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Abstract. The design of autonomous agents that are situated in real
world domains involves dealing with uncertainty in terms of dynamism,
observability and non-determinism. These three types of uncertainty,
when combined with the real-time requirements of many application do-
mains, imply that an agent must be capable of effectively coordinating its
reasoning. As such, situated belief-desire-intention (BDI) agents need an
efficient intention reconsideration policy, which defines when computa-
tional resources are spent on reasoning, i.e., deliberating over intentions,
and when resources are better spent on either object-level reasoning or
action. This paper presents an implementation of such a policy by mod-
elling intention reconsideration as a partially observable Markov decision
process (POMDP). The motivation for a POMDP implementation of inten-
tion reconsideration is that the two processes have similar properties
and functions, as we demonstrate in this paper. Our approach achieves
better results than existing intention reconsideration frameworks, as is
demonstrated empirically in this paper.

1 Introduction

One of the key problems in the design of belief-desire-intention (BDI) agents is
the selection of an intention reconsideration policy [3,8]. Such a policy defines
the circumstances under which a BDI agent will expend computational resources
deliberating over its intentions. Wasted effort — deliberating over intentions
unnecessarily — is undesirable, as is not deliberating when such deliberation
would have been fruitful. There is currently no consensus on exactly how or when
an agent should reconsider its intentions. Current approaches to this problem
simply dictate the commitment level of the agent, ranging from cautious (agents
that reconsider their intentions at every possible opportunity) to bold (agents
that do not reconsider until they have fully executed their current plan). Kinny
and Georgeff investigated the effectiveness of these two policies in several types
of environments [3]; their analysis has been extended by others [8].

Our objective in this paper is to demonstrate how to model intention recon-
sideration in belief-desire-intention (BDI) agents by using the theory of Markov



decision processes for planning in partially observable stochastic domains. We
view an intention reconsideration strategy as a policy in a partially observable
Markov decision process (POMDP): solving the POMDP thus means finding an
optimal intention reconsideration strategy. We have shown in previous work [8]
that an agent’s optimal rate of reconsideration depends on the environment’s
dynamism — the rate of change of the environment, determinism — the degree of
predictability of the system behaviour for identical system inputs, and observ-
ability — the extent to which the agent has access to the state of the environment.
The motivation for using a POMDP approach here is that in the POMDP framework
the optimality of a policy is largely based on exactly these three environmental
characteristics.

The remainder of this paper is structured as follows. We begin by providing
some background information on the BDI framework in which the problem of
intention reconsideration arises. In Section 3 we discuss the Markov decision
framework upon which our approach builds and present the implementation of
intention reconsideration with a POMDP. In Section 4 we empirically evaluate
our model in an agent testbed. Finally, in Section 5 we present some conclusions
and describe related and future work.

2 Belief-Desire-Intention Agents

The idea of applying the concepts of beliefs, desires and intentions to agents
originates in the work of Bratman [2] and Rao and Georgeff [6]. In this paper,
we use the conceptual model of BDI agency as developed by Wooldridge and
Parsons [10]. The model distinguishes two main data structures in an agent: a
belief set and an intention set'. An agent’s beliefs represent information that the
agent has about its environment, and may be partial or incorrect. Intentions can
be seen as states of affairs that an agent has committed to bringing about. We
regard an intention as a simple unconditional plan.The behaviour of the agent
is generated by four main components: a nezt-state function, which updates
the agent’s beliefs on the basis of an observation made of the environment; a
deliberation function, which constructs a set of appropriate intentions on the
basis of the agent’s current beliefs and intentions; an action function, which
selects and executes an action that ultimately satisfies one or more of the agent’s
intentions; and a meta-level control function, the sole purpose of which is to
decide whether to pass control to the deliberation or action subsystems. On
any given control cycle, an agent begins by updating its beliefs through its
next-state function, and then, on the basis of its current beliefs, the meta-level
control function decides whether to pass control to the deliberation function (in
which case the agent expends computational resources by deliberating over its
intentions), or else to the action subsystem (in which case the agent acts). As a
general rule of thumb, an agent’s meta-level control system should pass control

! Since desires do not directly contribute to our analytical discussion of intention re-
consideration, they are left out of the conceptual BDI model in this paper. This
decision is clarified in [10].



to the deliberation function when the agent will change intentions as a result;
otherwise, the time spent deliberating is wasted. Investigating how this choice is
made rationally and efficiently is the main motivation behind the work presented
in this paper.

