
Argumentation and qualitative probabilistireasoning using the kappa alulusValentina Tamma & Simon ParsonsDepartment of Computer Siene, University of LiverpoolChadwik Building, Liverpool, L69 7ZF, UKfV.A.M.Tamma,S.D.Parsonsg�s.liv.a.ukAbstrat. This paper presents the QRK system for reasoning under un-ertainty, whih ombines the building of logial arguments for formulaewith in�nitesimal probabilities of the kind handled by the kappa alu-lus. Eah onstituent of an argument has an assoiated �-value whihaptures belief in that omponent, and these values are ombined whenarguments are onstruted from the omponents. The paper is an exten-sion of our previous work on systems of argumentation whih reason withqualitative probabilities, providing a �ner-grained approah to handlingunertainty.1 IntrodutionIn the last few years there have been a number of attempts to build systems forreasoning under unertainty that are of a qualitative nature|that is they usequalitative rather than numerial values, dealing with onepts suh as inreasesin belief and the relative magnitude of values. Three main lasses of system anbe distinguished|systems of abstration, in�nitesimal systems, and systems ofargumentation. In systems of abstration, the fous is mainly on modelling howthe probability of hypotheses hanges when evidene is obtained. Suh systemsprovide a qualitative abstration of probabilisti networks, known as qualitativeprobabilisti networks (QPNs), whih is suÆient for planning [14℄, explanation[3℄ and predition [11℄ tasks. In�nitesimal systems deal with beliefs that arevery nearly 1 or 0, providing formalisms that handle order of magnitude prob-abilities. Suh systems may be used for diagnosis [2℄ and have been extendedwith in�nitesimal utilities to give omplete deision theories [12, 15℄. Systems ofargumentation are based on the idea of onstruting logial arguments for andagainst formulae. Suh systems have been applied to problems suh as diagnosis,protool management and risk assessment [5℄, as well as handling inonsistentinformation [1℄, and providing a framework for default reasoning [4, 9℄.In this paper we provide a hybridisation of in�nitesimal systems and sys-tems of argumentation, by de�ning a system of argumentation whih uses orderof magnitude probabilities, in partiular the values manipulated by the kappaalulus.



2 Kappa alulusThe kappa alulus is a formalism that makes it possible to handle order ofmagnitude probabilities, representing a state of belief by means of a ranking �that maps propositions into lass of ordinals. This mapping is suh that:�(true) = 0 (1)�(� _  ) = min(�(�); �( )) (2)Aording to the kappa alulus, a proposition � is believed to degree s , if�(:�) = s ; is disbelieved to degree s if �(�) = s ; and is unommitted if �(�) =�(:�) = 0. When aommodating disbelieved evidene, the hoie about whihbeliefs have to be retrated depends on their strength.The � ranking also has the following properties, analogous to the familiarproperties for probability distributions [7℄:�(�) = min!j=��(!) (3)�( j�) = �( ^ �)� �(�) (4)Typially �-values are assumed to be obtained from probabilities, by a form oforder of magnitude abstration in whih all probabilities within a given orderof magnitude are mapped to the same �-value. Following Spohn [13℄, one anrelate a probability p to �-value k by:� < p�k � 1whih of ourse is equivalent to: �k+1 < p � �k :One proedure to map probabilities into � values is [2℄:1. If p = 0 then print 1;2. k  0;3. p  p� ;4. If p > 1, then print k otherwise k  k + 1;5. Goto 3;and an alternative mapping has been suggested by Giang and Shenoy [6℄. Forthis work we assume that either suh a mapping has already been applied, orthat the �-values have been eliited diretly|we just assume the existene of aset of �-values for the propositions we are interested in.3 The QRK systemHaving introdued the kappa alulus, we an start to introdue the system ofargumentation whih will use �-values.



