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t. The design of autonomous agents that are situated in realworld domains involves dealing with un
ertainty in terms of dynamism,observability and non-determinism. These three types of un
ertainty,when 
ombined with the real-time requirements of many appli
ation do-mains, imply that an agent must be 
apable of e�e
tively 
oordinating itsreasoning. As su
h, situated belief-desire-intention (bdi) agents need aneÆ
ient intention re
onsideration poli
y, whi
h de�nes when 
omputa-tional resour
es are spent on reasoning, i.e., deliberating over intentions,and when resour
es are better spent on either obje
t-level reasoning ora
tion. This paper presents an implementation of su
h a poli
y by mod-elling intention re
onsideration as a partially observable Markov de
isionpro
ess (pomdp). The motivation for a pomdp implementation of inten-tion re
onsideration is that the two pro
esses have similar propertiesand fun
tions, as we demonstrate in this paper. Our approa
h a
hievesbetter results than existing intention re
onsideration frameworks, as isdemonstrated empiri
ally in this paper.1 Introdu
tionOne of the key problems in the design of belief-desire-intention (bdi) agents isthe sele
tion of an intention re
onsideration poli
y [3, 8℄. Su
h a poli
y de�nesthe 
ir
umstan
es under whi
h a bdi agent will expend 
omputational resour
esdeliberating over its intentions. Wasted e�ort | deliberating over intentionsunne
essarily | is undesirable, as is not deliberating when su
h deliberationwould have been fruitful. There is 
urrently no 
onsensus on exa
tly how or whenan agent should re
onsider its intentions. Current approa
hes to this problemsimply di
tate the 
ommitment level of the agent, ranging from 
autious (agentsthat re
onsider their intentions at every possible opportunity) to bold (agentsthat do not re
onsider until they have fully exe
uted their 
urrent plan). Kinnyand George� investigated the e�e
tiveness of these two poli
ies in several typesof environments [3℄; their analysis has been extended by others [8℄.Our obje
tive in this paper is to demonstrate how to model intention re
on-sideration in belief-desire-intention (bdi) agents by using the theory of Markov



de
ision pro
esses for planning in partially observable sto
hasti
 domains. Weview an intention re
onsideration strategy as a poli
y in a partially observableMarkov de
ision pro
ess (pomdp): solving the pomdp thus means �nding anoptimal intention re
onsideration strategy. We have shown in previous work [8℄that an agent's optimal rate of re
onsideration depends on the environment'sdynamism { the rate of 
hange of the environment, determinism { the degree ofpredi
tability of the system behaviour for identi
al system inputs, and observ-ability { the extent to whi
h the agent has a

ess to the state of the environment.The motivation for using a pomdp approa
h here is that in the pomdp frameworkthe optimality of a poli
y is largely based on exa
tly these three environmental
hara
teristi
s.The remainder of this paper is stru
tured as follows. We begin by providingsome ba
kground information on the bdi framework in whi
h the problem ofintention re
onsideration arises. In Se
tion 3 we dis
uss the Markov de
isionframework upon whi
h our approa
h builds and present the implementation ofintention re
onsideration with a pomdp. In Se
tion 4 we empiri
ally evaluateour model in an agent testbed. Finally, in Se
tion 5 we present some 
on
lusionsand des
ribe related and future work.2 Belief-Desire-Intention AgentsThe idea of applying the 
on
epts of beliefs, desires and intentions to agentsoriginates in the work of Bratman [2℄ and Rao and George� [6℄. In this paper,we use the 
on
eptual model of bdi agen
y as developed by Wooldridge andParsons [10℄. The model distinguishes two main data stru
tures in an agent: abelief set and an intention set1. An agent's beliefs represent information that theagent has about its environment, and may be partial or in
orre
t. Intentions 
anbe seen as states of a�airs that an agent has 
ommitted to bringing about. Weregard an intention as a simple un
onditional plan.The behaviour of the agentis generated by four main 
omponents: a next-state fun
tion, whi
h updatesthe agent's beliefs on the basis of an observation made of the environment; adeliberation fun
tion, whi
h 
onstru
ts a set of appropriate intentions on thebasis of the agent's 
urrent beliefs and intentions; an a
tion fun
tion, whi
hsele
ts and exe
utes an a
tion that ultimately satis�es one or more of the agent'sintentions; and a meta-level 
ontrol fun
tion, the sole purpose of whi
h is tode
ide whether to pass 
ontrol to the deliberation or a
tion subsystems. Onany given 
ontrol 
y
le, an agent begins by updating its beliefs through itsnext-state fun
tion, and then, on the basis of its 
urrent beliefs, the meta-level
ontrol fun
tion de
ides whether to pass 
ontrol to the deliberation fun
tion (inwhi
h 
ase the agent expends 
omputational resour
es by deliberating over itsintentions), or else to the a
tion subsystem (in whi
h 
ase the agent a
ts). As ageneral rule of thumb, an agent's meta-level 
ontrol system should pass 
ontrol1 Sin
e desires do not dire
tly 
ontribute to our analyti
al dis
ussion of intention re-
onsideration, they are left out of the 
on
eptual bdi model in this paper. Thisde
ision is 
lari�ed in [10℄.