We have to consider that agents do not operate in isolation: they are situated
in environments; an environment denotes everything that is external to the agent.
Let P be a set of propositions denoting environment variables. In accordance
with similar proposition based vector descriptions of states, we let environment
states be built up of such propositions. Then E is a set environment states with
members {e,€e,...}, and e = {p1,...,pn}, where p; € P.

The internal state of an agent consists of beliefs and intentions. Let Bel :
E — [0,1], where ) ., Bel(e) = 1, denote the agent’s beliefs: we represent
what the agent believes to be true of its environment by defining a probability
distribution over the possible environment states. The agent’s set of intentions,
Int, is a subset of the set of environment variables: Int C P. An internal state
s is a pair s = (Bel, Int), where Bel : E — [0,1] is a probability function and
Int C P is a set of intentions. Let S be the set of all internal states. For a
state s € S, we refer to the beliefs in that state as Bels and to the intentions as
Ints;. We assume that it is possible to denote values and costs of the outcomes
of intentions®: an intention value V : Int — IR represents the value of the
outcome of an intention; and intention cost C : Int — IR represents the cost of
achieving the outcome of an intention. The net value Ve @ Int — IR represents
the net value of the outcome of an intention; V¢ (i), where i € Int, is typically
V(i) — C(i). We can express how “good” it is to be in some state by assigning
a numerical value to states, called the worth of a state. We denote the worth of
a state by a function W : S — IR, and we assume this to be based on the net
values of the outcomes of the intentions in a state. Moreover, we assume that one
state has an higher worth than an other state if the net values of all its intentions
are higher. This means that if Vs, s’ € S,Vi € Int,,Vi' € Ints, Vier (1) > Vet (i),
then W(s) > W (s'). In the empirical investigation discussed in this paper, we
illustrate that a conversion from intention values to state worths is feasible,
though we do not explore the issue here®. Finally, Ac denotes the set of physical
actions the agent is able to perform; with every a € Ac we identify a set of
propositions P, C P, which includes the propositions that change value when «
is executed.

In this conceptual model, the question of intention reconsideration thus ba-
sically boils down to the implementation of the meta-level control function. On
every given control cycle, the agent must decide whether it acts upon its cur-

2 We clearly distinguish intentions from their outcome states and we do not give values
to intentions themselves, but rather to their outcomes. For example, when an agent
intends to deliver coffee, an outcome of that intention is the state in which coffee has
been delivered.

% Notice that this problem is the inverse of the utilitarian lifting problem: the problem
of how to lift utilities over states to desires over sets of states. Discussing the lifting
problem, and its inverse, is beyond the scope of this paper, and therefore we direct
the interested reader to the work of Lang et al. [4].



rent intentions, or to adopt new intentions and this is decided by the meta-level
control function. We continue with discussing how this implementation can be
done by using Markov decision processes.

3 Implementing Intention Reconsideration as a POMDP

In this paper, the main point of our formalisation of intention reconsideration
is the pOMDP implementation of it. The fact that the optimality of a POMDP
policy is based on the environment’s observability, determinism and dynamism,
renders the framework appropriate in the context of intention reconsideration.
In this section, we explain what a POMDP is and how to use it for implementing
intention reconsideration.

A partially observable Markov Decision Process (POMDP) can be understood
as a system that at any point in time can be in any one of a number of distinct
states, in which the system’s state changes over time resulting from actions,
and where the current state of the system cannot be determined with complete
certainty [1]. Partially observable MDPs satisfy the Markov assumption so that
knowledge of the current state renders information about the past irrelevant to
making predictions about the future. In a POMDP, we represent the fact that
the knowledge of the agent is not complete by defining a probability distribution
over all possible states. An agent then updates this distribution when it observes
its environment.

Let a set of states be denoted by S and let this set correspond to the set of
the agent’s internal states as defined above. This means that a state in the MDP
represents an internal state of the agent. We let the set of actions be denoted by
A. (We later show that A # Ac in our model.) An agent might not have complete
knowledge of its environment, and must thus observe its surroundings in order to
acquire knowledge: let 2 be a finite set of observations that the agent can make
of the environment. We introduce an observation function O : S x A — II({2)
that defines a probability distribution over the set of observations; this function
represents what observations an agent can make resulting from performing an
action a € A in a state s € S. The agent receives rewards for performing actions
in certain states: this is represented by a reward function R : S x A — IR. Finally,
a state transition function 7 : S x A — II(S) defines a probability distribution
over states resulting from performing an action in a state — this enables us to
model non-deterministic actions.

