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Abstract. The prediction of protein structure is an important problem
in molecular biology. It is also a difficult problem since the available data
are incomplete and uncertain. This paper describes models for the pre-
diction of a particular level of protein structure, known as the topology,
which handle uncertainty in a qualitative fashion.

1 Introduction

Proteins are large biological macromolecules that form the main components of
living organisms and control most of the crucial processes in within them. The
function of a particular protein is determined by the chemical interactions at its
surface, and these are related to its three dimensional structure. Thus knowledge
of protein structure is important. The structure of proteins can be described at
various levels of detail from the primary structure, which consists of a list of
the amino acids that make up the protein, through the secondary structure,
which is a description of the way that the amino acids are grouped together into
substructures such as g-strands and a-helices, to the tertiary structure, which is
the set of three dimensional co-ordinates of every atom in the protein. Protein
topology is an intermediate level somewhere between secondary and tertiary
structure which specifies how the substructures are arranged.

Now, knowledge of three dimensional protein structure is sparse so that while
the primary structures for many tens of thousands of proteins are known, only
some hundreds of distinct proteins have had their three dimensional structure
determined. This discrepancy motivates much research into determining protein
structure including the use of computational techniques.

2 Protein Topology Prediction

The prediction of protein topology is interesting because the topology can be
used to guide the choice of experiments to confirm protein structure. A major
difficulty in this prediction is that a vast number of possible topologies can be
hypothesized from a single secondary structure prediction, and one means to
tackle this problem is to identify and apply constraints based upon analyses



of known protein structures. For instance, for «/8 sheets [1, 13] (which are
topological structures combining a-helices and §-strands):

— C1. For parallel pairs of S-strands, B-a-8 and B-coil®-3 connections are right
handed.

— 2. The initial 3-strand is not an edge strand in the sheet.

— (3. Only one change in winding direction occurs.

— C5. All strands lie parallel in the 3-sheet.

— F1. Strands are ordered in the sheet by hydrophobicity, with the most hydrophobic*
strands central.

— F2. Parallel 8-coil-8 connections contain at least 10 amino acids.

Because these constraints are derived from aggregate properties of a col-
lection of proteins, they do not apply to all proteins. When Shirazi et al. [12]
assessed the validity of C'1, C2, C3, Cb and F2 by checking them against 33
«/ 3 sheet proteins, they found that only one protein satisfied all the constraints.
Their results, reproduced in Table 1, show that while the folding rules are use-
ful heuristics they are only true some of the time, leading us to suspect that
explicitly modelling the uncertainty in the constraints might be advisable. One
approach to doing this is to assess the validity of a structure based upon the con-
straints to which that structure conforms [7]. This paper explores an alternative
method which fits in well with the constraint-satisfaction approach to protein
topology prediction reported by Clark et al. [1].

In this constraint-based approach, the search proceeds by incrementally add-
ing components (such as f-strands) to a set of possible structures. After each
addition the set of structures is pruned by testing against every constraint. Thus
following each step a structure can either conform to the same set of constraints
as before, or to some subset or superset of it. So, after each step new evidence
about whether or not a constraint holds may be available. If it is possible to
relate the fact that a particular structure conforms to a particular constraint
to that structure being correct, then the effect of the new knowledge may be

Protein ID Constraints Protein ID Constraints Protein ID Constraints
‘ Violated ‘ ‘ Violated ‘ ‘ Violated
plaat C2 C5 pltsl C2 C5 plppd C2 C5
plbp2 C2 C5 plubq C3 C5 plrn3 C2 C5
plcac C2 C3 Ch p2bbc C2 C3C5 plsbt C1
plcpb C2 C3 Ch p2cab C2 C3C5 plsn3 C2 C5
plcrn C2 C5 p2cdyv C2 C5 plsrx C2 C3 Ch
plcts C2 C5 p2cts C2 C5 p5cpa C2 C3 Ch
plctx C5 p2lzm C5 p3pgm C5
plhip C2 C5h p2ssi C5h p4cts C2 C5h
plnxb C3 C5h p3bp2 C2 C5 p4dfr C3 C5 F2
plovo C5 p3cts C2 C5 p4fxn
plp2p C2 C5h p3dfr C3 C5 p4pti C2 C5h

Table 1. The results of checking constraints against 33 «/3 sheet proteins.

® A protein has coil structure where it is neither a 8-strand nor an a-helix.
* Lacking an affinity for water.



propagated to find out how it affects the likelihood that the structure is correct.
Thus it is possible to tell whether the protein structure that is being assembled
has become more or less likely to be correct, and whether it should be rejected
or continued with accordingly.

Now, information about changes in the validity of a structure being correct
with changes in evidence about which constraints it conforms to is exactly the
kind of information that is handled by our qualitative approach to propagating
uncertainty [8], and methods based upon this approach are what we consider
here. In the tradition of experimental investigations of how to model uncertainty
in a given problem [3, 4, 7, 10] we discuss a number of different ways in which the
data from Table 1 may be represented. There are, of course, other possibilities
which are not discussed here, and some of these are discussed in [6].

3 Single formalism approaches

The data in Table 1 may be interpreted as telling us how often constraints hold
for real proteins, since every structure in the table occurs in nature. Thus the
proportion of the proteins for which a given constraint holds is the conditional
probability that the constraint holds given that the protein is real. Thus, for C'1:

Number of proteins for which C'1 holds 32
p(C1l]|real) = =

Total number of proteins T 33

We have no information about the proportion of proteins for which C'1 holds
yet which are not real, so we cannot establish p(C'1 | =real) in the same way.
Instead, we must employ the principle of maximum entropy to conclude that
p(C1|—real) = 0.5. From [8] we learn that these values are sufficient to establish

the relationship between p(C1) and p(real) as being that di;p((riil)) = [+], so

that as p(real) increases, so does p(C1). This information, in turn [8], tells
us that %E‘é_%l = [+], allowing us to establish how p(real) changes when we
have information about C'1 holding. Using the data about other constraints, we
get Table 2. Note that dp(real)

dp(C2)
decreases.

= [—] indicates that as p(C2) increases, p(real)

Constraint|Cases of constraint %;(STG)Q Change in p(real) on
(z) failure adding the constraint
1 1 [+] [+]
C2 23 [—] [—]
C3 10 [+] [+]
C5 31 [—] [—]
£2 1 [+] [+]

Table 2. The probabilistic qualitative derivatives and their effects



It is possible to construct a valuation system model [11] which allows us
to combine the effects of the various constraints. A suitable network is given
in Fig 1—ovals denote variables, and boxes denote relations between variables.
The propagation of qualitative values in this network may be carried out by the
Mummu system [8], and using Mummu we can establish that the addition of
C1, C3 and F2 causes p(real) to rise, while the addition of C'2 and C5 cause it
to fall (Table 2).

real

Cl1—real C2—real C3—real Cs5—rC5 F2—real

C F

a

DGO

Fig. 1. A network for propagating qualitative changes

a
a
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It 1s also possible to model the constraints using possibility theory. If a struc-
ture conforms to a constraint, then it is entirely possible that the structure is
correct. However, if a structure fails to conform to a constraint then it becomes
less possible that the structure is correct. Indeed, the possibility of the structure
being a protein falls to a figure that reflects the proportion of naturally occur-
ring proteins that do not conform to the constraint. So, considering the data in

Table 1, we have:
Number of proteins for which C'1 does not hold 1

Total number of proteins T 33

II(C1|real) =

Since we have no information about proteins which are not real, we know nothing
about IT(C'1|—real) and I1(=C'1|—real), and so set them both to 1 by the princi-
ple of minimum specificity [2]. These values, along with 7 (real) = I (—real) = 1
(again by the principle of minimum specificity) allow us to establish derivatives
that define the relationship between I7(real) and IT(C1) [8] to be Aen) [0],

dII (real)
o3 = U, 1Ay = 0 and Y, = (0], meani ot 1(-C1) oy

decrease when II(real) decreases, whilst it is independent of IT(-real), and
II(C1) is independent of IT(real) and IT(—real). From these values it is possible

[8] to determine that %:e—g% = [{] with the other derivatives concerning C'1 all
being zero. Similar reasoning about the other constraints gives Table 3. When
these derivatives are used with the network in Fig 1, and the effects of the ap-
plication of individual constraints are propagated using Mummu, the results of

the last column of Table 3 are generated. These results are rather different from



Constraint dgl(jr(em‘;l) dfﬂ((r_e‘%) dﬂd(l;(rf)al) dgl({(':em‘;l) Change in I(real) (?n
(z) removing the constraint
a1 [4] [0] [0] [0] (-]

2 [4] [0] [0] [0] (-]
3 [4] [0] [0] [0] (-]
C5 [4] [0] [0] [0] (-]
2 V] [0] [0] [0] (-]

Table 3. The possibilistic qualitative derivatives and their effects

those generated by the probabilistic modelling given above since they predict
a change in possibility when a constraint is violated rather than a change in
probability when a constraint is conformed to. At first sight it might appear
that those constraints that, when added, cause a decrease in probability (that is
C2 and C5), should, when removed, cause an increase in possibility. However,
on reflection, this is seen not to be the case. Since, under our interpretation,
violation of a constraint simply means that the possibility of a structure falls to
reflect the proportion of structures that violate the constraint, when C'2 and Cb
are violated, the fall in possibility still occurs—it is just smaller than for other
constraints.

4 Integrated approaches

It 1s also possible to integrate different representations of uncertainty using quali-
tative changes [8, 9], and this enables us to model the protein topology prediction
problem in a slightly different way. There is another set of data about the ap-
plicability of the constraints [1, 7], which identifies some ambiguity in the data.
This arises because there were a number of alternative structures for some of the
proteins that were tested, and the constraints applied to some of these structures
but not to others. In particular, F'1 was found to hold for 1 of the 8 proteins
tested, be violated for 5 of the proteins, and be ambiguous for 2, while F'2 held
for 6, was violated for 1, and was ambiguous for 1.

One way of modelling this ambiguity is to use Dempster-Shafer theory, and if
the basic probability assignments that follow from the data given above are taken
and interpreted as conditional beliefs, in the same way as the probabilistic data
has previously been interpreted, then bel({F1} | {real}) = 0.125, bel({-~F1} |
{real}) = 0.625, bel({F1,-F1}|{real}) = 0.25. Since there is no data about
proteins that are not real we employ the Dempster-Shafer model of ignorance
to get bel({F1} | {—real}) = 0, bel({-~F1} | {—real}) = 0, bel({F1,-F1} |
{—real}) = 1, bel({F1} |{real,—real}) = 0, bel({-F1} |{real, ~real}) = 0 and

bel({F1,-F1}|{real,—real}) = 1. These values tell us [8] that % = [+],
% = [+] and % = [—] and these may be transformed [8] to
give dbel({real}) __ [+] dbel({real}) __ [+] and dbel({real} _ [_] All other

dbel({F1}) — ) Wel(I-FL}) — dbel({F1,-F1}) —
derivatives relating F'1 and real have value [0]. Repeating this procedure for F'2



dbel({real}) dbel({real}) dbel({-real}) dbel({-real}) dbel({real}) dbel({-reall})

Constraint () dbel({z}) dbel({-x}) dbel({z}) dbel({=z}) dbei({z,~x}) dbel({z,~x})
1 [+] [+] [0] [0] [-] [0]
2 [+] [0] [0] [0] [-] [0]

Table 4. The Dempster-Shafer qualitative derivatives

gives the derivatives of Table 4.

These values may be used in conjunction with the probabilistic ones given
above in the network of Fig 2. This network 1s simply that of Fig 1 extended to
include the dependency of real on F1. The relationships between C'1, C2, C'3,
C)5 and real are determined using qualitative probabilities, while those between
F1, F2 and real are determined using qualitative beliefs. The approach using
qualitative changes that we are employing allows the combined use of different

C1—rC1 C2—rC2 C3—rC38 Cs5—rC5 FP1—rF1 P2—rb2

'C]' 'CQ' '03' '05' 'F]' 'FQ'
Fig. 2. A second network for propagating qualitative changes

formalisms together, simply translating a value of [+] (a definite increase) in
belief functions to [0, +] (a possible increase) in probability, and [—] into [0, —],
and giving the overall change at real as a qualitative probability. As before it is
possible to consider changes in the value of real when new evidence is obtained

Constraint Added|Change in probability of real
a1 [+]
C?2
C3
C5
F1 [
F2 [

——

-]
+]
-]

—

0]
0

]

Table 5. The results of using the probabilistic and Dempster-Shafer qualitative deriva-
tives

+'+

)




Constraint| Change in possibility| Constraint| Change in possibility|
Added of real Violated of real
1 [0] 1 [—]
C?2 [0] C?2 [—]
C3 [0] C3 [—]
C5 [0] C5 [—]
F1 [+, 0] F1 [—, 0]
F2 [+, 0] F2 [—, 0]

Table 6. The results of using the possibilistic and Dempster-Shafer qualitative deriva-
tives

about a constraint holding, since Mummu implements the integration of changes
in value discussed in [8, 9]. The results of applying Mummu are given in Table 5.

It 1s also possible to integrate possibility and belief values using the same net-
work. Belief changes concerning F'1 and F'2 are propagated using the derivatives
in Table 4, and changes in possibilities concerning C'1, €2, C'3 and Cb are prop-
agated using the derivatives of Table 3. Translation from beliefs to possibilities
are carried out in the same way as from beliefs to probabilities, and the overall
change in real is given as a qualitative possibility. Since changes in possibility of
the leaf nodes of the network in only occur when constraints are violated, both
the addition and violation of constraints is considered. This set-up generates the
results of Table 6.

Thus the use of both the single and combined formalism approaches make it
possible to establish the change in validity of protein structure as components
are added. The qualitative information that is provided is sufficient to assess how
valid the addition is, and thus is sufficient to guide the addition of components
during the constraint-based search.

5 Discussion

Unfortunately there is no obvious “gold standard” [3] against which to compare
the results so that it is not possible to prove that they are helpful. However,
it is possible to make several arguments for their being worth having and for
the modelling experiment having been worthwhile. Firstly, it is a demonstration
that purely qualitative methods for handling uncertainty can be useful. Thus it
provides a useful counterpart to [5], which showed that qualitative probability
could be usefully used in a diagnosis problem. