
tion-pri
ing rules that maintainmarket eÆ
ien
y in the fa
e of 
o-evolving strategies.Our hypothesis is that in this version of the experi-ment, in whi
h there are a small number of traderswith �xed private values, the most robust au
tion pri
-ing rule is the one that sets the pri
e for ele
tri
ityat the equilibrium pri
e, regardless of what tradersa
tually bid. We believe that the au
tioneer popu-lation should dis
over this rule; i.e it should dis
overthe equilibrium pri
e for the market. This is be
auseprivate values are �xed, and the au
tioneer popula-tion has indire
t a

ess to meta-information about themarket | market eÆ
ien
y | that is based on the(in-pra
ti
e unobservable) private values. Of 
ourse,this pri
ing rule would not work in pra
ti
e, be
ause inpra
ti
e private values are not from a �xed, prede�nedset. However, this hypothesis gives us a basis to testsome of our assumptions about this experiment. Fu-ture work will 
onsider s
enarios in whi
h agents withrandomized private-values enter and leave the market.The experimental set-up was a slight variation of theprevious experiment. We added a seventh population,au
tioneers, and evaluated their �tness by runningau
tions with randomly sele
ted buyer and seller in-dividuals (again pi
king one random individual fromea
h of the six populations) and looking at the over-

all pro�ts obtained. The same au
tions were used toevaluate the buyers and sellers, though their �tnesswas still based on lo
al pro�t.Figure 2 shows the evolution of the mean market eÆ-
ien
y for ea
h generation of this version of the exper-iment in the 
ase RCAP=1 and RCON=1 over 10,000generations. As 
an be seen from the graph, the adap-tive au
tioneers are able to improve mean market ef-�
ien
y when 
ompared to the �xed dis
riminatory-pri
e au
tioneer used in the previous se
tion | themean eÆ
ien
y for the adaptive au
tioneer is 94.5. Inaddition, the market rea
hes stability more qui
kly,after only 500 generations.Figure 3 shows the fun
tion tree evolved for the au
-tioneers' pri
ing rule in the �nal generation, and Table6 shows the trading strategy-set for that au
tion. Weare 
urrently investigating whether our hypothesis re-garding the dis
overy of the equilibirum pri
e is borneout by this experiment.5 Con
lusions and Further WorkIn this paper we have reported on the preliminarystages of work aiming to explore the evolution of e
o-nomi
 au
tion me
hanisms. In our initial work, wehave adopted a multi-agent systems test-bed involvingau
tions in an ele
tri
ity marketpla
e, �rst developedin NPT. In that work, the trading agents in the au
-tions were equipped with a modi�ed Roth-Erev learn-ing model, enabling them to 
hange their bids on the
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e))))Figure 3: Best au
tion pri
ing rule in �nal generation of a 10,000 generation experiment for population size 100,RCON = 1, NS = 3 and NB = 3Fun
tion Arguments Return-type Des
riptionAskPri
e none number The pri
e of the ask (o�er to sell) 
urrently being mat
hed in theau
tionBidPri
e none number The pri
e of the bid 
urrently being mat
hed in the au
tionTable 5: Additional GP fun
tions used in evolving au
tioneer pri
ing rulesbasis of their experien
es in su

essive au
tion rounds.We �rst sought to repli
ate the results of NPT, andwere able to obtain similar average results; our stan-dard deviations, however, were mu
h larger than thosereported in NPT. We then 
ompared the use of theMRE learning algorithm with an experiment in whi
hstrategies are 
o-evolved using geneti
 programming.The geneti
 programming approa
h was able to pro-du
e reasonably high eÆ
ien
y out
omes. Finallywe presented some of our preliminary work on evolv-ing au
tion designs using geneti
-programming whi
hagain was able to produ
e relatively high eÆ
ien
yout
omes. We believe that this is the �rst attemptto evolve au
tion me
hanisms.Future work in this area will fo
us on: (i) an analysis ofthe di�erent au
tion rules evolved for ea
h of the 
om-binations of RCAP and RCON that were originally dis-
ussed in NPT and (ii) in
orporation of market-powermetri
s into the �tness fun
tion for au
tion rules.A key question 
on
erning this work is how to tra
kthe adaptive progress, as opposed to the instantaneous�tness, of the au
tioneers verses the trading strate-gies. We are 
urrently investigating the possibility of

using CIAO (Current Individual vs. An
estral Oppo-nents) metri
s as proposed in (Cli� & Miller 1995), inorder to gain insights into the 
o-evolutionary dynam-i
s of these experiments. We are also thinking aboutthe possibility of using pareto 
o-evolution (Watson &Polla
k 2000) in order to ensure that au
tion designsare robust in the fa
e of a diverse range of strategies.Our resear
h work is part of a larger, European-wide e�ort, the Sustainable Life
y
les in InformationE
osystems Proje
t3 exploring the use of biologi
alparadigms in the study of multi-agent systems. Inparti
ular, re
ent work by our proje
t partners (Sierraet al. 2002) has shown how generi
 MAS systems maybe designed by evolutionary pro
esses. In this 
ontext,our work fo
uses spe
i�
ally on the design of ele
troni
institutions for multi-agent trading systems.A
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Seller 1 QuoteAskPri
eSeller 2 QuoteBidPri
eSeller 3 QuoteBidPri
eBuyer 1 QuoteAskPri
eBuyer 2 QuoteAskPri
eBuyer 3 QuoteBidPri
eTable 6: The set of trading strategies taking part in the �nal au
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