to the deliberation fun
tion when the agent will 
hange intentions as a result;otherwise, the time spent deliberating is wasted. Investigating how this 
hoi
e ismade rationally and eÆ
iently is the main motivation behind the work presentedin this paper.We have to 
onsider that agents do not operate in isolation: they are situatedin environments; an environment denotes everything that is external to the agent.Let P be a set of propositions denoting environment variables. In a

ordan
ewith similar proposition based ve
tor des
riptions of states, we let environmentstates be built up of su
h propositions. Then E is a set environment states withmembers fe; e0; : : :g, and e = fp1; : : : ; png, where pi 2 P .The internal state of an agent 
onsists of beliefs and intentions. Let Bel :E ! [0; 1℄, where Pe2E Bel(e) = 1, denote the agent's beliefs: we representwhat the agent believes to be true of its environment by de�ning a probabilitydistribution over the possible environment states. The agent's set of intentions,Int, is a subset of the set of environment variables: Int � P . An internal states is a pair s = hBel; Inti, where Bel : E ! [0; 1℄ is a probability fun
tion andInt � P is a set of intentions. Let S be the set of all internal states. For astate s 2 S, we refer to the beliefs in that state as Bels and to the intentions asInts. We assume that it is possible to denote values and 
osts of the out
omesof intentions2: an intention value V : Int ! IR represents the value of theout
ome of an intention; and intention 
ost C : Int ! IR represents the 
ost ofa
hieving the out
ome of an intention. The net value Vnet : Int! IR representsthe net value of the out
ome of an intention; Vnet(i), where i 2 Int, is typi
allyV (i) � C(i). We 
an express how \good" it is to be in some state by assigninga numeri
al value to states, 
alled the worth of a state. We denote the worth ofa state by a fun
tion W : S ! IR, and we assume this to be based on the netvalues of the out
omes of the intentions in a state. Moreover, we assume that onestate has an higher worth than an other state if the net values of all its intentionsare higher. This means that if 8s; s0 2 S;8i 2 Ints;8i0 2 Ints0 ; Vnet(i) � Vnet(i0),then W (s) � W (s0). In the empiri
al investigation dis
ussed in this paper, weillustrate that a 
onversion from intention values to state worths is feasible,though we do not explore the issue here3. Finally, A
 denotes the set of physi
ala
tions the agent is able to perform; with every � 2 A
 we identify a set ofpropositions P� � P , whi
h in
ludes the propositions that 
hange value when �is exe
uted.In this 
on
eptual model, the question of intention re
onsideration thus ba-si
ally boils down to the implementation of the meta-level 
ontrol fun
tion. Onevery given 
ontrol 
y
le, the agent must de
ide whether it a
ts upon its 
ur-2 We 
learly distinguish intentions from their out
ome states and we do not give valuesto intentions themselves, but rather to their out
omes. For example, when an agentintends to deliver 
o�ee, an out
ome of that intention is the state in whi
h 
o�ee hasbeen delivered.3 Noti
e that this problem is the inverse of the utilitarian lifting problem: the problemof how to lift utilities over states to desires over sets of states. Dis
ussing the liftingproblem, and its inverse, is beyond the s
ope of this paper, and therefore we dire
tthe interested reader to the work of Lang et al. [4℄.



