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Abstract

Mechanism design is the economic theory
of the design of effective resource allocation
mechanisms, such as auctions. Traditionally,
economists have approached design problems
by studying the analytic properties of differ-
ent mechanisms. An alternative is to view
a mechanism as the outcome of some evolu-
tionary process involving buyers, sellers and
the auctioneer. As a first step in this alter-
native direction, we have applied genetic pro-
gramming to the development of an auction
pricing rule for double auctions in a wholesale
electricity marketplace. For this purpose we
adopted the multi-agent simulation model of
Nicolaisen, Petrov and Tesfatsion.

1 Introduction

Much recent work in the field of Multi-Agent Systems
(MAS) has focused on resource allocation problems,
for example (Fatima & Wooldridge 2001; Jennings et
al. 2001). These problems are especially difficult to
solve efficiently in an open system if the values which
agents place on resources, or the values of their human
principals, are private and unobservable. In such a
situation, the difficulty facing somebody wishing to
give the resources to those who value them most highly
is that participating agents cannot necessarily be relied
upon to report their private values truthfully; there is
nothing to prevent “greedy” agents from exaggerating
their resource requirements.

Auction mechanisms attempt to overcome this diffi-
culty by having agents support their value-claims with
hard cash. Such mechanisms can be designed so as to
induce agents to reveal their true valuations, thereby
enabling the allocation of resources to those agents
who genuinely value them most highly.
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Designing mechanisms to achieve specific economic
requirements, such as achieving market efficiency or
maximising social welfare, against self-interested in-
telligent traders, is no trivial matter as can be seen
from accounts of the auction design process for the re-
cent radio spectrum auctions in the UK (Klemperer
2002). The economic theory of mechanism design ap-
proaches the task of designing efficient resource allo-
cation mechanisms by studying the formal, analytical
properties of alternative mechanisms (Jackson 2000;
Sandholm 1999). Because of the complexities involved
in market design problems, economists are increasingly
turning to computational methods in an attempt to
take an engineering approach to “microeconomic de-
sign” (Roth 2001).

Our approach applies the notion of co-evolutionary
machine learning (Hillis 1992; Angeline & Pollack
1993; Miller & Cliff 1994) to the microeconomic design
problem. In successful applications of co-evolution,
populations of agents interact with each other, an
“arms race” spiral develops wherein each population
spurs the other(s) to advance and the result is contin-
uous learning for all populations. However, this has
been notoriously difficult to achieve. Often popula-
tions settle into a mediocre stable state, reaching a lo-
cal optima and being unable to move beyond it.

Consequently, there is a growing body of work exam-
ining the dynamics of co-evolutionary learning envi-
ronments in an attempt to identify phenomena that
contribute to success (Cliff & Miller 1995; Pollack &
Blair 1998; Ficici & Pollack 1998; Blair, Sklar, & Funes
1999). The following aspects are of particular impor-
tance:

1. choice of representation for individuals within
each population;

2. definition of a fitness function for determining
which individuals in a population will reproduce;

3. methodology and proportion for reproduction;



4. selection of learning experiences for individuals
(i.e., who interacts with whom, how many times
and how frequently);

5. avoidance of collusion' wherein members of differ-
ent populations can work together to make non-
optimal moves that may produce better short-
term results for each but cause the populations
as a whole to get stuck in local optima; and

6. a clearly defined vision of the landscape and how
to measure progress so that one can even recognize
if a local (or indeed global) optimum has been
reached.

We see efficient mechanisms evolving through repeated
interactions between participants who may also be
evolving individually — thus we believe that the co-
evolutionary methodology is highly appropriate for our
problem. In our work, we are using genetic program-
ming (GP) (Koza 1992) to represent individuals with
different roles in an auction: the auctioneer, and the
two types of traders (buyers and sellers). Through the
interactions of the traders, individual and group trad-
ing strategies evolve, as well as auction mechanisms
themselves. We view the mechanisms as “hosts” and
the trading strategies as “parasites”; as greedy, non-
truthful strategies emerge, it would be hoped that
the mechanism population will adapt defenses, and
that strategy-proof, incentive-compatible mechanisms
would evolve.

