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.ukAbstra
t. This paper presents the QRK system for reasoning under un-
ertainty, whi
h 
ombines the building of logi
al arguments for formulaewith in�nitesimal probabilities of the kind handled by the kappa 
al
u-lus. Ea
h 
onstituent of an argument has an asso
iated �-value whi
h
aptures belief in that 
omponent, and these values are 
ombined whenarguments are 
onstru
ted from the 
omponents. The paper is an exten-sion of our previous work on systems of argumentation whi
h reason withqualitative probabilities, providing a �ner-grained approa
h to handlingun
ertainty.1 Introdu
tionIn the last few years there have been a number of attempts to build systems forreasoning under un
ertainty that are of a qualitative nature|that is they usequalitative rather than numeri
al values, dealing with 
on
epts su
h as in
reasesin belief and the relative magnitude of values. Three main 
lasses of system 
anbe distinguished|systems of abstra
tion, in�nitesimal systems, and systems ofargumentation. In systems of abstra
tion, the fo
us is mainly on modelling howthe probability of hypotheses 
hanges when eviden
e is obtained. Su
h systemsprovide a qualitative abstra
tion of probabilisti
 networks, known as qualitativeprobabilisti
 networks (QPNs), whi
h is suÆ
ient for planning [14℄, explanation[3℄ and predi
tion [11℄ tasks. In�nitesimal systems deal with beliefs that arevery nearly 1 or 0, providing formalisms that handle order of magnitude prob-abilities. Su
h systems may be used for diagnosis [2℄ and have been extendedwith in�nitesimal utilities to give 
omplete de
ision theories [12, 15℄. Systems ofargumentation are based on the idea of 
onstru
ting logi
al arguments for andagainst formulae. Su
h systems have been applied to problems su
h as diagnosis,proto
ol management and risk assessment [5℄, as well as handling in
onsistentinformation [1℄, and providing a framework for default reasoning [4, 9℄.In this paper we provide a hybridisation of in�nitesimal systems and sys-tems of argumentation, by de�ning a system of argumentation whi
h uses orderof magnitude probabilities, in parti
ular the values manipulated by the kappa
al
ulus.



2 Kappa 
al
ulusThe kappa 
al
ulus is a formalism that makes it possible to handle order ofmagnitude probabilities, representing a state of belief by means of a ranking �that maps propositions into 
lass of ordinals. This mapping is su
h that:�(true) = 0 (1)�(� _  ) = min(�(�); �( )) (2)A

ording to the kappa 
al
ulus, a proposition � is believed to degree s , if�(:�) = s ; is disbelieved to degree s if �(�) = s ; and is un
ommitted if �(�) =�(:�) = 0. When a

ommodating disbelieved eviden
e, the 
hoi
e about whi
hbeliefs have to be retra
ted depends on their strength.The � ranking also has the following properties, analogous to the familiarproperties for probability distributions [7℄:�(�) = min!j=��(!) (3)�( j�) = �( ^ �)� �(�) (4)Typi
ally �-values are assumed to be obtained from probabilities, by a form oforder of magnitude abstra
tion in whi
h all probabilities within a given orderof magnitude are mapped to the same �-value. Following Spohn [13℄, one 
anrelate a probability p to �-value k by:� < p�k � 1whi
h of 
ourse is equivalent to: �k+1 < p � �k :One pro
edure to map probabilities into � values is [2℄:1. If p = 0 then print 1;2. k  0;3. p  p� ;4. If p > 1, then print k otherwise k  k + 1;5. Goto 3;and an alternative mapping has been suggested by Giang and Shenoy [6℄. Forthis work we assume that either su
h a mapping has already been applied, orthat the �-values have been eli
ited dire
tly|we just assume the existen
e of aset of �-values for the propositions we are interested in.3 The QRK systemHaving introdu
ed the kappa 
al
ulus, we 
an start to introdu
e the system ofargumentation whi
h will use �-values.



