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Abstract. This paper presents the QRK system for reasoning under un-
certainty, which combines the building of logical arguments for formulae
with infinitesimal probabilities of the kind handled by the kappa calcu-
lus. Each constituent of an argument has an associated k-value which
captures belief in that component, and these values are combined when
arguments are constructed from the components. The paper is an exten-
sion of our previous work on systems of argumentation which reason with
qualitative probabilities, providing a finer-grained approach to handling
uncertainty.

1 Introduction

In the last few years there have been a number of attempts to build systems for
reasoning under uncertainty that are of a qualitative nature—that is they use
qualitative rather than numerical values, dealing with concepts such as increases
in belief and the relative magnitude of values. Three main classes of system can
be distinguished—systems of abstraction, infinitesimal systems, and systems of
argumentation. In systems of abstraction, the focus is mainly on modelling how
the probability of hypotheses changes when evidence is obtained. Such systems
provide a qualitative abstraction of probabilistic networks, known as qualitative
probabilistic networks (QPNs), which is sufficient for planning [14], explanation
[3] and prediction [11] tasks. Infinitesimal systems deal with beliefs that are
very nearly 1 or 0, providing formalisms that handle order of magnitude prob-
abilities. Such systems may be used for diagnosis [2] and have been extended
with infinitesimal utilities to give complete decision theories [12,15]. Systems of
argumentation are based on the idea of constructing logical arguments for and
against formulae. Such systems have been applied to problems such as diagnosis,
protocol management and risk assessment [5], as well as handling inconsistent
information [1], and providing a framework for default reasoning [4,9].

In this paper we provide a hybridisation of infinitesimal systems and sys-
tems of argumentation, by defining a system of argumentation which uses order
of magnitude probabilities, in particular the values manipulated by the kappa
calculus.



2 Kappa calculus

The kappa calculus is a formalism that makes it possible to handle order of
magnitude probabilities, representing a state of belief by means of a ranking
that maps propositions into class of ordinals. This mapping is such that:

k(true) =0 (1)
k(¢ V) = min(k(9), £(¥)) (2)

According to the kappa calculus, a proposition « is believed to degree s, if
k(—a) = s; is disbelieved to degree s if k() = s; and is uncommitted if k(@) =
k(—a) = 0. When accommodating disbelieved evidence, the choice about which
beliefs have to be retracted depends on their strength.

The x ranking also has the following properties, analogous to the familiar
properties for probability distributions [7]:

() = min (w) 3)
w(010) = K A 6) — K(9) (4)

Typically k-values are assumed to be obtained from probabilities, by a form of
order of magnitude abstraction in which all probabilities within a given order
of magnitude are mapped to the same k-value. Following Spohn [13], one can
relate a probability p to k-value k by:

€< % <1
€
which of course is equivalent to:
ftl < p <€
One procedure to map probabilities into x values is [2]:

If p = 0 then print oo;

k <« 0;

p L

If p > 1, then print & otherwise k < k + 1;
Goto 3;

Uk L=

and an alternative mapping has been suggested by Giang and Shenoy [6]. For
this work we assume that either such a mapping has already been applied, or
that the k-values have been elicited directly—we just assume the existence of a
set of k-values for the propositions we are interested in.

3 The QRK system

Having introduced the kappa calculus, we can start to introduce the system of
argumentation which will use k-values.



3.1 Basic concepts

We start with a set of atomic propositions £. We also have a set of connectives
{=, =}, and the following set of rules for building the well-formed formulas (wff's)
of the language.

1. If I € £ then [ is a well-formed simple formula (swff).
2. If I is an swff, then —[ is an swff.
3. If I and m are swffs, then | — m is a well-formed implicational formula

(iwff)

We denote the set of all swffs which can be derived using £ by Sg, while 7,
denotes the corresponding set of swffs. The set of wffs that can be defined using
L is W = S; UZ; may then be used to build up a database A where every
item d € A is a triple (i : [ : s) in which ¢ is a token which uniquely identifies
the database item (for convenience we will use the letter ‘i’ as an anonymous
identifier), [ is a wff, and s gives information about the degree of belief associated
with /. In particular we distinguish two cases:

— [is an swff: In this case s is the pair expressing the degree of belief associated
with [ and the degree of disbelief associated with —I, that is (k(I), k(—1));

— [is an qwff: In this case — does not represent material implication but that
the antecedent of the wjff has a probabilistic influence on the consequent.
Therefore, the sign s indicates the belief in the consequent given the an-
tecedent. Thus each iwff has associated with it a sign s which is the ordered
set of four conditional k-values: (k(m|l), k(m|-l), k(~m|l), k(—m|-l)).

Note that there is a notion of direction, similar to that in the directed arcs of
probabilistic networks, associated with jwffs.

3.2 The proof theory

In the previous section we introduced a language for describing belief influences
between formulae. For this to be useful we need to give a mechanism for taking
sentences in that language and using them to derive new sentences. In particular
we need to be able to take formulae with associated k-values and use these
to derive new formulae and their associated k-values. This is done using the
consequence relation Forg which is defined in Figure 1

The definition is in the form of Gentzen-style proof rules where the an-
tecedents are written above the line and the consequent is written below. The
consequence relation operates on a database of the kind of triples introduced in
Section 3.1 and derives arguments about formulae from them. The concept of
an argument is formally defined as follows:

Definition 1. An argument for a well-formed formula p from a database A is
a triple (p, G, Sg) such that A Fgrk (p, G, Sg)



(i:5t:Sg)e A

A
*AForx (56, {i}, 59)

AFork (25, G, Sg)

—--E
AFqrr (St, G,neg(Sg))

1 Atork (St, G, Sg)
Atqrr (—St, G, neg(Sg))

E Atogrr (St, G,S9) Altgrk (St — St G, Sg')

- AFork (S, GU G, impaim(59, 597))

A Fork (St,, G,Sq9) Atgrx (St — St', G, Sg')
Atori (St, GU G, impe(Sg, Sg'))

—-R

Fig. 1. The consequence relation Fgrx

The sign Sg of the argument denotes something about the degree of belief as-
sociated with the formula p, while the grounds G identify the elements of the
database used in the derivation of p.

To see how the idea of an argument fits in with the proof rules in Figure 1,
let us consider the rules Az and —-E. The first builds an argument from a triple
(i : St : Sg), which has a sign Sg and a set of grounds {¢}, where the grounds
identify which elements from the database are used in the derivation. This rule
is a kind of bootstrap mechanism to allow the elements of the database to be
turned into arguments to which other rules can be applied. The second, —-E,
can be thought of as analogous to modus ponens. From an argument for St and
an argument for St — St' it is possible to build an argument for St’ once the
necessary book-keeping with grounds and signs has been carried out.

3.3 Combination functions

In order to apply the proof rules of Figure 1 to build arguments, it is necessary
to supply the functions used to combine signs. These are provided in this section.

The rules for handling negation are applicable only to swffs and permit
negation to be either introduced or eliminated by altering the sign, for example
allowing (i : @ : Sg) to be rewritten as (i : —a : Sg'). This leads to the definition
of neg:

Definition 2. The function neg: Sg € [0, 00[x[0,00[— Sg" € [0, 00[x[0,00[ is
defined as follows:
If  Sg=(s,s)

Then Sg' = (s, s)

To deal with implication we need two elimination functions impejim and impyey,
where the former establishes the sign of formulae generated by the rule of infer-
ence —-E, while the latter is used to establish the sign of formulae generated by



—-R. We start by discussing impejim- Let us suppose we have an implicational
formula (i : @ — b : Sg) where Sg is the quadruple of x-values:

(r(b]a), k(b|~a), k(=bla), £(=b[-a))

if we have the swff
(7 : a: (r(a), (—a)))

then by applying the rule impeim we can obtain b and the pair (k(b), x(—b)).
In order to do so we have to combine (k(b|a), k(b|—a),k(—b|a), k(—b|—-a)) with

(r(a), K(=a)).