Such an approach is the long-term aim of our research,
and to our knowledge we are the first to apply genetic
programming and co-evolution to mechanism design.
Here, we report our initial work towards this aim. To
provide a multi-agent test-bed for such an approach we
have adopted the wholesale electricity market auction
simulation model of (Nicolaisen, Petrov, & Tesfatsion
2001), hereafter referred to as NPT. In Section 2, we
describe the NPT model, and our work to replicate
their results. Section 3 then describes our use of ge-
netic programming to co-evolve trading strategies for
buyers and sellers in these auctions. Section 4 presents
some of our preliminary results in using genetic pro-
gramming to evolve auction pricing rules. The final
section concludes with a brief description of our fu-
ture research.

2 The NPT model

In the NPT experiments (Nicolaisen, Petrov, & Tesfat-
sion 2001), a number of traders buy and sell electricity
in a discriminatory-price continuous double auction.

!Note that this is not necessarily the same as the notion
of collusion in auction theory.

Every trader has a private value for the electricity that
they trade; for buyers this is the price that they can
obtain in a secondary retail market and for sellers this
reflects the costs associated with generating the elec-
tricity. Trade in electricity is affected by capacity con-
straints; every trader has a finite maximum capacity
of electricity that they can generate or purchase for
resale. The market proceeds in rounds of trading. In
each round, all the traders are given the opportunity
to bid in a random order. Each trader selects a price
and submits a bid or an ask at that price and with
a quantity equal to their generating capacity. Trade
proceeds until the maximum number of auction rounds
is reached.

Agents use a myopic reinforcement learning algorithm
which is a modification of the Roth-Erev algorithm
(Roth & Erev 1995); the learner chooses possible ac-
tions from K possible mark-ups, and receives a re-
ward directly proportional to the profits that result
from this offer. The learner chooses actions by gen-
erating random numbers according to a probability
distribution built up linearly from the cumulative re-
wards for each possible action. The modified Roth-
Erev algorithm (MRE) has three main parameters: r
the recency parameter; e the experimentation param-
eter and s(1) the scaling parameter.

NPT is interested in the market power that can be ex-
ercised by buyers or sellers under different market con-
ditions. Market power is defined as the difference be-
tween actual profits earned versus the theoretical prof-
its available in competitive-equilibrium, expressed as a
ratio of the equilibrium profits. The different market
conditions are represented by two parameters: relative
concentration (RCON) and relative capacity (RCAP).
RCON is the ratio of the number of buyers (NB) to
the number of sellers (NS) and RCAP is the relative
generating capacity of each group.

2.1 NPT results

The main results from NPT are summarised in Table
1. Each cell of the table corresponds to particular
values for RCON and RCAP. The outcome under these
conditions is summarised by the variables:

- Buyer MP — market power exercised by buyers
- Seller MP — market power exercised by sellers

- Efficiency — ratio of total profits earned to total
profits theoretically available in competitive equi-
librium, expressed as a percentage

Because traders use stochastic strategies, the sensi-
tivity of these outcomes to particular values of the
pseudo-random number generator (PRNG) seed is



tested by running the experiment 100 times with dif-
ferent PRNG seeds on each iteration. For each variable
we present the average result, followed by the standard
deviation in parentheses.

These results are significant because they indicate that
there are market biases inherent in the discriminatory-
price auction rules. For example, one would expect
that Seller MP should increase as RCAP increases, but
this is not what is found by experimentation. NPT
concludes that the inherent market-structure is re-
sponsible for failure of this hypothesis.

2.2 Replication of results

This scenario was selected for our research because of
the focus on market power. As agents evolve successful
extra-marginal strategies, their market power indices
will increase. For example, if sellers were able to em-
ploy collusive price-fixing strategies, we should expect
to see their market power indices grow. Different auc-
tion rules may have differing abilities to counter this
kind of tactic; hence, market power outcomes are an
important quantative metric to consider in assessing
auction designs.

We began our implementation of the NPT model
by attempting to replicate the results presented in
that paper. The software used to run the auc-
tion experiments was written in Java. The soft-
ware is available under an open-source license at
http://jasa.sourceforge.net/. The 4-heap algo-
rithm (Wurman, Walsh, & Wellman 1998) was used to
maintain auction state; all price information was en-
coded using double-precision floating point variables
and all quantity information was encoded using inte-
gers. The Mersenne Twister PRNG was used to gen-
erate the random numbers required for MRE.

The replicated results are presented in Table 2. Al-
though similar market power and mean efficiency out-
comes are obtained, the standard deviations we ob-
tained for the efficiency outcomes are considerably
larger than those reported in NPT. These results give
us some confidence that our experimental setup is ac-
curate, although we are continuing to try and track
down the source of these increased standard devia-
tions.

