
Integrating Uncertainty Handling Formalisms inDistributed Arti�cial IntelligenceSimon Parsons12 and Alessandro Sa�otti31 Advanced Computation Laboratory, Imperial Cancer Research Fund,P.O. Box 123, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.2 Department of Electronic Engineering, Queen Mary and West�eld College,Mile End Road, London E1 4NS.3 IRIDIA, Universit�e Libre de Bruxelles, 50 Av Rooseveldt, CP 194/6B-1050 Bruxelles, BelgiumAbstract. In distributed arti�cial intelligence systems it is importantthat the constituent intelligent systems communicate. This may be aproblem if the systems use di�erent methods to represent uncertain in-formation. This paper presents a method that enables systems that usedi�erent uncertainty handling formalisms to qualitatively integrate theiruncertain information, and argues that this makes it possible for dis-tributed intelligent systems to achieve tasks that would otherwise bebeyond them.1 IntroductionDistributed arti�cial intelligence (DAI) is that part of the �eld of arti�cial intel-ligence that deals with problem solving distributed amongst a number of intelli-gent systems. Thus DAI combines the power of arti�cial intelligence techniqueswith the advantages of distributed systems such as robustness and the abilityto combine existing systems together in new con�gurations. One particular ad-vantage of distributed arti�cial intelligence is the ability to take several existingsystems and couple them together [2] perhaps with some new systems, into acommunity of agents that can tackle problems that are beyond the scope of anyindividual system. Thus a number of medical expert systems, each specialisingin a particular area, can be used together to solve problems that are insolubleby any one system on its own [1].When building distributed communities of agents, communication betweenthe agents is very important. In order for agents to be able to communicate, theyeither need to use the same knowledge representation method, or have a meansof translating between the methods used by di�erent agents. This is especiallytrue if the various agents are capable of handling uncertainty [11]. If di�erentagents have di�erent means of handling uncertainty, then one agent that, say,uses possibility theory to represent its uncertainty will not be able to understandthe results of another agent that employs belief functions unless the agents havea means of translating from one formalism to another.



2 An Example of a Multi-agent SystemAs an example of the problems that di�erent formalisms can pose consider thefollowing hypothetical situation. We have a community of medical agents whichbetween them have access to a body of medical knowledge similar to that of theOxford System of Medicine [5]. This knowledge can be summarised in a network,a fragment of which is shown in Figure 1. This fragment encodes the medicalinformation that joint trauma (T ) leads to loose knee bodies (K), and that theseand arthritis (A) cause pain (P ). The incidence of arthritis is inuenced by dis-location (D) of the joint in question and by the patient su�ering from Sjorgen'ssyndrome (S). Sjorgen's syndrome a�ects the incidence of vasculitis (V ), andvasculitis leads to vasculitic lesions (L). Consider further that none of the agents���T ���D ���S���P ���L��� ��� ���HHHHj HHHHHj HHHHHj HHHHHj������ ������������)K A VAgent A Agent B Agent CFig. 1. Medical knowledge about arthritis and associated conditionshas knowledge of the complete network, since, like the modular systems of [1],each is a specialist in a narrow area. In Figure 1, agent A has knowledge of theassociations between diseases and their causes; agent B is a specialist in pain;and agent C's main competence is with lesions. Notice that some nodes areshared between di�erent agents: these constitute the communication channelsbetween them. Suppose now that the agents use di�erent methods for represent-ing the uncertainty inherent in the medical knowledge. Thus the strengths of theinuences known to agent A are given as probabilities, reecting the fact thatthere is good statistical data relating the various complaints. Agent B repre-sents strengths as possibilities [4], with values based on the physical possibilityof one condition inuencing another. Finally, the dependencies used by agentC are quanti�ed by subjective values of belief strength, expressed using belieffunctions [9]. All of these numerical values are given in Table 1. The lack ofconditional belief values other than those given is a result of ignorance aboutthe incidence of pain under these circumstances. It is important to notice thatthe heterogeneity in the way uncertainty is represented across di�erent agents isnot an oddity of the system, but a consequence of the fact that uncertainty maybe present in many di�erent forms, and each form should be represented by theformalism that is most suitable for the job [8].Given the information distributed among the agents, it should be possiblefor the community to reason from what is known about joint trauma and Sjor-