Definition 3. The function impeim: Sg € [0, 00[X[0, 00[x Sg’ € [0, 00[* = Sg" €
[0, 00[%[0, 00| is defined as follows:

If  Sg={(s,s")
Sg, = <r7 r’? t7 t,>
Then Sg" = (w, w')

where:

w=min(r + s, + ')
w' = min(t + s,t" +s')

These two equalities are obtained by turning the probabilities in Jeffrey’s rule
[8] into k-values.

The function imp,e, is obtained by computing Pr(a) by manipulating Jeffrey’s
rule for probabilities with Bayes’ rule and then by mapping this expression into
kappa calculus.

Definition 4. The function impe,: Sg € [0, 00[x[0, 00[x Sy’ € [0, 00[* — Sg" €
[0, 00[%[0, 00| is defined as follows:

If Sg = (s,s)
Sg, = <r7 r’? t7 t,>
Then Sg" = (w, w')

where:
w = min{s — min(r,r’ — 1), — 1 —min(r,r’ — 1)}

and
W — min{s —min(r’,r — 1),r — 1 —min(r',r — 1)} if w #0
R S otherwise
3.4 Soundness and completeness

In order to prove soundness and completeness we first need to capture the kind
of relationships that may hold between two formulae:



Definition 5. A well-formed formula p is said to be a cause of a well-formed
formula ¢ if and only if it is possible to identify an ordered set of iwffs {p —
C1,Cl —> C2,...,Cp — q}.

That is, p is a cause of ¢ if it is possible to build up a trail of (causally directed)
implications linking p to g¢.

Definition 6. A well-formed formula p is said to be an effect of a well-formed
formula ¢ if and only if ¢ is a cause of p.

Thus p is an effect of ¢ if it is possible to build up a trail of (causally directed)
implications linking ¢ to p. Soundness will relate to ensuring that given infor-
mation about the k-value of a particular formula we can compute the correct
k-value of its causes and effects, and completeness will relate to ensuring that
we can compute the k-values of all such causes and effects.

Before proceeding to prove soundness and completeness, we need to take into
account two problems which can arise when doing evidential reasoning, that is
reasoning both in the direction of the implications and in the opposite direction.
We are enabled to use evidential reasoning by having included the rule —-R
in the consequence relation. The first problem arises because when implications
are reversed, then the proof procedure can loop and therefore build an infinite
number of arguments. This is possible even if we have a single swff since there is
nothing to stop the proof procedure alternately applying —-E and —-R forever,
building a new argument from each application. However, the problem can be
easily solved by introducing the concept of a minimal argument as in [10]:

Definition 7. A minimal argument is an argument in which no iwff appears
more than once.

We then reject non-minimal arguments, as we shall see below.

The second problem to deal with is caused by the need to handle conditional
independence in the proper way. If proof rules are applied blindly then it is pos-
sible to build arguments which do not respect conditional independence. Such
arguments would not be valid according to the kappa calculus, so they need to
be eliminated. To identify arguments that are invalid because of conditional in-
dependence we introduce the notion of d-separation from probabilistic networks,
suitably modified for x-values. However, before proceeding any further we first
need to introduce some additional definitions:

Definition 8. A source of an argument (p, G, Sg) is an swff from G

That is a source of an argument is one of the simple formula which grounds it,
and therefore is the head of a chain of implications. In the same way we define
the destination of an argument as:

Definition 9. The destination of an argument (p, G, Sy) is p.

