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Abstract. Qualitative probabilistic networks are designed for probabilistic infer-
ence in a qualitative way. They capture qualitative influences between variables,
but do not provide for indicating the strengths of these influences. As a result,
trade-offs between conflicting influences remain unresolved upon inference. In
this paper, we investigate the use of order-of-magnitude kappa values to capture
strengths of influences in a qualitative network. We detail the use of these kappas
upon inference, thereby providing for trade-off resolution.

1 Introduction

Qualitative probabilistic networks [1] and the kappa calculus [2] both provide for prob-
abilistic reasoning in a qualitative way. A qualitative probabilistic network is basically a
qualitative abstraction of a probabilistic network and similarly encodes statistical vari-
ables and the probabilistic relationships between them in a directed acyclic graph. The
encoded relationships represent influences on the probability distributions of variables
and are summarised by a sign that indicates the direction ofchangeor shift (positive,
negative, zero, or unknown) in the distribution of one variable occasioned by another.
The kappa calculus offers a framework for reasoning with uncertainty in the form of
defeasible beliefs, where a belief state is represented by a ranking function that maps
propositions into non-negative integers called kappa values. Kappa values, by means of
a probabilistic interpretation [3], were previously used to abstract a probabilistic net-
work into so-called Kappa networks, where the network’s probabilities are abstracted
into kappa values, because these are easier to assess than precise probabilities and lead
to more robust inference results [4][5].

Inference in Kappa networks is based on the use of kappa calculus and is in general
of the same order as in probabilistic networks (NP-hard). In contrast, for inference with
a qualitative probabilistic network an efficient algorithm is available which is based
upon the idea of combining and propagating signs [6]. Due to the high level of ab-
straction, however, qualitative probabilistic networks do not provide for modelling the
intricacies involved in weighing influences with conflicting signs and, hence, do not
provide for resolving suchtrade-offs. Inference with a qualitative probabilistic network



therefore often results in ambiguous signs that will spread throughout most of the net-
work.

Preventing ambiguous inference results is important as qualitative networks can
play an important role in the construction of quantitative probabilistic networks for
real-life applications [7]. The assessment of the numerous point probabilities required
for a probabilistic network is a hard task and typically performed only when the net-
work’s digraph is considered robust. Now, by assessing signs for the various relation-
ships modelled, a qualitative network is obtained that can be exploited for studying the
behaviour of the projected quantitative network upon inference, prior to the assessment
of probabilities. Ambiguous results from inference in a qualitative network can to some
extent be averted by, for example, introducing a notion of strength of influences. In
previous work, this was done by partitioning the set of influences of a qualitative net-
work into strong and weak influences [8]. In this paper, we investigate the combination
of qualitative probabilistic networks and the kappa calculus. A novel approach to using
kappa values allows us to distinguishseverallevels of strength of qualitative influences,
thereby enabling the resolution of more trade-offs.

This paper is organised as follows. Section 2 provides some preliminaries concern-
ing qualitative probabilistic networks; Section 3 details our use of kappa values to in-
dicate strengths of influences. Section 4 presents an inference procedure for the kappa
enhanced networks. The paper ends with some conclusions in Section 5.

2 Qualitative Probabilistic Networks

A qualitative probabilistic network(QPN) can be viewed as a qualitative abstraction of
a quantitative probabilistic network, or (Bayesian) belief network. A qualitative proba-
bilistic network similarly encodes statistical variables and probabilistic relationships be-
tween them in an acyclic directed graphG = (V (G), A(G)) [1]. Each nodeA ∈ V (G)
represents a variable, which, for ease of exposition, we assume to be binary, writinga
for A = true and ā for A = false. The setA(G) of arcs captures probabilistic inde-
pendence between the variables. Where a quantitative probabilistic network associates
conditional probability distributions with its digraph, a qualitative probabilistic network
specifies qualitative influences and synergies that capture shifts in probability distribu-
tions. Aqualitative influencebetween two nodes expresses how the values of one node
influence the probabilities of the values of the other node. For example, apositive qual-
itative influence along arcA → B of nodeA on nodeB, denotedS+(A, B), expresses
that observing a high value forA makes the higher value forB more likely, regardless
of any other direct influences onB, that is, fora > ā,

Pr(b | ax)− Pr(b | āx) ≥ 0

for any combination of valuesx for the setπ(B) \ {A} of (direct) predecessors ofB
other thanA. A negative qualitative influenceS−(A, B) and a zero qualitative influ-
enceS0(A, B) are defined analogously. If the influence of nodeA on nodeB is not
monotonic or if it is unknown, we say that it isambiguous, denotedS?(A, B). The
definition of qualitative influence can straightforwardly be generalised to an influence
along achainbetween nodesA andB in G.