3.1 Basi oneptsWe start with a set of atomi propositions L. We also have a set of onnetivesf:;!g, and the following set of rules for building the well-formed formulas (w� s)of the language.1. If l 2 L then l is a well-formed simple formula (sw� ).2. If l is an sw�, then :l is an sw�.3. If l and m are sw� s, then l ! m is a well-formed impliational formula(iw� )We denote the set of all sw� s whih an be derived using L by SL, while ILdenotes the orresponding set of iw� s. The set of w� s that an be de�ned usingL is W = SL [ IL may then be used to build up a database � where everyitem d 2 � is a triple (i : l : s) in whih i is a token whih uniquely identi�esthe database item (for onveniene we will use the letter `i ' as an anonymousidenti�er), l is a w�, and s gives information about the degree of belief assoiatedwith l . In partiular we distinguish two ases:{ l is an sw� : In this ase s is the pair expressing the degree of belief assoiatedwith l and the degree of disbelief assoiated with :l , that is h�(l); �(:l)i;{ l is an iw� : In this ase ! does not represent material impliation but thatthe anteedent of the w� has a probabilisti inuene on the onsequent.Therefore, the sign s indiates the belief in the onsequent given the an-teedent. Thus eah iw� has assoiated with it a sign s whih is the orderedset of four onditional �-values: h�(mjl); �(mj:l); �(:mjl); �(:mj:l)i.Note that there is a notion of diretion, similar to that in the direted ars ofprobabilisti networks, assoiated with iw� s.3.2 The proof theoryIn the previous setion we introdued a language for desribing belief inuenesbetween formulae. For this to be useful we need to give a mehanism for takingsentenes in that language and using them to derive new sentenes. In partiularwe need to be able to take formulae with assoiated �-values and use theseto derive new formulae and their assoiated �-values. This is done using theonsequene relation `QRK whih is de�ned in Figure 1The de�nition is in the form of Gentzen-style proof rules where the an-teedents are written above the line and the onsequent is written below. Theonsequene relation operates on a database of the kind of triples introdued inSetion 3.1 and derives arguments about formulae from them. The onept ofan argument is formally de�ned as follows:De�nition 1. An argument for a well-formed formula p from a database � isa triple (p;G ;Sg) suh that � `QRK (p;G ;Sg)



Ax� `QRK (St ; fig; Sg) (i : St : Sg) 2 �:-E � `QRK (:St ;G; Sg)� `QRK (St ;G; neg(Sg)):-I � `QRK (St ;G; Sg)� `QRK (:St ;G; neg(Sg))!-E� `QRK (St ;G; Sg) � `QRK (St ! St 0;G 0; Sg 0)� `QRK (St 0;G [ G 0; impelim(Sg ; Sg 0))!-R� `QRK (St 0;G; Sg) � `QRK (St ! St 0;G 0; Sg 0)� `QRK (St ;G [G 0; imprev(Sg ; Sg 0))Fig. 1. The onsequene relation `QRKThe sign Sg of the argument denotes something about the degree of belief as-soiated with the formula p, while the grounds G identify the elements of thedatabase used in the derivation of p.To see how the idea of an argument �ts in with the proof rules in Figure 1,let us onsider the rules Ax and!-E. The �rst builds an argument from a triple(i : St : Sg), whih has a sign Sg and a set of grounds fig, where the groundsidentify whih elements from the database are used in the derivation. This ruleis a kind of bootstrap mehanism to allow the elements of the database to beturned into arguments to whih other rules an be applied. The seond, !