We then define d-separation as follows:



Definition 10. Two formulae p and ¢ are d-separated if for all arguments which
have p as their source and ¢ as their destination, there is another formula r such
that either:

1. pisacause of r, r is a cause of ¢, and either r or —r is known to be true; or

2. pis an effect of r, ¢ is an effect of r, and either r or —r is known to be true;
or

3. p and ¢ are both causes of r and there is no argument (r, G, Sg) such that
all the swffs in G are effects of r.

We are now in a position to define the subset of all arguments which do not
suffer from the two problems we discussed above:

Definition 11. An argument A = (p, G, Sg) is invalid if any of the sources of
A are d-separated from p.

and consequently
Definition 12. An argument A = (p, G, Syg) is valid if it is not invalid.

The set of minimal valid arguments are then the problem-free subset of all pos-
sible arguments which can be built from some database of triples.

Now, because arguments in QRK typically only indicate a degree of belief in
a formula (rather than indicating that it is true or false), in general there will
be several minimal valid arguments concerning it with differing degrees of belief.
To combine these, we define a flattening function, and we do this in a way such
that only minimal and valid arguments are taken into account. This function,
Flat(-) is a mapping from a set of arguments A%, for a formula St built from a
particular database A to the pair of that proposition and some overall measure
of validity. Thus we have:

A§, = {(St, Gi, Sg:)| A Forr (St Gi, 590}

and then
Flat : {A € A%,|A is minimal and valid} ~ (St, v)

where v is a single pair of k-values, (k(St), £(—.St). The value v is then the result
of a suitable combination of all the signs of all the arguments for St:

v = MIN;({Sg:|(St, Gi, Sg;) € A'%,})

where each Sg; is a pair (k(St), K(—St)), A’?t is the set of all minimal, valid
arguments in A%,, and the function MIN; is defined as follows:

MIN; ((k(a;), k(—a;))) = (miin ﬁ(ai),mlax k(—a;))

This definition of the flattening function is motivated by the fact that if we have
different arguments, we want to consider the most plausible one—that is we tend
to choose the one associated with the most normal world, therefore the one for
which holds that a is highly believed while —a is highly disbelieved.



Once the flattening function is established we can use it to provide a proce-
dure to determine the overall procedure for determining the measure of belief in
a formula ¢ in which we are interested. This procedure is:

1. Add a triple (i : p : s) for every formula p whose degree of belief is known;
2. Build AqA, the set of all arguments for ¢ using the rules given in Figure 1;
3. Flatten this set to give (¢, (k(q), k(—q)));

Given the previous definitions it is possible to show that, given information
about the degree of belief in (that is the the k-value associated with) some
formula p, the rules of the consequence relation Fgrx may be used to soundly
and completely compute arguments concerning the change in the degree of belief
associated with the causes and effects of p.

Theorem 13. The construction and flattening of arguments in QRK using the
rules of Fork is sound with respect to the kappa calculus

Proof. The proof is by showing the soundness of the combination functions. For
iMmpeiim: Let us consider the dwff (i : a — b : Sg), where Sg is quadruple of
k-values:

(k(bla), &(b|-a), k(=bla), k(=b|-a))

From the sign of a — b and the sign of a, which is (k(a), x(—a)) we want to be
able to calculate the sign of the formula b, which is (k(b), k(—b)). Since x-values
are equivalent to probabilities, we manipulate Jeffrey’s rule [8] and then map
into k-values in order to obtain k(b). Jeffrey’s rule for probabilities is:

Pr(b) = Pr(b|a) Pr(a) + Pr(b|—a) Pr(—a)
which can be mapped into the kappa calculus expression:
#(b) = min{x(bla) + x(a), £(b|-a) + (~a)}

In the same way we can use Jeffrey’s rule to calculate the probability Pr(—b)
from which we obtain the x-value formulation for x(—b):

k(—b) = min{k(-b|a) + k(a), k(—=b|-a) + k(—a)}

since this is exactly the combination function used, impejm is sound. impye, is
slightly less straightforward and requires a few manipulations. This function
calculates the sign of a formula a starting from the swff (i : a — b : s) and the
swif (7 :b: (k(b),x(=b))). We start by proving the formula for x(a). Jeffrey’s
rule is