Table 1.The⊗- and⊕-operators for combining signs

⊗ + − 0 ?

+ + − 0 ?
− − + 0 ?
0 0 0 0 0
? ? ? 0 ?

⊕ + − 0 ?

+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

The set of qualitative influences exhibits various properties. The property ofsym-
metrystates that, if the network includes the influenceSδ(A, B), then it also includes
Sδ(B, A), δ ∈ {+,−, 0, ?}. The transitivity property asserts that the signs of qualita-
tive influences along a chain with no head-to-head nodes combine into a sign for a net
influence with the⊗-operator from Table 1. The property ofcompositionasserts that
the signs of multiple influences between nodes along parallel chains combine into a sign
for a net influence with the⊕-operator. Note that parallel composition of two influences
with conflicting signs, modelling atrade-off, results in an ambiguous sign, indicating
that the trade-off cannot beresolved.

A qualitative probabilistic network also includesproduct synergies[6], that capture
the sign of the (intercausal) qualitative influence induced between the predecessorsA
andB of a nodeC upon its observation; an induced intercausal influence behaves as a
regular qualitative influence.

For inference with a qualitative network an efficient algorithm is available [6], sum-
marised in pseudocode in Fig. 1. The algorithm traces the effect of observing a value
for one node on the other nodes in a network by message-passing between neighbours.
For each node, anode signis determined, indicating the direction of change in its prob-
ability distribution occasioned by the new observation. Initial node signs equal ‘0’, and
observations are entered as a ‘+’ for the observed valuetrueor a ‘−’ for the valuefalse.
Each node receiving a message updates its sign using the⊕-operator and subsequently
sends a message to each (induced) neighbour that is not independent of the observed
node. The sign of this message is the⊗-product of the node’s (new) sign and the sign
of the influence it traverses. This process is repeated throughout the network, building
on the properties of symmetry, transitivity, and composition of influences. Since each
node can change its sign at most twice (once from ’0’ to ’ +’, ’−’, or ’ ?’, then only to
’?’), the process visits each node at most twice and is guaranteed to halt in polynomial
time.

Example 1.We consider the qualitative network from Fig. 2, representing a fragment
of fictitious medical knowledge, pertaining to the effects of administering antibiotics

procedurePropagateSign(from,to,messagesign):

sign[to] ← sign[to] ⊕messagesign;
for each (induced) neighbourVi of to
do linksign← sign of (induced) influence betweento andVi;

messagesign← sign[to] ⊗ linksign;
if Vi 6= from and Vi /∈ Observedand sign[Vi] 6= sign[Vi] ⊕messagesign
then PropagateSign(to,Vi,messagesign)

Fig. 1. The sign-propagation algorithm
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Fig. 2. The qualitativeAntibioticsnetwork

on a patient. NodeA represents whether or not a patient takes antibiotics. NodeT
models whether or not the patient has typhoid fever and nodeD represents presence or
absence of diarrhoea in the patient. NodeF describes whether or not the composition
of the patient’s bacterial flora has changed. Typhoid fever and bacterial flora change
can both cause diarrhoea:S+(T, D) andS+(F, D). Antibiotics can cure typhoid fever,
S−(A, T ), but can also change the composition of the bacterial flora,S+(A, F ).