Having defined these sets, we solve a POMDP by computing an optimal policy:
an assignment of an action to each possible belief state such that the expected
sum of rewards gained along the possible trajectories in the POMDP is a max-
imum. Optimal policies can be computed by applying dynamic programming
methods to the POMDP, based on backwards induction; value iteration and pol-
icy iteration are the most well known algorithms to solve POMDPs [1]. A major
drawback of applying POMDPs is that these kinds of algorithms tend to be highly
intractable; we later return to the issue of computational complexity as it relates
to our model.



Intention Reconsideration as a POMDP

We regard the BDI as a domain dependent object level reasoner, concerned di-
rectly with performing the best action for each possible situation; the POMDP
framework is then used as a domain independent meta level reasoning compo-
nent, which lets the agent reconsider its intentions effectively. We define a meta
level BDI-POMDP as a tuple (S, A, 2,0, R, 7). We have explained above that a
state s € S in this model denotes an internal state of the agent, containing a
belief part and intention part. As intention reconsideration is mainly concerned
with states, actions and rewards, we leave the implementation of observations
{2, the observation function O and the state transition function 7 to the designer
for now.

Since the POMDP is used to model intention reconsideration, we are merely
concerned with two possible meta level actions: the agent either performs an
object level action (act) or the agent deliberates (del). The possible actions
A = {act,del} correspond to the agent either acting (act) or deliberating (del).
Because the optimality criterion of policies depends on the reward structure of
the pOMDP, we define the rewards for action act and deliberation del in state
s € S as follows:

W (sint) if a=act
E(s,a) = {W(s) if a=del

where s;,,; € S refers to the state the agent intends to be in while currently
being in state s. Imagine a robot that has just picked up an item which has to
be delivered at some location. The agent has adopted the intention to deliver
the item, i.e., to travel to that location and to drop off the item. The reward for
deliberation is the worth of the agent’s current state (e.g., 0) whereas the reward
for action is the worth of the intented state (e.g., 10) for having delivered the
item. The robot consequently acts, which brings it closer to its “correct” inten-
tions. Intentions are correct in case the agent does not waste effort while acting
upon them. An agent wastes effort if it is deliberating over its intentions unnec-
essarily. If an agent does not deliberate when that would have been necessary,
the agent has wrong intentions. The reward for acting is thus the worth of the
state that the agent intends to reach, whereas the reward for deliberation is the
worth of the state as it currently is.

This structure of reward agrees with the intuition that the agent eventually
receives a reward if it has correct intentions, it receives no reward if it has wrong
intentions, and it receives no direct reward for deliberation. With respect to this
last intuition, however, we must mention that the “real” reward for deliberation
is indirectly defined, by the very nature of POMDPs, as the expected worth of
future states in which the agent has correct intentions. As intentions resist recon-
sideration [2], the agent prefers action over deliberation and the implementation
of the reward structure should thus favour action if the rewards are equivalent.

For illustrative purposes, consider the simple deterministic MDP in Figure 1.
This Figure shows a 5 x 1 gridworld, in which an agent can move either right or
left or stay at its current location. The agent’s current location is indicated with
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Fig.1. A 5 x 1 gridworld example which illustrates the definition of rewards in a BDI-
POMDP. Rewards, being either 0 or 10, are indicated per location. With each state we
have indicated the expected reward for executing a physical action and for deliberation;
the best meta action to execute is indicated in square brackets.

a square and the location it intends to travel to is denoted by a circle. Assume
the agent is currently in state s;: its location is cell 4 and it intends to visit cell
1. Action will get the agent closer to cell 1: it executes a move left action which
results in state so. Deliberation results in dropping the intention to travel to cell
1, and adopting the intention to travel to cell 5 instead; this results in state sg.
Obviously, deliberation is the best meta action here and the expected rewards
for the meta actions in s; reflect this: the expected reward for deliberation is
higher than the one for action. In all other states, these expected rewards are
equivalent, which means that the agent acts in all other states.