rent intentions, or to adopt new intentions and this is de
ided by the meta-level
ontrol fun
tion. We 
ontinue with dis
ussing how this implementation 
an bedone by using Markov de
ision pro
esses.3 Implementing Intention Re
onsideration as a pomdpIn this paper, the main point of our formalisation of intention re
onsiderationis the pomdp implementation of it. The fa
t that the optimality of a pomdppoli
y is based on the environment's observability, determinism and dynamism,renders the framework appropriate in the 
ontext of intention re
onsideration.In this se
tion, we explain what a pomdp is and how to use it for implementingintention re
onsideration.A partially observable Markov De
ision Pro
ess (pomdp) 
an be understoodas a system that at any point in time 
an be in any one of a number of distin
tstates, in whi
h the system's state 
hanges over time resulting from a
tions,and where the 
urrent state of the system 
annot be determined with 
omplete
ertainty [1℄. Partially observable mdps satisfy the Markov assumption so thatknowledge of the 
urrent state renders information about the past irrelevant tomaking predi
tions about the future. In a pomdp, we represent the fa
t thatthe knowledge of the agent is not 
omplete by de�ning a probability distributionover all possible states. An agent then updates this distribution when it observesits environment.Let a set of states be denoted by S and let this set 
orrespond to the set ofthe agent's internal states as de�ned above. This means that a state in the mdprepresents an internal state of the agent. We let the set of a
tions be denoted byA. (We later show that A 6= A
 in our model.) An agent might not have 
ompleteknowledge of its environment, and must thus observe its surroundings in order toa
quire knowledge: let 
 be a �nite set of observations that the agent 
an makeof the environment. We introdu
e an observation fun
tion O : S � A ! �(
)that de�nes a probability distribution over the set of observations; this fun
tionrepresents what observations an agent 
an make resulting from performing ana
tion a 2 A in a state s 2 S. The agent re
eives rewards for performing a
tionsin 
ertain states: this is represented by a reward fun
tion R : S�A! IR. Finally,a state transition fun
tion � : S � A ! �(S) de�nes a probability distributionover states resulting from performing an a
tion in a state { this enables us tomodel non-deterministi
 a
tions.Having de�ned these sets, we solve a pomdp by 
omputing an optimal poli
y:an assignment of an a
tion to ea
h possible belief state su
h that the expe
tedsum of rewards gained along the possible traje
tories in the pomdp is a max-imum. Optimal poli
ies 
an be 
omputed by applying dynami
 programmingmethods to the pomdp, based on ba
kwards indu
tion; value iteration and pol-i
y iteration are the most well known algorithms to solve pomdps [1℄. A majordrawba
k of applying pomdps is that these kinds of algorithms tend to be highlyintra
table; we later return to the issue of 
omputational 
omplexity as it relatesto our model.