We observe that a patient has taken antibiotics and enter the sign ‘+’ for nodeA.
NodeA propagates this sign to nodeT , which receives the sign ‘+⊗− = −’ and sends
it to nodeD. NodeD in turn receives the sign ‘−⊗ + = −’ and does not pass on any
sign. NodeA also sends its sign to nodeF , which receives the sign ‘+ ⊗ + = +’ and
passes it on to nodeD. NodeD then receives the additional sign ‘+⊗+ = +’. The two
signs for nodeD are combined, resulting in the ambiguous sign ‘−⊕+ =?’, indicating
that the modelled trade-off remains unresolved.�

3 Introducing a Notion of Strength into QPNs

In order to provide for trade-off resolution in qualitative probabilistic networks, we
introduce a notion of strength of qualitative influences based on the use of kappa values.

3.1 The Basics of the Kappa Calculus

Thekappa calculusprovides for a semi-qualitative approach to reasoning with uncer-
tainty [2][3]. In the kappa calculus, degrees of (un)certainty are expressed by a rank-
ing κ that maps propositions into non-negative integers such thatκ(true) = 0 and
κ(a ∨ b) = min{κ(a), κ(b)}. Reasoning within the kappa calculus amounts to simple
mathematical manipulation ofκ-values.

The kappa rankings can be interpreted as order-of-magnitude approximations of
probabilities [3]. For any combination of valuesx for a setX of statistical variables,
the probabilityPr(x) can be written in terms of a (infinitesimal)basenumber0 <
ε < 1, for examplePr(x) = ε − c · ε2, wherec is a constant. Theκ-value ofPr(x)
now represents the order of magnitude of the expression in terms of the baseε. More,
formally,

κ(Pr(x)) = n iff εn+1 < Pr(x) ≤ εn . (1)

Note that higher probabilities are associated with lowerk-values; for example,κ(Pr(x))
= 0 if Pr(x) = 1, and κ(Pr(x)) = ∞ iff Pr(x) = 0.



3.2 Using Kappas as Indicators of Strength

We consider a qualitative probabilistic network with nodesA andB such thatA → B,
and the set of nodesX = π(B) \ {A}. We recall that the signδ of the qualitative
influence ofA onB is defined as the sign ofPr(b | ax)−Pr(b | āx) for all combinations
of valuesx for the setX . As the absolute values of such differences in probability lie in
the interval[0, 1], they can be associated withκ-values using equivalence (1). We now
define thestrength factorassociated with the influence ofA onB.

Definition 1. Let A andB be nodes inG with A → B ∈ A(G) and letX = π(B) \
{A}. Let Ix(A, B) be short forPr(b | ax) − Pr(b | āx). Then, thestrength factor
associated with the influence ofA onB is an interval[p, q] such that

p ≥ κ(min
x

|Ix(A, B)|), and q ≤ κ(max
x

|Ix(A, B)|) .

where eachκ expresses an order of magnitude in terms of the same base.

Note that for a strength factor[p, q] we always have thatp ≥ q, wherep is greater
than or equal to the kappa value of theweakestpossible influence andq is less than or
equal to the kappa value of thestrongestpossible influence. The reason for allowing
influences to pretend to be stronger or weaker than they are will become apparent. Note
that for each influence in a qualitative network[∞, 0] is a valid strength factor, but not
a very informative one. The above definition extends to chains of influences as well.

We associate strength factors with positive and negative influences; zero and am-
biguous influences are treated as in regular qualitative probabilistic networks. The re-
sulting network will be termed akappa-enhancedqualitative probabilistic network and
we writeSδ[p,q](A, B) to denote a qualitative influence of nodeA on nodeB with sign
δ and strength factor[p, q] in such a network.

We can now express strength of influences in a kappa-enhanced qualitative network
in terms of the baseε chosen for the network: the influence of a nodeA on a nodeB
has strength factor[p, q] iff we have

εp+1 < |Pr(b | ax)− Pr(b | āx)| ≤ εq .

Instead of capturing the influences between variables by using kappa values for prob-
abilities, as is done in Kappa networks, we capture influences by associating kappa
values with arcs in the network. A Kappa network thus requires a number of kappa
values that is exponential in the number of parents for each node; our kappa-enhanced
networks require only a number of kappa values that is linear in the number of parents
for each node.

4 Inference in Kappa-enhanced Networks

Probabilistic inference in qualitative probabilistic networks builds on the properties of
symmetry, transitivity and composition of influences. In order to exploit the strength
of influences upon inference in a kappa-enhanced network, we define new⊗- and⊕-
operators.



4.1 Kappa-enhanced Transitive Combination

To address the effect of multiplying two signs with strength factors in a kappa-enhanced
qualitative probabilistic network, we consider the network fragment shown in Fig. 3.

A B C

X Y

Fig. 3.A fragment of a network

The fragment includes the chain of nodesA, B, C, with two qualitative influences
between them; in addition, we takeX = π(B) \ {A}, andY = π(C) \ {B}. For the
net influence ofA onC, we now have that

Pr(c | axy)− Pr(c | āxy) = (Pr(c | by)− Pr(c | b̄y)) · (Pr(b | ax)− Pr(b | āx)) (2)

for any combination of valuesx for the setX andy for Y . Similar equations are found
given other arc directions, as long as nodeB has at least one outgoing arc. Other influ-
ences ofA onC than those shown are taken into account by the⊕-operator.

⊗ +[r, s] −[r, s] 0 ?

+[p, q] +[p + r + 1, q + s] −[p + r + 1, q + s] 0 ?
−[p, q] −[p + r + 1, q + s] +[p + r + 1, q + s] 0 ?

0 0 0 0 0
? ? ? 0 ?

Fig. 4. The new⊗-operator for combining signs and strength factors

Transitively combining influences amounts to multiplying two differences in prob-
ability, resulting in a difference in probability that is smaller than the two multiplied;
transitive combination therefore causes weakening of influences. This is also apparent
from Fig. 4 which shows the table for the new⊗-operator: upon transitive combination
of two influences, the strength factor shifts to higher kappa values, corresponding to
weaker influences. From the table it is also readily seen that signs combine as in a regu-
lar qualitative probabilistic network; the difference is just in the handling of the strength
factors. We illustrate the combination of two positive influences; similar observations
apply to other combinations.

Proposition 1. LetA, B andC be as in Fig. 3, then

S+[p,q](A, B) ∧ S+[r,s](B, C) ⇒ S+[p+r+1,q+s](A, C) .



Proof: Let X andY be as in Fig. 3. SupposeS+[p,q](A, B) andS+[r,s](B, C). We now
have for the network-associated baseε that

εp+1 < Pr(b | ax)− Pr(b | āx) ≤ εq and

εr+1 < Pr(c | by)− Pr(c | b̄y) ≤ εs .

From Equation (2) for the net influences of nodeA on nodeC, we now find that

ε(p+r+1)+1 = εp+1 · εr+1 < Pr(c | axy)− Pr(c | āxy) ≤ εq · εs = εq+s

for any combination of valuesxy for the setX ∪Y . As ε ≥ 0, we find that the resulting
net influence ofA onC is positive with strength[p + r + 1, q + s]. �

4.2 Kappa-enhanced Parallel Composition

For combining multiple qualitative influences between two nodes along parallel chains,
we provide the new⊕-operator in Fig. 6, which takes the strength factor of influences
into account. In addressing parallel composition we first assume thatε is infinitesimal;
the effect of a non-infinitesimalε on the⊕-operator in Fig. 6 is discussed at the end
of this section. We consider the network fragment shown in Fig. 5, which includes the
parallel chainsA, C, andA, B, C, respectively, between the nodesA andC, and various
qualitative influences; in addition, we takeX = π(B) \ {A} andY = π(C) \ {A, B}.

A

B

C

X

Y

Fig. 5. Another network fragment

For the net influence ofA on C along the two parallel chains, we have that for any
combination of valuesx for X andy for Y , the following equation holds

Pr(c | axy)− Pr(c | āxy) = (Pr(c | aby)− Pr(c | ab̄y)) · Pr(b | ax)
− (Pr(c | āby)− Pr(c | āb̄y)) · Pr(b | āx) (3)

+ Pr(c | ab̄y)− Pr(c | āb̄y) .

Similar equations are found if arc directions are changed, as long as the fragment re-
mains acyclic andB has at least one outgoing arc.