3 Co-evolution of Trading Strategies
using Genetic-Programming

We next compare the reinforcement learning algorithm
used by NPT with co-evolution of trading strategies
using genetic programming. In this work, we evolve a
separate population of strategies for each trader in the
electricity market scenario. These strategies evolve in

competition with the simultaneously evolving strate-
gies of other traders. For these experiments we made
use of a Java-based evolutionary computation system
called ECJ.2 The scenario is similar to the NPT exper-
iments, but instead of using the modified Roth-Erev
algorithm to select prices, agents select prices by eval-
uating a function that was evolved using genetic pro-
gramming (GP).

ECJ implements a strongly-typed GP (Montana 1993)
version of Koza’s (Koza 1992) original system. For
all of the GP experiments in this paper, the standard
Koza parameters were used in combination with the
standard Koza GP operators. The functions given in
Tables 3 and 4 were used as the GP function-set, and
the initial populations are generated randomly using
these functions. As is usually the case with GP, in-
dividuals are tree structures composed of these func-
tions. We used six populations of GP-evolved strate-
gies, that is one population for each buyer and seller
in the market. Each population contained 100 tree-
individuals. When breeding trees for the next gener-
ation, the crossover operator is applied with a proba-
bility of 0.9, and the reproduction operator is applied
with a probability of 0.1, as per standard Koza GP
(Koza 1992). Individuals are selected for breeding us-
ing tournament selection, with a tournament size of

7.

To evaluate the fitness of individuals in each genera-
tion, one member of each population was randomly se-
lected. The strategies that corresponded to these trees
were then played against each other in a 10-round ver-
sion of the electricity market, and each individual’s
fitness was set in proportion to the profits obtained
for the corresponding strategy. This continued until
all individuals in all populations had been evaluated,
giving a fitness measure for each individual. Note that
wherever evaluation of the tree resulted in a negative
price, or in a division by zero exception, the price was
set to 0 and this was used as the requisite bid or ask.
These fitness values, established by competition be-
tween populations are then used, as described above,
to select which individuals from a single population
will get to reproduce (both in terms of being copied to
the next generation and undergoing crossover).

Initially, we are interested in whether high-efficiency
outcomes are sustained in this experiment. As with
the NPT experiments, high levels of market efficiency
indicate that overall, traders are successfully “discov-
ering” profits that are available in the market. We
would not necessarily expect to see stability, or grad-
ual improvement, of each strategy’s individual profits
in this co-evolutionary scenario. But if overall mar-

*http://www.cs.umd.edu/projects/plus/ec/ecj/



Relative Capacity

1/2 1.00 2.00
stdev stdev stdev
Buyer MP -0.13 (0.09)[ Buyer MP -0.15 (0.09)[ Buyer MP 0.10 (0.30)
Seller MP 0.55 (0.38)| Seller MP 0.38 (0.33)| Seller MP -0.10 (0.25)
2
Efficiency 99.81 (0.02)[ Efficiency 96.30 (0.05)| Efficiency 99.88 (0.06)
Relative Buyer MP -0.22 (0.12)| Buyer MP -0.13 (0.10)| Buyer MP 0.13 (0.33)
Concentration Seller MP 0.80 (0.53)| Seller MP 0.28 (0.35)| Seller MP -0.10 (0.26)
1
Efficiency 92.13 (0.09)| Efficiency 94.59 (0.07)| Efficiency 100.00 (0.00)
Buyer MP -0.21 (0.12)| Buyer MP -0.14 (0.08)| Buyer MP 0.09 (0.24)
Seller MP 0.67 (0.46)| Seller MP 0.30 (0.31)[ Seller MP -0.07 (0.19)
1/2
Efficiency 91.84 (0.09)| Efficiency 94.24 (0.07)| Efficiency 100.00 (0.00)

Table 1: Original NPT market power and efficiency outcomes for the best-fit MRE algorithm with 1000 auction
rounds and parameter values s(1) = 9.00, r= 0.10, and e = 0.20. Refer to the original NPT paper for a detailed
description of the MRE parameters: r the recency parameter; e the experimentation parameter and s(1) the
scaling parameter.