-E,an be thought of as analogous to modus ponens. From an argument for St andan argument for St ! St 0 it is possible to build an argument for St 0 one theneessary book-keeping with grounds and signs has been arried out.3.3 Combination funtionsIn order to apply the proof rules of Figure 1 to build arguments, it is neessaryto supply the funtions used to ombine signs. These are provided in this setion.The rules for handling negation are appliable only to sw� s and permitnegation to be either introdued or eliminated by altering the sign, for exampleallowing (i : a : Sg) to be rewritten as (i : :a : Sg 0). This leads to the de�nitionof neg:De�nition 2. The funtion neg: Sg 2 [0;1[�[0;1[ 7! Sg 0 2 [0;1[�[0;1[ isde�ned as follows: If Sg = hs ; s 0iThen Sg 0 = hs 0; siTo deal with impliation we need two elimination funtions impelim and imprev,where the former establishes the sign of formulae generated by the rule of infer-ene !-E, while the latter is used to establish the sign of formulae generated by



!-R. We start by disussing impelim. Let us suppose we have an impliationalformula (i : a ! b : Sg) where Sg is the quadruple of �-values:h�(bja); �(bj:a); �(:bja); �(:bj:a)iif we have the sw� (j : a : h�(a); �(:a)i)then by applying the rule impelim we an obtain b and the pair h�(b); �(:b)i.In order to do so we have to ombine h�(bja); �(bj:a); �(:bja); �(:bj:a)i withh�(a); �(:a)i.De�nition 3. The funtion impelim: Sg 2 [0;1[�[0;1[�Sg 0 2 [0;1[4 7! Sg 00 2[0;1[�[0;1[ is de�ned as follows:If Sg = hs ; s 0iSg 0 = hr ; r 0; t ; t 0iThen Sg 00 = hw ;w 0iwhere: w = min(r + s ; r 0 + s 0)w 0 = min(t + s ; t 0 + s 0)These two equalities are obtained by turning the probabilities in Je�rey's rule[8℄ into �-values.The funtion imprev is obtained by omputing Pr(a) by manipulating Je�rey'srule for probabilities with Bayes' rule and then by mapping this expression intokappa alulus.De�nition 4. The funtion imprev: Sg 2 [0;1[�[0;1[�Sg 0 2 [0;1[4 7! Sg 00 2[0;1[�[0;1[ is de�ned as follows:If Sg = hs ; s 0iSg 0 = hr ; r 0; t ; t 0iThen Sg 00 = hw ;w 0iwhere: w = minfs �min(r ; r 0 � 1); r 0 � 1�min(r ; r 0 � 1)gand w 0 = �minfs �min(r 0; r � 1); r � 1�min(r 0; r � 1)g if w 6= 01 otherwise3.4 Soundness and ompletenessIn order to prove soundness and ompleteness we �rst need to apture the kindof relationships that may hold between two formulae:



De�nition 5. A well-formed formula p is said to be a ause of a well-formedformula q if and only if it is possible to identify an ordered set of iw�s fp !1; 1 ! 2; : : : ; n ! qg.That is, p is a ause of q if it is possible to build up a trail of (ausally direted)impliations linking p to q .De�nition 6. A well-formed formula p is said to be an e�et of a well-formedformula q if and only if q is a ause of p.Thus p is an e�et of q if it is possible to build up a trail of (ausally direted)impliations linking q to p. Soundness will relate to ensuring that given infor-mation about the �-value of a partiular formula we an ompute the orret�-value of its auses and e�ets, and ompleteness will relate to ensuring thatwe an ompute the �-values of all suh auses and e�ets.Before proeeding to prove soundness and ompleteness, we need to take intoaount two problems whih an arise when doing evidential reasoning, that isreasoning both in the diretion of the impliations and in the opposite diretion.We are enabled to use evidential reasoning by having inluded the rule !-Rin the onsequene relation. The �rst problem arises beause when impliationsare reversed, then the proof proedure an loop and therefore build an in�nitenumber of arguments. This is possible even if we have a single iw� sine there isnothing to stop the proof proedure alternately applying!-E and!-R forever,building a new argument from eah appliation. However, the problem an beeasily solved by introduing the onept of a minimal argument as in [10℄:De�nition 7. A minimal argument is an argument in whih no iw� appearsmore than one.We then rejet non-minimal arguments, as we shall see below.The seond problem to deal with is aused by the need to handle onditionalindependene in the proper way. If proof rules are applied blindly then it is pos-sible to build arguments whih do not respet onditional independene. Suharguments would not be valid aording to the kappa alulus, so they need tobe eliminated. To identify arguments that are invalid beause of onditional in-dependene we introdue the notion of d-separation from probabilisti networks,suitably modi�ed for �-values. However, before proeeding any further we �rstneed to introdue some additional de�nitions:De�nition 8. A soure of an argument (p;G ;Sg) is an sw� from GThat is a soure of an argument is one of the simple formula whih grounds it,and therefore is the head of a hain of impliations. In the same way we de�nethe destination of an argument as:De�nition 9. The destination of an argument (p;G ;Sg) is p.We then de�ne d-separation as follows:



De�nition 10. Two formulae p and q are d-separated if for all arguments whihhave p as their soure and q as their destination, there is another formula r suhthat either:1. p is a ause of r , r is a ause of q , and either r or :r is known to be true; or2. p is an e�et of r , q is an e�et of r , and either r or :r is known to be true;or3. p and q are both auses of r and there is no argument (r ;G ;Sg) suh thatall the sw�s in G are e�ets of r .We are now in a position to de�ne the subset of all arguments whih do notsu�er from the two problems we disussed above:De�nition 11. An argument A = (p;G ;Sg) is invalid if any of the soures ofA are d-separated from p.and onsequentlyDe�nition 12. An argument A = (p;G ;Sg) is valid if it is not invalid.The set of minimal valid arguments are then the problem-free subset of all pos-sible arguments whih an be built from some database of triples.Now, beause arguments in QRK typially only indiate a degree of belief ina formula (rather than indiating that it is true or false), in general there willbe several minimal valid arguments onerning it with di�ering degrees of belief.To ombine these, we de�ne a attening funtion, and we do this in a way suhthat only minimal and valid arguments are taken into aount. This funtion,Flat(�) is a mapping from a set of arguments A�St for a formula St built from apartiular database � to the pair of that proposition and some overall measureof validity. Thus we have:A�St = f(St ;Gi ;Sgi)j� `QRK (St ;Gi ;Sgi)gand then Flat : fA 2 A�St jA is minimal and validg 7! hSt ; viwhere v is a single pair of �-values, h�(St); �(:St). The value v is then the resultof a suitable ombination of all the signs of all the arguments for St :v = MINi (fSgi j(St ;Gi ;Sgi) 2 A0�Stg)where eah Sg i is a pair h�(St); �(:St)i, A0�St is the set of all minimal, validarguments in A�St , and the funtion MINi is de�ned as follows:MINi (h�(ai ); �(:ai )i) = hmini �(ai );maxi �(:ai )iThis de�nition of the attening funtion is motivated by the fat that if we havedi�erent arguments, we want to onsider the most plausible one|that is we tendto hoose the one assoiated with the most normal world, therefore the one forwhih holds that a is highly believed while :a is highly disbelieved.