Parallel composition of two influences may result in a net influence of larger mag-
nitude: the result of adding two positive or two negative influences is at least as strong
as the strongest of the influences added. This observation is also apparent from Fig. 6:
taking the minimum of kappa values for the resulting strength factor indicates that the



⊕ +[r, s] −[r, s] 0 ?

+[p, q] +[u, v] a) +[p, q] ?
−[p, q] b) −[u, v] −[p, q] ?

0 +[r, s] −[r, s] 0 ?
? ? ? ? ?

[u, v] = [min{p, r}, min{q, s}]
a) + [p, q], if p + 1 < s;

+ [∞, q], if p < s;
− [r, s], if r + 1 < q;
− [∞, s], if r < q;
?, otherwise

b) see a) with+ and− reversed

Fig. 6. The new⊕-operator for combining signs and strength factors (ε infinitesimal)

net influences are stronger. On the other hand, the result of adding two conflicting in-
fluences may result in a net influence of smaller magnitude, as is also apparent from
Fig. 6.

As examples, we now illustrate the parallel composition of two positive influences,
and — more interesting in the light of resolving trade-offs — the composition of a
positive and a negative influence. Similar observations, with respect to the sign and
strength factor of a net influence, apply to situations in which the signs of the influences
are different from those discussed.

Proposition 2. LetA andC be as in Fig. 5, then

S
+[p,q]
1 (A, C) ∧ S

+[r,s]
2 (A, C) ⇒ S

+[min{p,r},min{q,s}]
net (A, C) .

Proof: Let B, X andY be as in Fig. 5. Suppose thatS
+[p,q]
1 (A, C) andS

+[r,s]
2 (A, C),

and that the positive influenceS+[r,s]
2 (A, C) is composed of the influencesS+[r′,s′](A, B)

andS+[r′′,s′′](B, C) such thatr = r′ + r′′ + 1 ands = s′ + s′′. Similar observations
apply when these latter two influences are negative. We now have for the network-
associated baseε that

εp+1 < Pr(c | abiy)− Pr(c | ābix) ≤ εq, for all valuesbi of B,

εr′+1 < Pr(b | ax)− Pr(b | āx) ≤ εs′
, and

εr′′+1 < Pr(c | aiby)− Pr(c | aib̄y) ≤ εs′′
, for all valuesai of A.

From Equation (3) for the net influence of nodeA on nodeC, we now find that

Pr(c | axy)− Pr(c | āxy) > εr′+r′′+2 + εp+1 = εr+1 + εp+1 ≥ εmin{r,p}+1, and

Pr(c | axy)− Pr(c | āxy) ≤ εq + εs′+s′′
= εq + εs,

for any combination of valuesxy for the set of nodesX ∪ Y . The lower-bound for this
difference is, for example, attained forPr(b | āx) = 0, which enforcesPr(b | ax) >
εr′+1. The upper-bound is attained, for example, forPr(b | ax) = 1 andPr(b | āx) =
1 − εs′

. In computing these bounds, we have exploited the available information with
regard to the signs and strengths of the influences involved.

For infinitesimalε the upper-boundεq + εs is approximated byεmin{q,s}; we con-
clude that the net influence is a positive influence with strength factor[min{p, r}, min{q, s}].
�



If two influences have conflicting signs, then one ’outweighs’ the other if its weakest
effect is stronger than the other influence’s strongest effect. We will adapt the safest and
most conservative approach to combining conflicting influences, that is, by comparing
the lower bound of the one influence with the upper bound of the other. Other methods
of interval comparison are however possible (see e.g. [9]).

Proposition 3. LetA andC be as in Fig. 5, then

S
+[p,q]
1 (A, C) ∧ S

−[r,s]
2 (A, C) ⇒ S

+[p,q]
net (A, C) if p + 1 < s;

S
+[∞,q]

net (A, C) if p < s;

S
−[r,s]

net (A, C) if r + 1 < q;

S
−[∞,s]

net (A, C) if r < q;
S ?

net(A, C) otherwise.