Intention Re
onsideration as a pomdpWe regard the bdi as a domain dependent obje
t level reasoner, 
on
erned di-re
tly with performing the best a
tion for ea
h possible situation; the pomdpframework is then used as a domain independent meta level reasoning 
ompo-nent, whi
h lets the agent re
onsider its intentions e�e
tively. We de�ne a metalevel bdi-pomdp as a tuple hS;A;
;O;R; �i. We have explained above that astate s 2 S in this model denotes an internal state of the agent, 
ontaining abelief part and intention part. As intention re
onsideration is mainly 
on
ernedwith states, a
tions and rewards, we leave the implementation of observations
, the observation fun
tion O and the state transition fun
tion � to the designerfor now.Sin
e the pomdp is used to model intention re
onsideration, we are merely
on
erned with two possible meta level a
tions: the agent either performs anobje
t level a
tion (a
t) or the agent deliberates (del). The possible a
tionsA = fa
t; delg 
orrespond to the agent either a
ting (a
t) or deliberating (del).Be
ause the optimality 
riterion of poli
ies depends on the reward stru
ture ofthe pomdp, we de�ne the rewards for a
tion a
t and deliberation del in states 2 S as follows: R(s; a) = �W (sint) if a = a
tW (s) if a = delwhere sint 2 S refers to the state the agent intends to be in while 
urrentlybeing in state s. Imagine a robot that has just pi
ked up an item whi
h has tobe delivered at some lo
ation. The agent has adopted the intention to deliverthe item, i.e., to travel to that lo
ation and to drop o� the item. The reward fordeliberation is the worth of the agent's 
urrent state (e.g., 0) whereas the rewardfor a
tion is the worth of the intented state (e.g., 10) for having delivered theitem. The robot 
onsequently a
ts, whi
h brings it 
loser to its \
orre
t" inten-tions. Intentions are 
orre
t in 
ase the agent does not waste e�ort while a
tingupon them. An agent wastes e�ort if it is deliberating over its intentions unne
-essarily. If an agent does not deliberate when that would have been ne
essary,the agent has wrong intentions. The reward for a
ting is thus the worth of thestate that the agent intends to rea
h, whereas the reward for deliberation is theworth of the state as it 
urrently is.This stru
ture of reward agrees with the intuition that the agent eventuallyre
eives a reward if it has 
orre
t intentions, it re
eives no reward if it has wrongintentions, and it re
eives no dire
t reward for deliberation. With respe
t to thislast intuition, however, we must mention that the \real" reward for deliberationis indire
tly de�ned, by the very nature of pomdps, as the expe
ted worth offuture states in whi
h the agent has 
orre
t intentions. As intentions resist re
on-sideration [2℄, the agent prefers a
tion over deliberation and the implementationof the reward stru
ture should thus favour a
tion if the rewards are equivalent.For illustrative purposes, 
onsider the simple deterministi
 mdp in Figure 1.This Figure shows a 5� 1 gridworld, in whi
h an agent 
an move either right orleft or stay at its 
urrent lo
ation. The agent's 
urrent lo
ation is indi
ated with
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Fig. 1. A 5� 1 gridworld example whi
h illustrates the de�nition of rewards in a bdi-pomdp. Rewards, being either 0 or 10, are indi
ated per lo
ation. With ea
h state wehave indi
ated the expe
ted reward for exe
uting a physi
al a
tion and for deliberation;the best meta a
tion to exe
ute is indi
ated in square bra
kets.a square and the lo
ation it intends to travel to is denoted by a 
ir
le. Assumethe agent is 
urrently in state s1: its lo
ation is 
ell 4 and it intends to visit 
ell1. A
tion will get the agent 
loser to 
ell 1: it exe
utes a move left a
tion whi
hresults in state s2. Deliberation results in dropping the intention to travel to 
ell1, and adopting the intention to travel to 
ell 5 instead; this results in state s3.Obviously, deliberation is the best meta a
tion here and the expe
ted rewardsfor the meta a
tions in s1 re
e
t this: the expe
ted reward for deliberation ishigher than the one for a
tion. In all other states, these expe
ted rewards areequivalent, whi
h means that the agent a
ts in all other states.Solving a bdi-pomdp means obtaining an optimal intention re
onsiderationpoli
y: at any possible state the agent might �nd itself in, this poli
y tells theagent either to a
t or to deliberate. The main 
ontribution of our work is thatour approa
h gives a well-founded means of establishing a domain dependentoptimal re
onsideration strategy. Thus the agent is programmed with a domainindependent strategy, whi
h it uses to 
ompute a domain dependent strategyo�-line, and then exe
utes it on-line. Until now, empiri
al resear
h on meta levelreasoning aimed at eÆ
ient intention re
onsideration has, to the best of ourknowledge, involved hardwiring agents with domain dependent strategies.It is important that de
iding whether to re
onsider intentions or not is 
om-putationally 
heap 
ompared to the deliberation pro
ess itself [10℄; otherwiseit is just as eÆ
ient to deliberate at any possible moment. Using a pomdp todetermine the re
onsideration poli
y satis�es this 
riterion, sin
e it 
learly dis-tinguishes between design time 
omputation, i.e., 
omputing the poli
y, and run



time 
omputation, i.e., exe
uting the poli
y. We re
ognise that the design timeproblem of 
omputing a poli
y is very hard; this problem 
orresponds with thegeneral problem of solving pomdps and we do not attempt to solve this problemin this paper. However, the 
omputation that 
on
erns us most is the run time
omputation, and in our model this merely boils down to looking up the 
urrentstate and exe
uting the a
tion assigned to that state, i.e., either to a
t or todeliberate. This is a 
omputationally 
heap operation and is therefore suitablefor run time exe
ution.4 Experimental ResultsIn this se
tion, we apply our model in the Tileworld testbed [5℄, and show thatthe model yields better results than were obtained in previous investigations ofintention re
onsideration in this testbed4.The Tileworld [5℄ is a grid environment on whi
h there are agents andholes. An agent 
an move up, down, left, right and diagonally. Holes have tobe visited by the agent in order for it to gain rewards. The Tileworld startsin some randomly generated world state and 
hanges over time with the ap-pearan
e and disappearan
e of holes a