One the attening funtion is established we an use it to provide a proe-dure to determine the overall proedure for determining the measure of belief ina formula q in whih we are interested. This proedure is:1. Add a triple (i : p : s) for every formula p whose degree of belief is known;2. Build A�q , the set of all arguments for q using the rules given in Figure 1;3. Flatten this set to give hq ; h�(q); �(:q)ii;Given the previous de�nitions it is possible to show that, given informationabout the degree of belief in (that is the the �-value assoiated with) someformula p, the rules of the onsequene relation `QRK may be used to soundlyand ompletely ompute arguments onerning the hange in the degree of beliefassoiated with the auses and e�ets of p.Theorem 13. The onstrution and attening of arguments in QRK using therules of `QRK is sound with respet to the kappa alulusProof. The proof is by showing the soundness of the ombination funtions. Forimpelim: Let us onsider the iw� (i : a ! b : Sg), where Sg is quadruple of�-values: h�(bja); �(bj:a); �(:bja); �(:bj:a)iFrom the sign of a ! b and the sign of a, whih is h�(a); �(:a)i we want to beable to alulate the sign of the formula b, whih is h�(b); �(:b)i. Sine �-valuesare equivalent to probabilities, we manipulate Je�rey's rule [8℄ and then mapinto �-values in order to obtain �(b). Je�rey's rule for probabilities is:Pr(b) = Pr(bja) Pr(a) + Pr(bj:a) Pr(:a)whih an be mapped into the kappa alulus expression:�(b) = minf�(bja) + �(a); �(bj:a) + �(:a)gIn the same way we an use Je�rey's rule to alulate the probability Pr(:b)from whih we obtain the �-value formulation for �(:b):�(:b) = minf�(:bja) + �(a); �(:bj:a) + �(:a)gsine this is exatly the ombination funtion used, impelim is sound. imprev isslightly less straightforward and requires a few manipulations. This funtionalulates the sign of a formula a starting from the iw� (i : a ! b : s) and thesw� (j : b : h�(b); �(:b)i). We start by proving the formula for �(a). Je�rey'srule is Pr(b) = Pr(bja) Pr(a) + Pr(bj:a) Pr(:a)whih an be rewritten as:Pr(b) = Pr(bja) Pr(a) + Pr(bj:a)(1 � Pr(a))whih is Pr(b) = Pr(bja) Pr(a) � Pr(bj:a) + Pr(bj:a) Pr(a)



therefore Pr(a) is obtained as:Pr(a)(Pr(bja) � Pr(bj:a)) = Pr(b)� Pr(bj:a)and so Pr(a) = Pr(b) � Pr(bj:a)Pr(bja) � Pr(bj:a)whih mapped into the kappa alulus beomes:�(a) = minf�(b)�min[�(bja); �(bj:a)�1℄; �(bj:a)�1�min[�(bja); �(bj:a)�1℄gwhere the absolute value is added to make sure �(a) � 0. In the same way theexpression for �(:a) an be omputed, thus obtaining:�(:a) = minf�(b)�min[�(bj:a); �(bja)�1℄; �(bja)�1�min[�(bj:a); �(bja)�1℄gneg is quite straightforward, following diretly from the de�nition. The soundnessof the attening funtion an be proved by demonstrating that if we have twodi�erent arguments for a formula , one from a to b and then to  and the seondfrom d to b to  then the degree of belief whih results from attening the twoarguments is the same that would be omputed were there only one argumentfrom a and d in ombination to b, and then from b to , where the ombinationis disjuntive, making something like the usual Noisy-Or assumption. In the �rstase we have the following hain of formulae:1. a ! b ! 2. d ! b ! and the two sw�s (i : a : h�(a); �(:a)i) and (j : d : h�(d); �(:d)i) Let us denotewith �1() the degree of belief assoiated with the �rst argument and with �2()the degree of belief assoiated with the seond one. By applying !-E twie wean ompute:�1() = min f�(jb) + min[�(bja) + �(a); �(bj:a) + �(:a)℄;�(j:b) + min[�(:bja) + �(a); �(:bj:a) + �(:a)℄gwhere we have used the following substitutions:�(b) = minf�(bja) + �(a); �(bj:a) + �(:a)g�(:b) = minf�(:bja) + �(a); �(:bj:a) + �(:a)gAnalogously we an ompute �2() as:�2() = minf�(jb) + min[�(bjd) + �(d); �(bj:d) + �(:d)℄;�(j:b) + min[�(:bjd) + �(d); �(:bj:d) + �(:d)℄g:In order to ompute the degree of belief assoiated with  we need to atten thetwo arguments by using the attening funtion de�ned above. If we atten themthe resulting degree of belief will behmin(�1(); �2());max(�1(:); �2(:))i