Proof: Let B, X and Y be as in Fig. 5. SupposeS+[p,q]
1 (A, C) and S

−[r,s]
2 (A, C),

and letS−[r,s]
2 (A, C) be composed ofS−[r′,s′](A, B) andS+[r′′,s′′](B, C) such that

r = r′ + r′′ + 1 ands = s′ + s′′. Similar observations apply when these latter signs are
switched. From Equation (3), we now have for the network-associated baseε that

Pr(c | axy)− Pr(c | āxy) > εp+1 − εs′′ · εs′
= εp+1 − εs, and

Pr(c | axy)− Pr(c | āxy) < εq − εr′′+1 · εr′+1 = εq − εr+1,

for any combination of valuesxy for X ∪ Y . The lower-bound for the difference (not
distance!) is attained, for example, forPr(b | ax) = 0 andPr(b | āx) = εs′

; the upper-
bound for the difference is attained, for example, forPr(b | āx) = 1 which enforces
Pr(b | ax) < 1 − εr′+1. In computing these bounds, we have once again exploited the
available information with regard to the signs and strengths of the influences involved.

Now, if εp+1 ≥ εs thenPr(c | axy)− Pr(c | āxy) > 0 = ε∞. Given infinitesimal
ε the lower-boundεp+1 − εs is approximated byεp+1 under the tighter constraintp +
1 < s. The constraintp + 1 ≤ s also impliesq < r + 1, giving an upper-bound of
εq− εr+1 ≤ εq. We conclude that the resulting influence is positive with strength factor
[p, q] if p + 1 < s and strength factor[∞, q] if p < s.

On the other hand, ifεr+1 ≥ εq thenPr(c | axy)− Pr(c | āxy) < 0 = ε∞. Given
infinitesimalε the (negative!) upper-bound−εr+1+εq is approximated by−εr+1 under
the tighter constraintr + 1 < q. The constraintr + 1 ≤ q also impliesp + 1 > s, so
we find a (negative) lower-bound of−εs + εp+1 ≥ −εs. We conclude that the resulting
influence is negative. Taking the absolute values of the given bounds, we find a strength
factor[r, s] if r + 1 < q and[∞, s] if r < q. �

The non-infinitesimal caseThe⊕-operator defined above explicitly uses the fact that
kappa values are order of magnitudeapproximationsof our differences in probability
by just taking into account the most significantε-term in determining the strength factor
of the net influence. Such approximations are valid as long asε indeed adheres to the
assumption that it is infinitesimal. In a real-life problem domain, however, probabilities



and even differences in probability are hardly ever all very close to zero or one, and a
non-infinitesimalε is required to distinguish different levels of strength.

Although the inference algorithm sums only two signs with strength factors at a
time, ultimately a sign and strength factor can be the result of a larger summation.
If 1/ε parallel chains to a single node are combined upon inference, the approximation
used by the⊕-operator will be an order of magnitude off, affecting not only the strength
factor of the net influence (the interval becomes too ’tight’: the influence can be stronger
or weaker than captured by the interval), but possibly its sign as well. For inference in
a kappa-enhanced network in which the assumption of an infinitesimalε is violated,
therefore, we have to perform an additional operation. We have a choice between two
types of operation, depending on whether or not the actual value ofε is known. If
ε is unknown, this operation consists of ’broadening’ the interval an extra order of
magnitude upon each sign addition: when composing two influences with the same sign,
the occurrences of min{q, s} in Fig. 6 should be replaced by max{0, min{q, s} − 1} to
obtain a true upper-bound, assuming thatε ≤ 0.5. Under this same assumption, when
adding a positive and a negative influence, we find true lower-bounds by replacing in
Fig. 6 eachp andr in a) and b) byp + 1 andr + 1, respectively. If the actual value ofε
is known, the additional operation consists of performing the discussed correction only
when necessary, that is, if a sign is composed (a multiple of)1/ε times. To this end,
during sign-propagation each sign needs to record how often it is summed.

The adaption of parallel composition for non-infinitesimalε leads to weaker, but at
least correct, results. In correcting the upper- and lower-bounds of the strength factor,
we have assumed thatε ≤ 0.5, which is a reasonable assumption, since each probability
distribution has at most one probability larger than0.5, and the kappa calculus requires
that the kappa value of at least one probability in a distribution is zero.