ording to some �xed distributions. Anagent moves about the grid one step at a time5. The experiments are based onthe methodology des
ribed in [8℄. (We repeated the experiments des
ribed in [8℄to ensure that our results were 
onsistent; these experiments yielded identi
alresults, whi
h are omitted here for reasons of spa
e.)The Tileworld testbed is easily represented in our model. Let L denotethe set of lo
ations, i.e., L = fi : 1 � i � ng represents the mutually disjointlo
ations, where n denotes the size of the grid. A proposition pi then denotesthe presen
e (pi = 1) or absen
e (pi = 0) of a hole at lo
ation i. An intentionvalue 
orresponds to the reward re
eived by the agent for rea
hing a hole, andan intention 
ost is the distan
e between the 
urrent lo
ation of the agent andthe lo
ation that the agent intends to rea
h. An environment state is a pairhfpi; : : : ; png;mi, where fpi; : : : ; png are the propositions representing the holesin the grid, and m 2 L is the 
urrent lo
ation of the agent.Combining the 2n�n possible environment states with n possible intentionsmeans that, adopting expli
it state des
riptions, the number of states is 2n�n2,where n denotes the number of lo
ations. Computations on a state spa
e of su
hsize is impra
ti
al, even for small n. In order to render the ne
essary 
ompu-tations feasible, we abstra
ted the Tileworld state spa
e. In the Tileworlddomain, we abstra
t the state spa
e by letting an environment state e be a pairhp1; p2i, where p1 refers to the lo
ation of the hole whi
h is 
urrently 
losest to4 Whereas until now we have dis
ussed non-deterministi
 pomdps, in the experimentalse
tion we restri
t our attention to deterministi
 mdps in order to 
ompare our newresults with previous results.5 Although it may be argued that the Tileworld is simplisti
, it is a well-re
ognisedtestbed for evaluating situated agents. Be
ause of the dynami
 nature of the Tile-world, the testbed s
ales up to diÆ
ult and unsolvable problems.



the agent, and p2 refers to the 
urrent lo
ation of the agent. Then an agent's in-ternal state is hhp1; p2i; fi1gi where i1 refers to the hole whi
h the agent intendsto visit. This abstra
tion means that the size of the state spa
e is now redu
edto n3. However, the agent now has to �gure out at run time what is the 
losesthole in order to mat
h its 
urrent situation to a state in the Tileworld statespa
e. This 
omputation 
an be done in time O(n), by simply 
he
king whetherevery 
ell is o

upied by a hole or not. Be
ause the main purpose of this exampleis merely to illustrate that our model is viable, we are 
urrently not 
on
ernedwith this in
rease in run time 
omputation.In [8℄, the performan
e of a range of intention re
onsideration poli
ies wasinvestigated in environments of di�ering stru
ture. Environments were variedby 
hanging the degree of dynamism (
), observability (referred to by [8℄ asa