Pr(b) = Pr(b|a) Pr(a) + Pr(b|—a) Pr(—a)

which can be rewritten as:
Pr(b) = Pr(b|a) Pr(a) + Pr(b|-a)(1 — Pr(a))

which is
Pr(b) = Pr(b|a) Pr(a) — Pr(b|—a) + Pr(b|—a) Pr(a)



therefore Pr(a) is obtained as:
Pr(a)(Pr(bla) — Pr(b|-a)) = Pr(b) — Pr(b|—a)

and so
_ Pr(b) — Pr(b|-a)
Pr(e) = 5 = Pr(b]a)

which mapped into the kappa calculus becomes:

k(a) = min{k(b)—min[k(b|a), k(b|—~a)—1], k(b|~a)—1—min[k(b|a), k(b]—a)—1]}

where the absolute value is added to make sure k(a) > 0. In the same way the
expression for k(—a) can be computed, thus obtaining:

k(—a) = min{k(b)—min[k(b|-a), k(b|a)—1], k(b|a)—1—min[k(b|—-a), k(bla)—1]}

neg is quite straightforward, following directly from the definition. The soundness
of the flattening function can be proved by demonstrating that if we have two
different arguments for a formula ¢, one from a to b and then to ¢ and the second
from d to b to ¢ then the degree of belief which results from flattening the two
arguments is the same that would be computed were there only one argument
from @ and d in combination to b, and then from b to ¢, where the combination
is disjunctive, making something like the usual Noisy-Or assumption. In the first
case we have the following chain of formulae:

l.a—>b—c
2.d—>b—c

and the two swffs (i : a : (k(a),k(—a))) and (5 : d : (k(d), k(—d))) Let us denote
with k1 (c) the degree of belief associated with the first argument and with x2(c¢)
the degree of belief associated with the second one. By applying —-E twice we
can compute:
k1(c) = min {k(c|b) + min[k(b|a) + k(a), k(b|a) + k(—a)],
#(c|=0) + minfk(=bla) + k(a), K(=b]=a) + K(=a)]}
where we have used the following substitutions:
#(b) = min{r(bla) + k(a), K(b|a) + k(~a)}
k(—b) = min{k(=b|a) + k(a), k(—=b|-a) + k(—a)}
Analogously we can compute x2(c) as:
k2(c) = min{k(c|b) + min[k(b|d) + k(d), k(b|~d) + k(—d)],
k(c|=b) + min[k(—=b|d) + k(d), k(=b|~d) + k(=d)]}.
In order to compute the degree of belief associated with ¢ we need to flatten the

two arguments by using the flattening function defined above. If we flatten them
the resulting degree of belief will be

(min(k1 (c¢), k2(c)), max(k1 (—c), k2 (—c)))



that is for ¢ the overall k-value is:
min{minfs(c|b) + a, k(c|b) + B, min[k(clb) + 7, £(c]=b) + 3]}

where:

k(bla) + k(a), k(b|-a) + K£(—a)]

=bla) + k(a), k(—b|—a) + k(—a)]

bld) + k(d), k(b|=d) + Kk(=d))
+

—b|d) + k(d), K(=b]~d) + K(=d)]

K

e

f = min
v = min|k
)

[
[
in|
in[

K

(
(
(
(

This can be rewritten as:
min{x(c|b) + min(a, ), k(c|-b) + min(s, §)}

This result is the same as the degree of belief which would be computed were
the degree of belief in b first computed from a disjunctive dependence on « and
d and the result then propagated to ¢. Something very similar can be carried
out for the k-value of —¢, but with max in place of the outer min, thus proving
that QRK flattens arguments soundly. This concludes the proof. O

Having proved the soundness we can move on to prove completeness, but before
giving such a proof we need to define what we mean by completeness.