4.3 Applying the inference algorithm

The properties of transitivity and parallel composition of influences can, as argued, be
applied in a kappa-enhanced network. The property of symmetry holds for qualitative
influences with respect to their sign, but not with respect to their strength. For an influ-
ence against the direction of an arc, we must therefore use the default interval[∞, 0],
or an explicitly specified strength factor.

Using the new⊗- and⊕-operators, the sign-propagation algorithm for regular qual-
itative probabilistic networks can now be applied to kappa-enhanced networks. Node-
signs are again initialised to ‘0’; observations are once again entered as a ‘+’ or ‘−’.
The strength factor associated with an observation is either adummyinterval [−1, 0]
(no loss of information upon the first operation), or an actual interval of kappa values to
capture the strength of the observation. We illustrate the application of the algorithm.

Example 2.We consider the network from Fig. 7, with strength factors provided by
domain experts. We again observe that a patient has taken antibiotics and enter this
observation as the ’sign’ ‘+ [−1, 0]’ for nodeA. NodeA propagates this sign to node
T , which receives the sign ‘+ [−1, 0]⊗− [1, 0] = − [1, 0]’ and sends it to nodeD. Node
D in turn receives the sign ‘− [1, 0]⊗+ [2, 0] = − [4, 0]’ and does not pass on any sign.
NodeA also sends its sign to nodeF , which receives the sign ‘+ [−1, 0]⊗ + [4, 3] =



A

T F

D

−[1, 0]

+[2, 0]

+[4, 3]

+[5, 3]

Fig. 7. The kappa-enhancedAntibioticsnetwork.

+ [4, 3]’ and passes it on to nodeD. The net influence of nodeA on nodeD therefore is
‘− [4, 0]⊕+ [10, 6]’ which equals ‘− [4, 0]’ if ε is infinitesimal, and ‘− [5, 0]’ otherwise.
A patient taking antibiotics thus has a smaller chance of suffering from diarrhoea. Note
that, unlike in the regular qualitative network, we are now able to resolve the represented
trade-off.�

Inference in a kappa-enhanced network may become less efficient than in a regular
qualitative network, because strength factors change more often than signs. In theory, a
strength factor could change upon each sign-addition enforcing propagation to take time
polynomial in the number ofchainsto a single node in the digraph, which is exponential
in the number of nodes. Kappa-enhanced networks, however, allow for resolving trade-
offs which qualitative networks do not. A polynomial bound on inference in kappa-
enhanced networks can be ensured by limiting the number of sign-additions performed
and reverting to the use of only default intervals once this limit is reached. The use of
default intervals may again lead to weaker results, but never to incorrect ones. Another
option is to isolate the area in which trade-offs occur, use kappa-enhanced inference in
that area and regular qualitative inference in the remaining network [10].

5 Conclusions and further research

A major drawback of qualitative probabilistic networks is their coarse level of detail.
Although sufficient for some problem domains, the coarseness of detail may lead to un-
resolved trade-offs during inference in other domains. In this paper, we combined and
extended qualitative probabilistic networks and the kappa calculus. We introduced the
use of kappa values to provide for levels of strength within the qualitative probabilis-
tic network framework, thereby allowing for trade-off resolution. The kappa-enhanced
networks are very suitable for domains in which all probabilities or differences in prob-
ability are close to zero or one. Previous research has shown that using kappas in-
stead of probabilities in a probabilistic network may lead to good results even for non-
infinitesimalε [5, 11]. We feel, however, that since we are already depending on so little
information, that information better be reliable. Ifε is not infinitesimal, a minor adap-
tion upon sign-addition ensures that inference still leads to correct, although possibly
weaker, results.

This paper presents a possible way of combining qualitative probabilistic networks
with elements from the kappa calculus. Of course, there may be other combinations
possible. We have adapted the basic sign-propagation algorithm for regular qualitative
probabilistic networks, with new operators for propagating signs and strength factors in



kappa-enhanced networks; the resulting algorithm may, however, become less efficient.
We have already mentioned two possible solutions to this problem. Another possibility
may be to exploit more elements from the kappa calculus: although NP-hard in general,
under certain conditions, reasoning with kappa values can be tractable [12], so it may
be possible that strength factors can be propagated more efficiently using combination
rules from the kappa calculus.
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