Solving a BDI-POMDP means obtaining an optimal intention reconsideration
policy: at any possible state the agent might find itself in, this policy tells the
agent either to act or to deliberate. The main contribution of our work is that
our approach gives a well-founded means of establishing a domain dependent
optimal reconsideration strategy. Thus the agent is programmed with a domain
independent strategy, which it uses to compute a domain dependent strategy
off-line, and then executes it on-line. Until now, empirical research on meta level
reasoning aimed at efficient intention reconsideration has, to the best of our
knowledge, involved hardwiring agents with domain dependent strategies.

It is important that deciding whether to reconsider intentions or not is com-
putationally cheap compared to the deliberation process itself [10]; otherwise
it is just as efficient to deliberate at any possible moment. Using a POMDP to
determine the reconsideration policy satisfies this criterion, since it clearly dis-
tinguishes between design time computation, i.e., computing the policy, and run



time computation, i.e., executing the policy. We recognise that the design time
problem of computing a policy is very hard; this problem corresponds with the
general problem of solving POMDPS and we do not attempt to solve this problem
in this paper. However, the computation that concerns us most is the run time
computation, and in our model this merely boils down to looking up the current
state and executing the action assigned to that state, i.e., either to act or to
deliberate. This is a computationally cheap operation and is therefore suitable
for run time execution.

4 Experimental Results

In this section, we apply our model in the TILEWORLD testbed [5], and show that
the model yields better results than were obtained in previous investigations of
intention reconsideration in this testbed?.

The TILEWORLD [5] is a grid environment on which there are agents and
holes. An agent can move up, down, left, right and diagonally. Holes have to
be visited by the agent in order for it to gain rewards. The TILEWORLD starts
in some randomly generated world state and changes over time with the ap-
pearance and disappearance of holes according to some fixed distributions. An
agent moves about the grid one step at a time®. The experiments are based on
the methodology described in [8]. (We repeated the experiments described in [8]
to ensure that our results were consistent; these experiments yielded identical
results, which are omitted here for reasons of space.)

The TILEWORLD testbed is easily represented in our model. Let L denote
the set of locations, i.e., L = {i : 1 < i < n} represents the mutually disjoint
locations, where n denotes the size of the grid. A proposition p; then denotes
the presence (p; = 1) or absence (p; = 0) of a hole at location i. An intention
value corresponds to the reward received by the agent for reaching a hole, and
an intention cost is the distance between the current location of the agent and
the location that the agent intends to reach. An environment state is a pair
({pi,-.-,pn},m), where {p;,...,pp} are the propositions representing the holes
in the grid, and m € L is the current location of the agent.

Combining the 2™ x n possible environment states with n possible intentions
means that, adopting explicit state descriptions, the number of states is 2" x n?,
where n denotes the number of locations. Computations on a state space of such
size is impractical, even for small n. In order to render the necessary compu-
tations feasible, we abstracted the TILEWORLD state space. In the TILEWORLD
domain, we abstract the state space by letting an environment state e be a pair
(p1,p2), where p; refers to the location of the hole which is currently closest to

* Whereas until now we have discussed non-deterministic POMDPs, in the experimental
section we restrict our attention to deterministic MDPs in order to compare our new
results with previous results.

5 Although it may be argued that the TILEWORLD is simplistic, it is a well-recognised
testbed for evaluating situated agents. Because of the dynamic nature of the TILE-
WORLD, the testbed scales up to difficult and unsolvable problems.



the agent, and py refers to the current location of the agent. Then an agent’s in-
ternal state is ((p1,p2), {i1}) where i; refers to the hole which the agent intends
to visit. This abstraction means that the size of the state space is now reduced
to n3. However, the agent now has to figure out at run time what is the closest
hole in order to match its current situation to a state in the TILEWORLD state
space. This computation can be done in time O(n), by simply checking whether
every cell is occupied by a hole or not. Because the main purpose of this example
is merely to illustrate that our model is viable, we are currently not concerned
with this increase in run time computation.