Relative Capacity

1/2 1.00 2.00
stdev stdev stdev
Buyer MP -0.33 (0.07)[ Buyer MP -0.27 (0.08)[ Buyer MP 0.10 (0.11)
Seller MP 1.12 (0.31)| Seller MP 0.72 (0.32)| Seller MP -0.15 (0.10)
2
Efficiency 94.46 (3.87)| Efficiency 95.04 (3.43)| Efficiency 96.71 (0.51)
Relative Buyer MP -0.39 (0.07)[ Buyer MP -0.28 (0.08)[ Buyer MP 0.10 (0.08)
Concentration Seller MP 1.19 (0.40) Seller MP 0.76 (0.30) Seller MP -0.15 (0.07)
1
Efficiency 91.01 (7.61)| Efficiency 95.34 (3.26)| Efficiency 96.63 (0.47)
Buyer MP -0.38 (0.09)[ Buyer MP -0.27 (0.08)[ Buyer MP 0.04 (0.07)
Seller MP 0.84 (0.45)| Seller MP 0.72 (0.29)| Seller MP -0.10 (0.06)
1/2
Efficiency 84.86 (9.93)| Efficiency 94.62 (3.92)| Efficiency 96.79 (0.42)

Table 2: Replicated market power and efficiency outcomes for the best-fit MRE algorithm with 1000 auction
rounds and parameter values s(1) = 9.00, r = 0.10 and e = 0.20

Function Arguments Return-type  Description

+ (+ number number) number Addition

- (— number number) number Subtraction

/ (/ number number) number Division

* (* number number) number Multiplication

1 none number 1

DoubleERC none number A double precision floating point ephemeral
random constant in the range (0..1).

QuoteBidPrice none number The current bid quote

QuoteAskPrice none number The current ask quote

Table 3: GP functions common to all function-sets



Function Arguments Return-type  Description
< (< number number) boolean Less-than function
= (= number number) boolean Equals function
> (> number number) boolean Greater-than function
True none boolean True
PrivateValue none number The agent’s private valuation for
electricity
Nand (Nand boolean boolean) boolean Not-and boolean operator
IfElse (IfElse boolean number number) number Return 2nd argument if condi-
tion is true, otherwise return 3rd
argument.
Table 4: Additional GP functions used in evolving trading strategies
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Figure 1: Evolution of mean efficiency for RCON=1 and RCAP=1 over 10,000 generations using a fixed

discriminatory-pricing auctioneer, and 6 sub-populations of co-evolving strategies each of size 100.

ket efficiency does decline temporarily, we would ex-
pect the co-evolving strategy set as a whole to adapt
and reaquire the “lost” profits; thus if strategy sub-
populations are successfully adapating to new market
conditions, we would expect to see market efficiency
remain stable at near to 100%.

Figure 1 shows the evolution of the mean market ef-
ficiency for each generation of the experiment in the
case RCAP=1 and RCON=1 over 10,000 generations.
Note that by generation 2000, the market efficiency
has become stable, and the mean efficiency is 74.3.

The use of co-evolution to evolve trading strategies
is not new in experimental economics; for example,
see (Price 1997). Our interest in co-evolving strate-
gies was to verify that such an approach worked for
this scenario, and also as a step towards the use of

co-evolutionary techniques to evolve trading strategies
and auction rules—in other words to evolve mecha-
nisms along with the best way to trade within them.
To our knowledge no one has yet done this, and our
preliminary work towards doing this will be the focus
of the next section.

4 Co-evolution of Auction Pricing
Rules and Strategies

An additional population of auctioneers was intro-
duced into our experiment. These agents were derived
from the auctioneer classes that we implemented for
our previous experiments, but instead of using the
standard code to set the clearing price for a given
transaction, they used a function that was evolved
using GP. The set of functions used for the auction
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Figure 2: Evolution of mean efficiency for RCON=1 and RCAP=1 over 10,000 generations using an auctioneer
with a GP-evolved pricing rule, and 6 additional populations of co-evolving strategies.

pricing rule consists of those functions in Tables 3 and
5. The fitness for the auctioneer population was set
proportional to the total profits earned in the market.