essibility), and determinism. Dynamism is denoted by an integer in the range1 to 80, representing the ratio between the world 
lo
k rate and the agent 
lo
krate. If 
 = 1, then the world exe
utes one 
y
le for every 
y
le exe
uted by theagent and the agent's information is guaranteed to be up to date; if 
 > 1 thenthe information the agent has about its environment may not ne
essarily be upto date. (In the experiments in this paper we assume the environment is fullyobservable and deterministi
.) The planning 
ost p was varied, representing thetime 
ost of planning, i.e., the number of time-steps required to form a plan, andtook values 0, 1, 2, and 4.Three dependent variables were measured: e�e
tiveness, 
ommitment, and
ost of a
ting. The e�e
tiveness � of an agent is the ratio of the a
tual s
orea
hieved by the agent to the s
ore that 
ould in prin
iple have been a
hieved.An agent's 
ommitment (�) is expressed as how many a
tions of a plan areexe
uted before the agent replans. The agent's 
ommitment to a plan with lengthn is (k � 1)=(n� 1), where k is the number of exe
uted a
tions. Observe that
ommitment de�nes a spe
trum from a 
autious agent (� = 0, be
ause k = 1)to a bold one (� = 1, be
ause k = n). The 
ost of a
ting is the total number ofa
tions the agent exe
utes.Solving the Tileworld mdp o�-line To summarise, the Tileworld mdpthat we have to solve o�-line 
onsists of the following parts. As des
ribed above,the state spa
e S 
ontains all possible internal states of the agent. Ea
h states 2 S is a tuple hhp1; p2i; fi1gi, where p1 refers to hole that is 
urrently 
losest tothe agent, p2 refers to the 
urrent lo
ation of the agent, and i1 denotes the holewhi
h the agent intends to visit. The set of a
tions is A = fa
t; delg. (Note thatthe set of physi
al a
tions is A
 = fstay; n; ne; e; se; se; sw;w; nwg, but that isnot of 
on
ern to us while spe
ifying the Tileworld mdp.) Sin
e we assumefull observability, the set of observations is 
 = S. Finally, state transitionsare de�ned as the deterministi
 out
omes of exe
uting an a
tion a 2 A. Asthe agent deliberates in state s resulting in state s0 (i.e., �(s; del) = s0), thenBels = Bels0 , but possibly Ints 6= Ints0 ; as the agent a
ts (i.e., �(s; a
t) = s00),then Ints = Ints00 , but possibly Bels 6= Bels00 . Thus deliberation means thatthe intention part of the agent's internal state possibly 
hanges, and a
tion
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-tiveness at a planning 
ost (denoted by p) from 0 to 4. The two other 
urves show thee�e
tiveness at p = 1 and p = 2 of Kinny and George�'s best re
onsideration strategy(from [3℄).means that the belief part of the agent's internal state possibly 
hanges (both
eteris paribus with respe
t to the other part of the internal state). Althoughsolving mdps in general is 
omputationally hard, we have shown above that byappropriate abstra
tion of the Tileworld state spa
e, the 
omputations forour Tileworld mdp be
ome feasible.Results The experiments resulted in the graphs shown in Figures 2, 3(A) and3(B). In every graph, the environment's dynamism and the agent's planning 
ostp (for values 0, 1, 2 and 4) are varied. In Figure 2, the overall e�e
tiveness ofthe agent is plotted. In Figure 3(A) we plotted the agent's 
ommitment level6and in Figure 3(B) the 
ost of a
ting.Analysis The most important observation we make from these experimentsis that the results as presented in Figure 2 are overall better than results asobtained in previous investigations into the e�e
tiveness of re
onsideration (as6 The 
olle
ted data was smoothed using a Bezier 
urve in order to get these 
ommit-ment graphs, be
ause the 
ommitment data showed heavy variation resulting fromthe way dynamism is implemented. Dynamism represents the a
ting ratio betweenthe world and the agent; this ratio os
illates with the random distribution for holeappearan
es, on whi
h the 
ommitment level depends.
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ost (denoted by p) of 0, 1, 2 and 4.elaborated below). Our explanation for this observation is that solving the bdi-pomdp for our Tileworld domain delivers an optimal domain dependent re-
onsideration strategy: the optimal bdi-pomdp poli
y lets the agent deliberatewhen a hole appears that is 
loser than the intended hole (but not on the path tothe intended hole), and when the intended hole disappears. Kinny and George�[3℄ 
on
luded that it is best for an agent to re
onsider when a 
loser hole appearsor when the intended hole disappears. Besides this observation, we see in Figure3(A) that our bdi-pomdp agent is able to determine its plan 
ommitment at runtime, depending on the state of the environment. This ability 
ontributes to in-
reasing the agent's level of autonomy, sin
e it pushes the 
hoi
e of 
ommitmentlevel from design time to run time.Our experimental results 
on�rm the results obtained in previous investi-gations on sele
ting an intention re
onsideration strategy [3, 8, 9℄: the agent'se�e
tiveness and level of 
ommitment both de
rease as the dynamism or plan-ning 
ost in
reases, and the 
ost of a
ting de
reases as the dynamism or planning
ost in
reases.Whereas the fo
us of previous resear
h was on investigating the e�e
tive-ness of �xed strategies in di�erent environments, the aim of the investigation inthis paper is to illustrate the appli
ability of our bdi-pomdp model. Kinny andGeorge� [3℄ have in
luded empiri
al results for an agent that re
onsiders basedon the o