In [8], the performance of a range of intention reconsideration policies was
investigated in environments of differing structure. Environments were varied
by changing the degree of dynamism (), observability (referred to by [8] as
accessibility), and determinism. Dynamism is denoted by an integer in the range
1 to 80, representing the ratio between the world clock rate and the agent clock
rate. If v = 1, then the world executes one cycle for every cycle executed by the
agent and the agent’s information is guaranteed to be up to date; if v > 1 then
the information the agent has about its environment may not necessarily be up
to date. (In the experiments in this paper we assume the environment is fully
observable and deterministic.) The planning cost p was varied, representing the
time cost of planning, i.e., the number of time-steps required to form a plan, and
took values 0, 1, 2, and 4.

Three dependent variables were measured: effectiveness, commitment, and
cost of acting. The effectiveness € of an agent is the ratio of the actual score
achieved by the agent to the score that could in principle have been achieved.
An agent’s commitment () is expressed as how many actions of a plan are
executed before the agent replans. The agent’s commitment to a plan with length
nis (k—1)/(n — 1), where k is the number of executed actions. Observe that
commitment defines a spectrum from a cautious agent (5 = 0, because k = 1)
to a bold one (8 = 1, because k = n). The cost of acting is the total number of
actions the agent executes.

Solving the TILEWORLD MDP off-line To summarise, the TILEWORLD MDP
that we have to solve off-line consists of the following parts. As described above,
the state space S contains all possible internal states of the agent. Each state
s € S is a tuple ((p1,p=2), {i1}), where p; refers to hole that is currently closest to
the agent, po refers to the current location of the agent, and i¢; denotes the hole
which the agent intends to visit. The set of actions is A = {act, del}. (Note that
the set of physical actions is Ac = {stay,n,ne,e, se, se, sw, w,nw}, but that is
not of concern to us while specifying the TILEWORLD MDP.) Since we assume
full observability, the set of observations is 2 = S. Finally, state transitions
are defined as the deterministic outcomes of executing an action a € A. As
the agent deliberates in state s resulting in state s’ (i.e., 7(s,del) = s'), then
Bel, = Bely, but possibly Int; # Inty; as the agent acts (i.e., 7(s, act) = s"),
then Int; = Intg:, but possibly Bels # Belg:. Thus deliberation means that
the intention part of the agent’s internal state possibly changes, and action
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Fig. 2. Overall effectiveness of a BDI-POMDP agent. Effectiveness is measured as the
result of a varying degree of dynamism of the world. The four curves show the effec-
tiveness at a planning cost (denoted by p) from 0 to 4. The two other curves show the
effectiveness at p = 1 and p = 2 of Kinny and Georgeft’s best reconsideration strategy
(from [3]).

means that the belief part of the agent’s internal state possibly changes (both
ceteris paribus with respect to the other part of the internal state). Although
solving MDPs in general is computationally hard, we have shown above that by
appropriate abstraction of the TILEWORLD state space, the computations for
our TILEWORLD MDP become feasible.

Results The experiments resulted in the graphs shown in Figures 2, 3(A) and
3(B). In every graph, the environment’s dynamism and the agent’s planning cost
p (for values 0, 1, 2 and 4) are varied. In Figure 2, the overall effectiveness of
the agent is plotted. In Figure 3(A) we plotted the agent’s commitment level®
and in Figure 3(B) the cost of acting.

Analysis The most important observation we make from these experiments
is that the results as presented in Figure 2 are overall better than results as
obtained in previous investigations into the effectiveness of reconsideration (as

% The collected data was smoothed using a Bezier curve in order to get these commit-
ment graphs, because the commitment data showed heavy variation resulting from
the way dynamism is implemented. Dynamism represents the acting ratio between
the world and the agent; this ratio oscillates with the random distribution for hole
appearances, on which the commitment level depends.
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Fig. 3. (A) Average commitment level for a BDI-POMDP agent. The commitment level
is plotted as a function of the dynamism of the world with planning cost (denoted by
p) of 0, 1, 2 and 4. (B) Average cost of acting for a BDI-POMDP agent. The cost of
acting — the number of time steps that the agent moves — is plotted as a function of
the dynamism of the world with planning cost (denoted by p) of 0, 1, 2 and 4.

elaborated below). Our explanation for this observation is that solving the BDI-
POMDP for our TILEWORLD domain delivers an optimal domain dependent re-
consideration strategy: the optimal BDI-POMDP policy lets the agent deliberate
when a hole appears that is closer than the intended hole (but not on the path to
the intended hole), and when the intended hole disappears. Kinny and Georgeff
[3] concluded that it is best for an agent to reconsider when a closer hole appears
or when the intended hole disappears. Besides this observation, we see in Figure
3(A) that our BDI-POMDP agent is able to determine its plan commitment at run
time, depending on the state of the environment. This ability contributes to in-
creasing the agent’s level of autonomy, since it pushes the choice of commitment
level from design time to run time.