Intuitively, the auctioneer population can be thought
to be “learning” auction-pricing rules that maintain
market efficiency in the face of co-evolving strategies.
Our hypothesis is that in this version of the experi-
ment, in which there are a small number of traders
with fixed private values, the most robust auction pric-
ing rule is the one that sets the price for electricity
at the equilibrium price, regardless of what traders
actually bid. We believe that the auctioneer popu-
lation should discover this rule; i.e it should discover
the equilibrium price for the market. This is because
private values are fixed, and the auctioneer popula-
tion has indirect access to meta-information about the
market — market efficiency — that is based on the
(in-practice unobservable) private values. Of course,
this pricing rule would not work in practice, because in
practice private values are not from a fixed, predefined
set. However, this hypothesis gives us a basis to test
some of our assumptions about this experiment. Fu-
ture work will consider scenarios in which agents with
randomized private-values enter and leave the market.

The experimental set-up was a slight variation of the
previous experiment. We added a seventh population,
auctioneers, and evaluated their fitness by running
auctions with randomly selected buyer and seller in-
dividuals (again picking one random individual from
each of the six populations) and looking at the over-

all profits obtained. The same auctions were used to
evaluate the buyers and sellers, though their fitness
was still based on local profit.

Figure 2 shows the evolution of the mean market effi-
ciency for each generation of this version of the exper-
iment in the case RCAP=1 and RCON=1 over 10,000
generations. As can be seen from the graph, the adap-
tive auctioneers are able to improve mean market ef-
ficiency when compared to the fixed discriminatory-
price auctioneer used in the previous section — the
mean efficiency for the adaptive auctioneer is 94.5. In
addition, the market reaches stability more quickly,
after only 500 generations.

Figure 3 shows the function tree evolved for the auc-
tioneers’ pricing rule in the final generation, and Table
6 shows the trading strategy-set for that auction. We
are currently investigating whether our hypothesis re-
garding the discovery of the equilibirum price is borne
out by this experiment.

5 Conclusions and Further Work

In this paper we have reported on the preliminary
stages of work aiming to explore the evolution of eco-
nomic auction mechanisms. In our initial work, we
have adopted a multi-agent systems test-bed involving
auctions in an electricity marketplace, first developed
in NPT. In that work, the trading agents in the auc-
tions were equipped with a modified Roth-Erev learn-
ing model, enabling them to change their bids on the
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Figure 3: Best auction pricing rule in final generation of a 10,000 generation experiment for population size 100,

RCON =1, NS =3 and NB =3

Function Arguments Return-type Description

AskPrice none number The price of the ask (offer to sell) currently being matched in the
auction

BidPrice none number The price of the bid currently being matched in the auction

Table 5: Additional GP functions used in evolving auctioneer pricing rules

basis of their experiences in successive auction rounds.

We first sought to replicate the results of NPT, and
were able to obtain similar average results; our stan-
dard deviations, however, were much larger than those
reported in NPT. We then compared the use of the
MRE learning algorithm with an experiment in which
strategies are co-evolved using genetic programming.
The genetic programming approach was able to pro-
duce reasonably high efficiency outcomes. Finally
we presented some of our preliminary work on evolv-
ing auction designs using genetic-programming which
again was able to produce relatively high efficiency
outcomes. We believe that this is the first attempt
to evolve auction mechanisms.

Future work in this area will focus on: (i) an analysis of
the different auction rules evolved for each of the com-
binations of RCAP and RCON that were originally dis-
cussed in NPT and (ii) incorporation of market-power
metrics into the fitness function for auction rules.

A key question concerning this work is how to track
the adaptive progress, as opposed to the instantaneous
fitness, of the auctioneers verses the trading strate-
gies. We are currently investigating the possibility of

using CIAO (Current Individual vs. Ancestral Oppo-
nents) metrics as proposed in (Cliff & Miller 1995), in
order to gain insights into the co-evolutionary dynam-
ics of these experiments. We are also thinking about
the possibility of using pareto co-evolution (Watson &
Pollack 2000) in order to ensure that auction designs
are robust in the face of a diverse range of strategies.

Our research work is part of a larger, European-
wide effort, the Sustainable Lifecycles in Information
Ecosystems Project® exploring the use of biological
paradigms in the study of multi-agent systems. In
particular, recent work by our project partners (Sierra
et al. 2002) has shown how generic MAS systems may
be designed by evolutionary processes. In this context,
our work focuses specifically on the design of electronic
institutions for multi-agent trading systems.
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Seller 1 | QuoteAskPrice
Seller 2 | QuoteBidPrice
Seller 3 | QuoteBidPrice
Buyer 1 | QuoteAskPrice
Buyer 2 | QuoteAskPrice
Buyer 3 | QuoteBidPrice

Table 6: The set of trading strategies taking part in the final auction corresponding to Figure 3
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