3.1 Basi
 
on
eptsWe start with a set of atomi
 propositions L. We also have a set of 
onne
tivesf:;!g, and the following set of rules for building the well-formed formulas (w� s)of the language.1. If l 2 L then l is a well-formed simple formula (sw� ).2. If l is an sw�, then :l is an sw�.3. If l and m are sw� s, then l ! m is a well-formed impli
ational formula(iw� )We denote the set of all sw� s whi
h 
an be derived using L by SL, while ILdenotes the 
orresponding set of iw� s. The set of w� s that 
an be de�ned usingL is W = SL [ IL may then be used to build up a database � where everyitem d 2 � is a triple (i : l : s) in whi
h i is a token whi
h uniquely identi�esthe database item (for 
onvenien
e we will use the letter `i ' as an anonymousidenti�er), l is a w�, and s gives information about the degree of belief asso
iatedwith l . In parti
ular we distinguish two 
ases:{ l is an sw� : In this 
ase s is the pair expressing the degree of belief asso
iatedwith l and the degree of disbelief asso
iated with :l , that is h�(l); �(:l)i;{ l is an iw� : In this 
ase ! does not represent material impli
ation but thatthe ante
edent of the w� has a probabilisti
 in
uen
e on the 
onsequent.Therefore, the sign s indi
ates the belief in the 
onsequent given the an-te
edent. Thus ea
h iw� has asso
iated with it a sign s whi
h is the orderedset of four 
onditional �-values: h�(mjl); �(mj:l); �(:mjl); �(:mj:l)i.Note that there is a notion of dire
tion, similar to that in the dire
ted ar
s ofprobabilisti
 networks, asso
iated with iw� s.3.2 The proof theoryIn the previous se
tion we introdu
ed a language for des
ribing belief in
uen
esbetween formulae. For this to be useful we need to give a me
hanism for takingsenten
es in that language and using them to derive new senten
es. In parti
ularwe need to be able to take formulae with asso
iated �-values and use theseto derive new formulae and their asso
iated �-values. This is done using the
onsequen
e relation `QRK whi
h is de�ned in Figure 1The de�nition is in the form of Gentzen-style proof rules where the an-te
edents are written above the line and the 
onsequent is written below. The
onsequen
e relation operates on a database of the kind of triples introdu
ed inSe
tion 3.1 and derives arguments about formulae from them. The 
on
ept ofan argument is formally de�ned as follows:De�nition 1. An argument for a well-formed formula p from a database � isa triple (p;G ;Sg) su
h that � `QRK (p;G ;Sg)



Ax� `QRK (St ; fig; Sg) (i : St : Sg) 2 �:-E � `QRK (:St ;G; Sg)� `QRK (St ;G; neg(Sg)):-I � `QRK (St ;G; Sg)� `QRK (:St ;G; neg(Sg))!-E� `QRK (St ;G; Sg) � `QRK (St ! St 0;G 0; Sg 0)� `QRK (St 0;G [ G 0; impelim(Sg ; Sg 0))!-R� `QRK (St 0;G; Sg) � `QRK (St ! St 0;G 0; Sg 0)� `QRK (St ;G [G 0; imprev(Sg ; Sg 0))Fig. 1. The 
onsequen
e relation `QRKThe sign Sg of the argument denotes something about the degree of belief as-so
iated with the formula p, while the grounds G identify the elements of thedatabase used in the derivation of p.To see how the idea of an argument �ts in with the proof rules in Figure 1,let us 
onsider the rules Ax and!-E. The �rst builds an argument from a triple(i : St : Sg), whi
h has a sign Sg and a set of grounds fig, where the groundsidentify whi
h elements from the database are used in the derivation. This ruleis a kind of bootstrap me
hanism to allow the elements of the database to beturned into arguments to whi
h other rules 
an be applied. The se
ond, !-E,
an be thought of as analogous to modus ponens. From an argument for St andan argument for St ! St 0 it is possible to build an argument for St 0 on
e thene
essary book-keeping with grounds and signs has been 
arried out.3.3 Combination fun
tionsIn order to apply the proof rules of Figure 1 to build arguments, it is ne
essaryto supply the fun
tions used to 
ombine signs. These are provided in this se
tion.The rules for handling negation are appli
able only to sw� s and permitnegation to be either introdu
ed or eliminated by altering the sign, for exampleallowing (i : a : Sg) to be rewritten as (i : :a : Sg 0). This leads to the de�nitionof neg:De�nition 2. The fun
tion neg: Sg 2 [0;1[�[0;1[ 7! Sg 0 2 [0;1[�[0;1[ isde�ned as follows: If Sg = hs ; s 0iThen Sg 0 = hs 0; siTo deal with impli
ation we need two elimination fun
tions impelim and imprev,where the former establishes the sign of formulae generated by the rule of infer-en
e !-E, while the latter is used to establish the sign of formulae generated by