Our experimental results confirm the results obtained in previous investi-
gations on selecting an intention reconsideration strategy [3,8,9]: the agent’s
effectiveness and level of commitment both decrease as the dynamism or plan-
ning cost increases, and the cost of acting decreases as the dynamism or planning
cost increases.

Whereas the focus of previous research was on investigating the effective-
ness of fized strategies in different environments, the aim of the investigation in
this paper is to illustrate the applicability of our BDI-POMDP model. Kinny and
Georgeff [3] have included empirical results for an agent that reconsiders based
on the occurrence of certain events in the environment (see [3, p87] Figures 8
and 9 for p = 2 and p = 1, respectively). Their conclusion from these results
was that it is best for an agent to reconsider when the agent observes that ei-
ther a closer hole appears or the intended hole disappears, as mentioned above.
We implemented this strategy for the agent in our testbed and yielded identical
results. We observed that an agent using our BDI-POMDP model performs better



than the agent using the mentioned fixed strategy with a realistic planning cost
(p > 2). Having compared our results to the results of fixed strategies, we con-
clude that, as mentioned above, in effect, our agent indeed adopts the strategy
that delivers maximum effectiveness.

In the context of flexible strategies, we compare our results to the results
from [9], where the effectiveness of an alternative flexible strategy, based on
discrete deliberation scheduling [7], is explored. The main conclusion we draw
from comparing the results from the two strategies is that the empirical outcomes
are analogous. Comparing the graphs from Figure 2 to the result graphs from [9],
we observe that the agent’s effectiveness is generally higher for our BDI-POMDP
model; when we compare the graphs from Figure 3(B) to the cost of acting
graphs from [9], we see that the cost of acting is lower overall in the discrete
deliberation model. However, in our BDI-POMDP model, the level of commitment
is more constant, since the BDI-POMDP agent’s decision mechanism depends less
on predictions of appearances and disappearances of holes.

5 Discussion

In this paper we presented a formalisation of the intention reconsideration pro-
cess in BDI agents based on the theory of POMDP planning. The motivation for
the formalism is that BDI agents in real world application domains have to re-
consider their intentions efficiently in order to be as effective as possible. It is
important that reconsideration happens autonomously, since an agent’s commit-
ment to its tasks changes depending on how its environment changes. The main
contribution of our model is that we deliver a meta level and domain independent
framework capable of producing optimal reconsideration policies in a variety of
domains. The model applies POMDP planning to agents; in this paper we do
not investigate how intentions can contribute to efficiently solving POMDPs, but
regard such an investigation as important further work.

In the work presented, we show that the environmental properties of dy-
namism, observability and determinism are crucial for an agent’s rate of inten-
tion reconsideration. Our formalism takes all mentioned environmental proper-
ties into account, and they form the basis of the decision mechanism of the BDI
agent. A distinctive component in the BDI agent decides whether to reconsider
or not, and we use the POMDP framework to determine an optimal reconsidera-
tion strategy that is used for implementing this component. We leave open the
question whether a similar result can be achieved by the construction of com-
plex sequential and conditional plans, since this defies the very nature of the BDI
concept. A BDI agent is concerned with the management of simple plans over
time, thus its intelligence is located in its meta-reasoning capabilities and not in
its planning capabilities.

We have shown that an agent which is designed according to our formalism,
is able to dynamically change its commitment to plans at run time, based on
the current state of the environment. (In the experiments that are described in
this paper, we assumed the environment to be fully observable and completely



accessible, in order to compare our results with previous results.) This agent
achieves better performance than existing planning frameworks, in which the
level of plan commitment is imposed upon the agent at design time. The BDI-
POMDP model has the advantage over the deliberation scheduling model (as
used in [9]) that it computes a substantial part of the reconsideration strategy
at design time, whereas all computations for deliberation scheduling are at run
time. In contrast, the deliberation scheduling model is supposedly more flexible
in changing the reconsideration strategy at run time.
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