that is for  the overall �-value is:minfmin[�(jb) + �; �(j:b) + �℄;min[�(jb) + ; �(j:b) + Æ℄gwhere: � = min[�(bja) + �(a); �(bj:a) + �(:a)℄� = min[�(:bja) + �(a); �(:bj:a) + �(:a)℄ = min[�(bjd) + �(d); �(bj:d) + �(:d)℄Æ = min[�(:bjd) + �(d); �(:bj:d) + �(:d)℄This an be rewritten as:minf�(jb) + min(�; ); �(j:b) + min(�; Æ)gThis result is the same as the degree of belief whih would be omputed werethe degree of belief in b �rst omputed from a disjuntive dependene on a andd and the result then propagated to . Something very similar an be arriedout for the �-value of :, but with max in plae of the outer min, thus provingthat QRK attens arguments soundly. This onludes the proof. 2Having proved the soundness we an move on to prove ompleteness, but beforegiving suh a proof we need to de�ne what we mean by ompleteness.De�nition 14. The onstrution and attening of arguments is said to be om-plete with respet to some formula p if it is possible to use that system to om-pute all the �-values of all the e�ets of p, all the auses of p and all the ausesand e�ets of all the auses and e�ets of p.With this de�nition it is now possible to state and prove the following theorem:Theorem 15. The onstrution and attening of arguments in QRK is om-plete with respet to any formula.Proof. The proof follows from the de�nition of ` QRK , that is the �-value of allthe auses and e�ets of any well-formed formula p whih may be stated in QRKan be made by the appliation of the appropriate proof rules. In proving thiswe need to distinguish proof of ompleteness for auses from those for e�ets.We start from the latter. Let us onsider the addition of the triple (i : p :(�(p); �(:p))) where p ontains no negation symbols, to a database that ontainsonly formulae without negation symbols. We an have two types of of e�et of p:The �rst are onsequents of impliations in whih p forms the anteedent whilethe seond are those e�ets that are related to p by two or more impliations.In the �rst ase the �-values assoiated with the formula an be omputed byapplying the proof rule !-E. In the latter ase the degree of belief assoiatedwith the formula may be obtained by reursively applying the !-E rule.



Analogously, we an reognise two types of auses of p, those whih areanteedents of impliations where p is the onsequent and those whih are ausesthat are related to p by two or more impliations. In the �rst ase the �-valueassoiated with the formula is omputed by !-R while in the seond ase the�-value may be obtained by reursively applying !-R.Applying both !-E and!-R reursively is suÆient to ensure ompletenessfor situations without negation, and the appropriate use of the rules :-I and :-Emake it possible to deal with situations in whih the negation symbol appears.24 ExampleLet us suppose we have the following information about the health of a friend.The event that our friend has a old (C) inreases the belief that she is sneezing(S). But also the event R that she has an allergi reation inreases the beliefthat she is sneezing. The event T, that our friend has taken some antihistamine,however, redues the belief that she is sneezing, while the event that she has anallergi reation R inreases the belief that she has taken an antihistamine. Theevent A, that our friend is allergi to ats inreases the belief that she mighthave an allergi reation. This information may be represented as:(r1 : C ! S : h�(S jC ) = 0; �(:S jC ) = 1; �(S j:C ) = 2; �(:S j:C ) = 1i) �(r2 : R ! S : h�(S jR) = 0; �(:S jR) = 1; �(S j:R) = 2; �(:S j:R) = 1i)(r3 : T ! S : h�(S jT ) = 2; �(:S jT ) = 1; �(S j:T ) = 1; �(:S j:T ) = 1i)(r4 : R ! T : h�(T jR) = 1; �(:T jR) = 1; �(T j:R) = 4; �(:T j:R) = 1i)If we believe that our friend is having an allergi reation, then we an add thefollowing fat to �: (f 1 : R : h�(R) = 1; �(:R) = 3i):Adding this fat permits us to build two minimal, valid arguments onerningour friend taking antihistamine:� `QRK (T ; ff 1; r4g; h�1(T ) = 3; �1(:T ) = 3)i);by applying !