Table 1. Conditional values for the medical examplep(k j t) = 0:6 p(v j s) = 0:1p(k j :t) = 0:2 p(v j :s) = 0:3p(a j d; s) = 0:9 p(a j :d; s) = 0:6p(a j d;:s) = 0:6 p(a j :d;:s) = 0:4bel(p j k; a) = 0:9 bel(p j k;:a) = 0:7bel(p j :k; a) = 0:7 bel(p j k [ :k; a) = 0:6bel(p j k; a [ :a) = 0:7 bel(:p j :k;:a) = 0:5bel(:p j :k;a [ :a) = 0:4�(l j v) = 1 �(l j :v) = 1�(:l j v) = 0:1 �(:l j :v) = 0:1gen's syndrome to establish something about the pain or vasculitic lesions. Forinstance, knowing that the patient has joint trauma should make the agentsincrease their belief in her su�ering pain.However, in order to perform deduction across the boundaries of their individ-ual knowledge, the agents need to exchange information. Agent A can calculatethe probability of loose knee bodies, arthritis and vasculitis, but nothing can besaid about the belief in pain, or the possibility of vasculitic lesions unless thisinformation is passed on to agents B and C. Moreover, unless the agents ex-change information, nothing can be said about how these quantities will changewhen it is established, for instance, that the patient in question is su�ering fromSjorgen's syndrome. Because all the information is represented using di�erentformalisms, it is not possible for the multi-agent system to make these sort ofcross-deductions in a direct way; in order for the overall system to perform rea-soning we need some kind of integration between the di�erent formalisms.Two solutions are commonly employed in the DAI literature. The �rst oneis to provide each agent with the ability to translate knowledge (and uncer-tainty) expressed in its own language into the language of any agent it needsto communicate with, and vice-versa. The complexity of this solution quicklybecomes prohibitive as the number of agents grows. Moreover, translating fromone formalism to another is not always feasible, and may introduce arbitraryassumptions (e.g., assumptions of equiprobability).The second solution is to develop a common knowledge representation lan-guage, or interlingua, and require all inter-agent communications to use thisinterlingua [2]. Although this solution is in general less expensive than the pre-vious one, its cost can still be very high, and developing an interlingua that ispowerful enough to subsume each of the individual languages may be unfeasible.An alternative approach is to adopt an interlingua that is weak enough to be sub-sumed by all of the agents' languages. In the remainder of this paper we outlinea technique of this kind that may be used to integrate di�erent uncertainty rep-resentation formalisms, and discuss it in the context of the example given above.Space restrictions unfortunately limit the discussion, but more detail may befound in [6] and proofs of all results may be found in [7].



3 Integrating the FormalismsOur approach to integrate di�erent uncertainty handling formalisms is groundedon the notion of degrading: given a representation of uncertainty, we degradeits information content to a level that can be shared between all the di�erentformalisms; this degraded information is then communicated between agents.We represent degraded uncertainty as qualitative changes: given knowledge ofconditional probabilities, possibilities and beliefs relating a set of hypotheses,we focus on how the probabilities, possibilities and beliefs will change when wehave new evidence. More precisely, we use the conditional values to establish thequalitative values of the derivatives that relate the probabilities, possibilities andbeliefs, that is to establish whether the derivatives are positive [+], negative [�]or zero [0]. The derivatives tell us how changes in value move through a network.This method of integration is fully described elsewhere [6, 7]Consider three variables A;B, and C related such that if p(A) increases, p(B)decreases, and if bel(B) increases, bel(C) increases. In other words, h@p(B)@p(A)i = [�]and h@bel(C)@bel(B)i = [+]. These derivatives allow us to propagate changes in valuefrom node to node so that given �p(A) we can establish �p(B), and if weknow �bel(B) we can establish �bel(C). If we accept the followingmonotonicityassumption:If the value of a hypothesis in one formalism increases, the value of thesame hypothesis in any other formalism does not decrease,then we can use the qualitative changes to integrate di�erent formalisms asfollows. If we have �p(A) = [+] then �p(B) = [�]. Now, from �p(B) = [�], weknow that �bel(B) = [�] or [0], and so we can establish that bel(C) = [�] or[0]. Other translations may be carried out in exactly the same manner.So to come back to our example, the agent that deals with probabilisticknowledge knows that �p(s) = [+], �p(t) = [0] and �p(d) = [0] since the onlychange that it knows about is that the patient is now observed to be su�eringfrom Sjorgen's syndrome. Since a change of [0] can never become a change of [+]or [�] [6] it can ignore the latter changes, and using the fact that p(x)+p(:x) = 1for all x it knows that �p(:s) = [�]. Now, Theorems 3.1 and 5.1 from [7]establish the qualitative derivatives that link V and A to S from the values ofTable 1. These results are that:�@p(v)@p(s) � = [�] ; � @p(v)@p(:s)� = [+] ; �@p(a)@p(s) � = [+] ; and� @p(a)@p(:s)� = [�] ;so that �p(a) = [+], and �p(v) = [�] from which it is possible to deduce that�p(:a) = [�] and�p(:v) = [+]. These results may then be passed to the agentsthat deal with possibilities and beliefs. Using the monotonicity assumption theseagents know that if the probability of a hypothesis increases then both thepossibility of that hypothesis and the belief in it do not decrease. Similarly if theprobability decreases then the possibility and belief do not increase. Thus the



agent that handles beliefs knows that �bel(a) = [+] or [0], �bel(:a) = [�] or[0] while the agent that deals with possibilities knows that ��(v) = [�] or [0]and ��(:v) = [+] or [0]. Now, Theorem 5.3 in [7], when applied to the valuesin Table 1. gives:�@bel(p)@bel(a)� = [+] ; � @bel(p)@bel(:a)� = [0] ; �@bel(:p)@bel(a) � = [�] ; and�@bel(:p)@bel(:a)� = [+] ;Thus the agent that deals with beliefs can tell that �bel(p) = [+] or [0] and�bel(:p) = [�] or [0]. Since the agent that deals with possibility is initiallyignorant about the possibility of vasculitis, we have �(v) = �(:v) = 1, andTheorem 3.2 in [7] gives:� @�(l)@�(v) � = [0] ; � @�(l)@�(:v)� = [0] ; �@�(:l)@�(v) � = [0] ; and� @�(:l)@�(:v)� = [0] ;with the result that ��(v) = ��(:v) = [0]. Thus the result of the new evi-dence about the patient's su�ering from Sjorgen's syndrome is that belief in thepatient's pain may increase, while the possibility of the patient having vasculiticlesions is una�ected. Notice that the achievement of this conclusion has requiredthe integration of the knowledge available to di�erent agents, and would oth-erwise have been beyond the system. As discussed in [6] it is also possible tointegrate while performing diagnostic reasoning from observations about P andL to learn something about p(t) and p(s)4 DiscussionWe have outlined a scheme for integrating uncertainty handling formalisms, inthe setting of distributed arti�cial intelligence, as a means of enabling commu-nication between intelligent agents. The integration is qualitative and is basedupon the analysis of the relationships between variables in probability, possibil-ity and evidence theories, and what we have called the monotonicity assumption.Two important issues arise from this integration: the validity of the monotonicityassumption, and the usefulness of the qualitative results.There are several informal arguments that may be made in favour of themonotonicity assumption (as well as more formal ones | see [6]). Firstly, thisassumption seems to be intuitively acceptable as a principle of coherence. Similarprinciples have been proposed for the relation between probability and possibility[10], and between subjective and objective probability [3]. Secondly, and perhapsmore importantly, this seems to be the weakest assumption that allows some formof integration. In fact, relaxing this assumption would eliminate any constraintbetween values of belief in di�erent formalism, and render any communicationcontent free, and strengthening it would lead to the introduction of spuriousinformation in certain cases.As for the usefulness of the qualitative results, it is clear that the kind ofqualitative integration introduced above is extremely weak, and will never pro-duce as accurate results as a complete numerical integration because the method
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