!-R. We start by dis
ussing impelim. Let us suppose we have an impli
ationalformula (i : a ! b : Sg) where Sg is the quadruple of �-values:h�(bja); �(bj:a); �(:bja); �(:bj:a)iif we have the sw� (j : a : h�(a); �(:a)i)then by applying the rule impelim we 
an obtain b and the pair h�(b); �(:b)i.In order to do so we have to 
ombine h�(bja); �(bj:a); �(:bja); �(:bj:a)i withh�(a); �(:a)i.De�nition 3. The fun
tion impelim: Sg 2 [0;1[�[0;1[�Sg 0 2 [0;1[4 7! Sg 00 2[0;1[�[0;1[ is de�ned as follows:If Sg = hs ; s 0iSg 0 = hr ; r 0; t ; t 0iThen Sg 00 = hw ;w 0iwhere: w = min(r + s ; r 0 + s 0)w 0 = min(t + s ; t 0 + s 0)These two equalities are obtained by turning the probabilities in Je�rey's rule[8℄ into �-values.The fun
tion imprev is obtained by 
omputing Pr(a) by manipulating Je�rey'srule for probabilities with Bayes' rule and then by mapping this expression intokappa 
al
ulus.De�nition 4. The fun
tion imprev: Sg 2 [0;1[�[0;1[�Sg 0 2 [0;1[4 7! Sg 00 2[0;1[�[0;1[ is de�ned as follows:If Sg = hs ; s 0iSg 0 = hr ; r 0; t ; t 0iThen Sg 00 = hw ;w 0iwhere: w = minfs �min(r ; r 0 � 1); r 0 � 1�min(r ; r 0 � 1)gand w 0 = �minfs �min(r 0; r � 1); r � 1�min(r 0; r � 1)g if w 6= 01 otherwise3.4 Soundness and 
ompletenessIn order to prove soundness and 
ompleteness we �rst need to 
apture the kindof relationships that may hold between two formulae:



De�nition 5. A well-formed formula p is said to be a 
ause of a well-formedformula q if and only if it is possible to identify an ordered set of iw�s fp !
1; 
1 ! 
2; : : : ; 
n ! qg.That is, p is a 
ause of q if it is possible to build up a trail of (
ausally dire
ted)impli
ations linking p to q .De�nition 6. A well-formed formula p is said to be an e�e
t of a well-formedformula q if and only if q is a 
ause of p.Thus p is an e�e
t of q if it is possible to build up a trail of (
ausally dire
ted)impli
ations linking q to p. Soundness will relate to ensuring that given infor-mation about the �-value of a parti
ular formula we 
an 
ompute the 
orre
t�-value of its 
auses and e�e
ts, and 
ompleteness will relate to ensuring thatwe 
an 
ompute the �-values of all su
h 
auses and e�e
ts.Before pro
eeding to prove soundness and 
ompleteness, we need to take intoa

ount two problems whi
h 
an arise when doing evidential reasoning, that isreasoning both in the dire
tion of the impli
ations and in the opposite dire
tion.We are enabled to use evidential reasoning by having in
luded the rule !-Rin the 
onsequen
e relation. The �rst problem arises be
ause when impli
ationsare reversed, then the proof pro
edure 
an loop and therefore build an in�nitenumber of arguments. This is possible even if we have a single iw� sin
e there isnothing to stop the proof pro
edure alternately applying!-E and!-R forever,building a new argument from ea
h appli
ation. However, the problem 
an beeasily solved by introdu
ing the 
on
ept of a minimal argument as in [10℄:De�nition 7. A minimal argument is an argument in whi
h no iw� appearsmore than on
e.We then reje
t non-minimal arguments, as we shall see below.The se
ond problem to deal with is 
aused by the need to handle 
onditionalindependen
e in the proper way. If proof rules are applied blindly then it is pos-sible to build arguments whi
h do not respe
t 
onditional independen
e. Su
harguments would not be valid a

ording to the kappa 
al
ulus, so they need tobe eliminated. To identify arguments that are invalid be
ause of 
onditional in-dependen
e we introdu
e the notion of d-separation from probabilisti
 networks,suitably modi�ed for �-values. However, before pro
eeding any further we �rstneed to introdu
e some additional de�nitions:De�nition 8. A sour
e of an argument (p;G ;Sg) is an sw� from GThat is a sour
e of an argument is one of the simple formula whi
h grounds it,and therefore is the head of a 
hain of impli
ations. In the same way we de�nethe destination of an argument as:De�nition 9. The destination of an argument (p;G ;Sg) is p.We then de�ne d-separation as follows:



De�nition 10. Two formulae p and q are d-separated if for all arguments whi
hhave p as their sour
e and q as their destination, there is another formula r su
hthat either:1. p is a 
ause of r , r is a 
ause of q , and either r or :r is known to be true; or2. p is an e�e
t of r , q is an e�e
t of r , and either r or :r is known to be true;or3. p and q are both 
auses of r and there is no argument (r ;G ;Sg) su
h thatall the sw�s in G are e�e
ts of r .We are now in a position to de�ne the subset of all arguments whi
h do notsu�er from the two problems we dis
ussed above:De�nition 11. An argument A = (p;G ;Sg) is invalid if any of the sour
es ofA are d-separated from p.and 
onsequentlyDe�nition 12. An argument A = (p;G ;Sg) is valid if it is not invalid.The set of minimal valid arguments are then the problem-free subset of all pos-sible arguments whi
h 
an be built from some database of triples.Now, be
ause arguments in QRK typi
ally only indi
ate a degree of belief ina formula (rather than indi
ating that it is true or false), in general there willbe several minimal valid arguments 
on
erning it with di�ering degrees of belief.To 
ombine these, we de�ne a 
attening fun
tion, and we do this in a way su
hthat only minimal and valid arguments are taken into a

ount. This fun
tion,Flat(�) is a mapping from a set of arguments A�St for a formula St built from aparti
ular database � to the pair of that proposition and some overall measureof validity. Thus we have:A�St = f(St ;Gi ;Sgi)j� `QRK (St ;Gi ;Sgi)gand then Flat : fA 2 A�St jA is minimal and validg 7! hSt ; viwhere v is a single pair of �-values, h�(St); �(:St). The value v is then the resultof a suitable 
ombination of all the signs of all the arguments for St :v = MINi (fSgi j(St ;Gi ;Sgi) 2 A0�Stg)where ea
h Sg i is a pair h�(St); �(:St)i, A0�St is the set of all minimal, validarguments in A�St , and the fun
tion MINi is de�ned as follows:MINi (h�(ai ); �(:ai )i) = hmini �(ai );maxi �(:ai )iThis de�nition of the 
attening fun
tion is motivated by the fa
t that if we havedi�erent arguments, we want to 
onsider the most plausible one|that is we tendto 
hoose the one asso
iated with the most normal world, therefore the one forwhi
h holds that a is highly believed while :a is highly disbelieved.



On
e the 
attening fun
tion is established we 
an use it to provide a pro
e-dure to determine the overall pro
edure for determining the measure of belief ina formula q in whi
h we are interested. This pro
edure is:1. Add a triple (i : p : s) for every formula p whose degree of belief is known;2. Build A�q , the set of all arguments for q using the rules given in Figure 1;3. Flatten this set to give hq ; h�(q); �(:q)ii;Given the previous de�nitions it is possible to show that, given informationabout the degree of belief in (that is the the �-value asso
iated with) someformula p, the rules of the 
onsequen
e relation `QRK may be used to soundlyand 
ompletely 
ompute arguments 
on
erning the 
hange in the degree of beliefasso
iated with the 
auses and e�e
ts of p.Theorem 13. The 
onstru
tion and 
attening of arguments in QRK using therules of `QRK is sound with respe
t to the kappa 
al
ulusProof. The proof is by showing the soundness of the 
ombination fun
tions. Forimpelim: Let us 
onsider the iw� (i : a ! b : Sg), where Sg is quadruple of�-values: h�(bja); �(bj:a); �(:bja); �(:bj:a)iFrom the sign of a ! b and the sign of a, whi
h is h�(a); �(:a)i we want to beable to 
al
ulate the sign of the formula b, whi
h is h�(b); �(:b)i. Sin
e �-valuesare equivalent to probabilities, we manipulate Je�rey's rule [8℄ and then mapinto �-values in order to obtain �(b). Je�rey's rule for probabilities is:Pr(b) = Pr(bja) Pr(a) + Pr(bj:a) Pr(:a)whi
h 
an be mapped into the kappa 
al
ulus expression:�(b) = minf�(bja) + �(a); �(bj:a) + �(:a)gIn the same way we 
an use Je�rey's rule to 
al
ulate the probability Pr(:b)from whi
h we obtain the �-value formulation for �(:b):�(:b) = minf�(:bja) + �(a); �(:bj:a) + �(:a)gsin
e this is exa
tly the 
ombination fun
tion used, impelim is sound. imprev isslightly less straightforward and requires a few manipulations. This fun
tion
al
ulates the sign of a formula a starting from the iw� (i : a ! b : s) and thesw� (j : b : h�(b); �(:b)i). We start by proving the formula for �(a). Je�rey'srule is Pr(b) = Pr(bja) Pr(a) + Pr(bj:a) Pr(:a)whi
h 
an be rewritten as:Pr(b) = Pr(bja) Pr(a) + Pr(bj:a)(1 � Pr(a))whi
h is Pr(b) = Pr(bja) Pr(a) � Pr(bj:a) + Pr(bj:a) Pr(a)



therefore Pr(a) is obtained as:Pr(a)(Pr(bja) � Pr(bj:a)) = Pr(b)� Pr(bj:a)and so Pr(a) = Pr(b) � Pr(bj:a)Pr(bja) � Pr(bj:a)whi
h mapped into the kappa 
al
ulus be
omes:�(a) = minf�(b)�min[�(bja); �(bj:a)�1℄; �(bj:a)�1�min[�(bja); �(bj:a)�1℄gwhere the absolute value is added to make sure �(a) � 0. In the same way theexpression for �(:a) 
an be 
omputed, thus obtaining:�(:a) = minf�(b)�min[�(bj:a); �(bja)�1℄; �(bja)�1�min[�(bj:a); �(bja)�1℄gneg is quite straightforward, following dire
tly from the de�nition. The soundnessof the 
attening fun
tion 
an be proved by demonstrating that if we have twodi�erent arguments for a formula 
, one from a to b and then to 
 and the se
ondfrom d to b to 
 then the degree of belief whi
h results from 
attening the twoarguments is the same that would be 
omputed were there only one argumentfrom a and d in 
ombination to b, and then from b to 
, where the 
ombinationis disjun
tive, making something like the usual Noisy-Or assumption. In the �rst
ase we have the following 
hain of formulae:1. a ! b ! 
2. d ! b ! 
and the two sw�s (i : a : h�(a); �(:a)i) and (j : d : h�(d); �(:d)i) Let us denotewith �1(
) the degree of belief asso
iated with the �rst argument and with �2(
)the degree of belief asso
iated with the se
ond one. By applying !-E twi
e we
an 
ompute:�1(
) = min f�(
jb) + min[�(bja) + �(a); �(bj:a) + �(:a)℄;�(
j:b) + min[�(:bja) + �(a); �(:bj:a) + �(:a)℄gwhere we have used the following substitutions:�(b) = minf�(bja) + �(a); �(bj:a) + �(:a)g�(:b) = minf�(:bja) + �(a); �(:bj:a) + �(:a)gAnalogously we 
an 
ompute �2(
) as:�2(
) = minf�(
jb) + min[�(bjd) + �(d); �(bj:d) + �(:d)℄;�(
j:b) + min[�(:bjd) + �(d); �(:bj:d) + �(:d)℄g:In order to 
ompute the degree of belief asso
iated with 
 we need to 
atten thetwo arguments by using the 
attening fun
tion de�ned above. If we 
atten themthe resulting degree of belief will behmin(�1(
); �2(
));max(�1(:
); �2(:
))i



that is for 
 the overall �-value is:minfmin[�(
jb) + �; �(
j:b) + �℄;min[�(
jb) + 
; �(
j:b) + Æ℄gwhere: � = min[�(bja) + �(a); �(bj:a) + �(:a)℄� = min[�(:bja) + �(a); �(:bj:a) + �(:a)℄
 = min[�(bjd) + �(d); �(bj:d) + �(:d)℄Æ = min[�(:bjd) + �(d); �(:bj:d) + �(:d)℄This 
an be rewritten as:minf�(
jb) + min(�; 
); �(
j:b) + min(�; Æ)gThis result is the same as the degree of belief whi
h would be 
omputed werethe degree of belief in b �rst 
omputed from a disjun
tive dependen
e on a andd and the result then propagated to 
. Something very similar 
an be 
arriedout for the �-value of :
, but with max in pla
e of the outer min, thus provingthat QRK 
attens arguments soundly. This 
on
ludes the proof. 2Having proved the soundness we 
an move on to prove 
ompleteness, but beforegiving su
h a proof we need to de�ne what we mean by 
ompleteness.De�nition 14. The 
onstru
tion and 
attening of arguments is said to be 
om-plete with respe
t to some formula p if it is possible to use that system to 
om-pute all the �-values of all the e�e
ts of p, all the 
auses of p and all the 
ausesand e�e
ts of all the 
auses and e�e
ts of p.With this de�nition it is now possible to state and prove the following theorem:Theorem 15. The 
onstru
tion and 
attening of arguments in QRK is 
om-plete with respe
t to any formula.Proof. The proof follows from the de�nition of ` QRK , that is the �-value of allthe 
auses and e�e
ts of any well-formed formula p whi
h may be stated in QRK
an be made by the appli
ation of the appropriate proof rules. In proving thiswe need to distinguish proof of 
ompleteness for 
auses from those for e�e
ts.We start from the latter. Let us 
onsider the addition of the triple (i : p :(�(p); �(:p))) where p 
ontains no negation symbols, to a database that 
ontainsonly formulae without negation symbols. We 
an have two types of of e�e
t of p:The �rst are 
onsequents of impli
ations in whi
h p forms the ante
edent whilethe se
ond are those e�e
ts that are related to p by two or more impli
ations.In the �rst 
ase the �-values asso
iated with the formula 
an be 
omputed byapplying the proof rule !-E. In the latter 
ase the degree of belief asso
iatedwith the formula may be obtained by re
ursively applying the !-E rule.



Analogously, we 
an re
ognise two types of 
auses of p, those whi
h areante
edents of impli
ations where p is the 
onsequent and those whi
h are 
ausesthat are related to p by two or more impli
ations. In the �rst 
ase the �-valueasso
iated with the formula is 
omputed by !-R while in the se
ond 
ase the�-value may be obtained by re
ursively applying !-R.Applying both !-E and!-R re
ursively is suÆ
ient to ensure 
ompletenessfor situations without negation, and the appropriate use of the rules :-I and :-Emake it possible to deal with situations in whi
h the negation symbol appears.24 ExampleLet us suppose we have the following information about the health of a friend.The event that our friend has a 
old (C) in
reases the belief that she is sneezing(S). But also the event R that she has an allergi
 rea
tion in
reases the beliefthat she is sneezing. The event T, that our friend has taken some antihistamine,however, redu
es the belief that she is sneezing, while the event that she has anallergi
 rea
tion R in
reases the belief that she has taken an antihistamine. Theevent A, that our friend is allergi
 to 
ats in
reases the belief that she mighthave an allergi
 rea
tion. This information may be represented as:(r1 : C ! S : h�(S jC ) = 0; �(:S jC ) = 1; �(S j:C ) = 2; �(:S j:C ) = 1i) �(r2 : R ! S : h�(S jR) = 0; �(:S jR) = 1; �(S j:R) = 2; �(:S j:R) = 1i)(r3 : T ! S : h�(S jT ) = 2; �(:S jT ) = 1; �(S j:T ) = 1; �(:S j:T ) = 1i)(r4 : R ! T : h�(T jR) = 1; �(:T jR) = 1; �(T j:R) = 4; �(:T j:R) = 1i)If we believe that our friend is having an allergi
 rea
tion, then we 
an add thefollowing fa
t to �: (f 1 : R : h�(R) = 1; �(:R) = 3i):Adding this fa
t permits us to build two minimal, valid arguments 
on
erningour friend taking antihistamine:� `QRK (T ; ff 1; r4g; h�1(T ) = 3; �1(:T ) = 3)i);by applying !-E on
e while if we �rst apply !-E and then !-R we obtain:� `QRK (T ; ff 1; r2; r3g; h�2(T ) = 0; �2(:T ) =1i)By 
attening these 
ombine to give the pair hT ; h�(T ) = 0; �(:T ) = 1ii toindi
ate that the event that our friend is not taking antihistamine warrants amu
h greater degree of disbelief than the event that she is taking antihistamine.5 Con
lusionsIn this paper we have presented QRK, a system of argumentation in whi
hun
ertainty is handled using in�nitesimal probability values, in parti
ular values



from the kappa 
al
ulus. The use of �-values means that the system 
an beused when probabilisti
 knowledge of a domain is in
omplete, and this makesit appli
able to a wider range of situations with respe
t to systems based on
omplete probabilisti
 information. The system asso
iates a �-value with everylogi
al formula, and 
ombines these values as arguments are built in a way whi
his sound with respe
t to the kappa 
al
ulus. Thus the arguments whi
h 
an be
onstru
ted in QRK 
ome 
omplete with an order of magnitude estimate ofthe probability of the formula supported by the argument, and the system thussupports qualitative probabilisti
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