-E one while if we �rst apply !-E and then !-R we obtain:� `QRK (T ; ff 1; r2; r3g; h�2(T ) = 0; �2(:T ) =1i)By attening these ombine to give the pair hT ; h�(T ) = 0; �(:T ) = 1ii toindiate that the event that our friend is not taking antihistamine warrants amuh greater degree of disbelief than the event that she is taking antihistamine.5 ConlusionsIn this paper we have presented QRK, a system of argumentation in whihunertainty is handled using in�nitesimal probability values, in partiular values



from the kappa alulus. The use of �-values means that the system an beused when probabilisti knowledge of a domain is inomplete, and this makesit appliable to a wider range of situations with respet to systems based onomplete probabilisti information. The system assoiates a �-value with everylogial formula, and ombines these values as arguments are built in a way whihis sound with respet to the kappa alulus. Thus the arguments whih an beonstruted in QRK ome omplete with an order of magnitude estimate ofthe probability of the formula supported by the argument, and the system thussupports qualitative probabilisti reasoning.Referenes1. S. Benferhat, D. Dubois, and H. Prade. Argumentative inferene in unertain andinonsistent knowledge bases. In Proeedings of the 9th Conferene on Unertaintyin Arti�ial Intelligene, 1993.2. A. Darwihe and M. Goldszmidt. On the relation between kappa alulus andprobabilisti reasoning. In Proeedings of the 10th Conferene on Unertainty inArti�ial Intelligene, 1994.3. M. J. Druzdzel. Probabilisti reasoning in deision support systems: from ompu-tation to ommon sense. PhD thesis, Carnegie Mellon University, 1993.4. P. M. Dung. On the aeptability of arguments and its fundamental role in non-monotoni reasoning and logi programming. In Proeedings of the 13th Interna-tional Conferene on Arti�ial Intelligene, 1993.5. J. Fox. A uni�ed framework for hypothetial and pratial reasoning (2): lessonsfrom linial mediine. In Proeedings of the Conferene on Formal and AppliedPratial Reasoning, 1996.6. P. H. Giang and P. P. Shenoy. On transformations between probability and Spoh-nian disbelief funtions. In K. B. Laskey and H. Prade, editors, Proeedings ofthe 15th Conferene on Unertainty in Arti�ial Intelligene, pages 236{244, SanFraniso, CA, 1999. Morgan Kaufmann.7. M. Goldszmidt and J. Pearl. Qualitative probabilisti for default reasoning, beliefrevision, and ausal modelling. Arti�ial Intelligene, 84(1-2):57{112, 1996.8. R. Je�rey. The logi of deision. University of Chiago Press, Chiago, IL, 2ndedition, 1983.9. R. Loui. Defeat among arguments: a system of defeasible inferene. ComputationalIntelligene, 3:100{106, 1987.10. S. Parsons. A proof theoreti approah to qualitative probabilisti reasoning. In-ternational Journal od Approximate Reasoning, 19:265{297, 1998.11. S. Parsons. Qualitative approahes to reasoning under unertainty. MIT Press, (toappear), Cambridge, MA, 1998.12. J. Pearl. From onditional oughts to qualitative deision theory. In Proeedings ofthe 9th Conferene on Unertainty in Arti�ial Intelligene, 1993.13. W. Spohn. Ordinal onditional funtions: A dynami theory of epistemi states. InW.L. Harper and B. Skyrms, editors, Causation in Deision, Belief Change, andStatistis, volume 2, pages 105{134. 1987.14. M. P. Wellman. Formulation of tradeo�s in planning under unertainty. Pitman,London, 1990.15. N. Wilson. An order of magnitude alulus. In Proeedings of the 11th Confereneon Unertainty in Arti�ial Intelligene, 1995.