Definition 14. The construction and flattening of arguments is said to be com-
plete with respect to some formula p if it is possible to use that system to com-
pute all the x-values of all the effects of p, all the causes of p and all the causes
and effects of all the causes and effects of p.

With this definition it is now possible to state and prove the following theorem:

Theorem 15. The construction and flattening of arguments in QRK is com-
plete with respect to any formula.

Proof. The proof follows from the definition of H QRK, that is the x-value of all
the causes and effects of any well-formed formula p which may be stated in QRK
can be made by the application of the appropriate proof rules. In proving this
we need to distinguish proof of completeness for causes from those for effects.
We start from the latter. Let us consider the addition of the triple (i : p :
(k(p), k(—p))) where p contains no negation symbols, to a database that contains
only formulae without negation symbols. We can have two types of of effect of p:
The first are consequents of implications in which p forms the antecedent while
the second are those effects that are related to p by two or more implications.
In the first case the k-values associated with the formula can be computed by
applying the proof rule —-E. In the latter case the degree of belief associated
with the formula may be obtained by recursively applying the —-E rule.



Analogously, we can recognise two types of causes of p, those which are
antecedents of implications where p is the consequent and those which are causes
that are related to p by two or more implications. In the first case the k-value
associated with the formula is computed by —-R while in the second case the
k-value may be obtained by recursively applying —-R.

Applying both —-E and —-R recursively is sufficient to ensure completeness
for situations without negation, and the appropriate use of the rules =-I and =-E
make it possible to deal with situations in which the negation symbol appears.
O

4 Example

Let us suppose we have the following information about the health of a friend.
The event that our friend has a cold (C) increases the belief that she is sneezing
(S). But also the event R that she has an allergic reaction increases the belief
that she is sneezing. The event T, that our friend has taken some antihistamine,
however, reduces the belief that she is sneezing, while the event that she has an
allergic reaction R increases the belief that she has taken an antihistamine. The
event A, that our friend is allergic to cats increases the belief that she might
have an allergic reaction. This information may be represented as:

(rl: C = S:(k(S|C)=0,k(=S|C) = 1,k(S|-C) =2,k(=S5|-C) =1)) A
(r2: R — S:(k(S|R) =0,k(—=S|R) = 1,k(S|-R) = 2,k(—S|-R) = 1))
(r3: T —= S :(k(S|T) =2,6(=S|T) =1,6(S|-T) =1,k(=S|-T) = 1))
(rd: R— T:(s(T|R) =1,6(=T|R) = 1,k(T|-R) =4,(=T|-R) = 1))

If we believe that our friend is having an allergic reaction, then we can add the
following fact to A:

(f1: R:(k(R) =1,k(=R) = 3)).

Adding this fact permits us to build two minimal, valid arguments concerning
our friend taking antihistamine:

Atqrr (T, {f1,r4}, (k1(T) =3,51(=T) = 3))),
by applying —-E once while if we first apply —-E and then —-R we obtain:
A l_QRK (T, {fl, 7’2, 7"3}, <I<.‘,2(T) = 0,/@2(—|T) = OO>)

By flattening these combine to give the pair (T,(k(T) = 0,s(=~T) = o0)) to
indicate that the event that our friend is not taking antihistamine warrants a
much greater degree of disbelief than the event that she is taking antihistamine.

5 Conclusions

In this paper we have presented QRK, a system of argumentation in which
uncertainty is handled using infinitesimal probability values, in particular values



from the kappa calculus. The use of k-values means that the system can be
used when probabilistic knowledge of a domain is incomplete, and this makes
it applicable to a wider range of situations with respect to systems based on
complete probabilistic information. The system associates a k-value with every
logical formula, and combines these values as arguments are built in a way which
is sound with respect to the kappa calculus. Thus the arguments which can be
constructed in QRK come complete with an order of magnitude estimate of
the probability of the formula supported by the argument, and the system thus
supports qualitative probabilistic reasoning.
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