urren
e of 
ertain events in the environment (see [3, p87℄ Figures 8and 9 for p = 2 and p = 1, respe
tively). Their 
on
lusion from these resultswas that it is best for an agent to re
onsider when the agent observes that ei-ther a 
loser hole appears or the intended hole disappears, as mentioned above.We implemented this strategy for the agent in our testbed and yielded identi
alresults. We observed that an agent using our bdi-pomdp model performs better



than the agent using the mentioned �xed strategy with a realisti
 planning 
ost(p � 2). Having 
ompared our results to the results of �xed strategies, we 
on-
lude that, as mentioned above, in e�e
t, our agent indeed adopts the strategythat delivers maximum e�e
tiveness.In the 
ontext of 
exible strategies, we 
ompare our results to the resultsfrom [9℄, where the e�e
tiveness of an alternative 
exible strategy, based ondis
rete deliberation s
heduling [7℄, is explored. The main 
on
lusion we drawfrom 
omparing the results from the two strategies is that the empiri
al out
omesare analogous. Comparing the graphs from Figure 2 to the result graphs from [9℄,we observe that the agent's e�e
tiveness is generally higher for our bdi-pomdpmodel; when we 
ompare the graphs from Figure 3(B) to the 
ost of a
tinggraphs from [9℄, we see that the 
ost of a
ting is lower overall in the dis
retedeliberation model. However, in our bdi-pomdp model, the level of 
ommitmentis more 
onstant, sin
e the bdi-pomdp agent's de
ision me
hanism depends lesson predi
tions of appearan
es and disappearan
es of holes.5 Dis
ussionIn this paper we presented a formalisation of the intention re
onsideration pro-
ess in bdi agents based on the theory of pomdp planning. The motivation forthe formalism is that bdi agents in real world appli
ation domains have to re-
onsider their intentions eÆ
iently in order to be as e�e
tive as possible. It isimportant that re
onsideration happens autonomously, sin
e an agent's 
ommit-ment to its tasks 
hanges depending on how its environment 
hanges. The main
ontribution of our model is that we deliver a meta level and domain independentframework 
apable of produ
ing optimal re
onsideration poli
ies in a variety ofdomains. The model applies pomdp planning to agents; in this paper we donot investigate how intentions 
an 
ontribute to eÆ
iently solving pomdps, butregard su
h an investigation as important further work.In the work presented, we show that the environmental properties of dy-namism, observability and determinism are 
ru
ial for an agent's rate of inten-tion re
onsideration. Our formalism takes all mentioned environmental proper-ties into a

ount, and they form the basis of the de
ision me
hanism of the bdiagent. A distin
tive 
omponent in the bdi agent de
ides whether to re
onsideror not, and we use the pomdp framework to determine an optimal re
onsidera-tion strategy that is used for implementing this 
omponent. We leave open thequestion whether a similar result 
an be a
hieved by the 
onstru
tion of 
om-plex sequential and 
onditional plans, sin
e this de�es the very nature of the bdi
on
ept. A bdi agent is 
on
erned with the management of simple plans overtime, thus its intelligen
e is lo
ated in its meta-reasoning 
apabilities and not inits planning 
apabilities.We have shown that an agent whi
h is designed a

ording to our formalism,is able to dynami
ally 
hange its 
ommitment to plans at run time, based onthe 
urrent state of the environment. (In the experiments that are des
ribed inthis paper, we assumed the environment to be fully observable and 
ompletely



a

essible, in order to 
ompare our results with previous results.) This agenta
hieves better performan
e than existing planning frameworks, in whi
h thelevel of plan 
ommitment is imposed upon the agent at design time. The bdi-pomdp model has the advantage over the deliberation s
heduling model (asused in [9℄) that it 
omputes a substantial part of the re
onsideration strategyat design time, whereas all 
omputations for deliberation s
heduling are at runtime. In 
ontrast, the deliberation s
heduling model is supposedly more 
exiblein 
hanging the re
onsideration strategy at run time.Referen
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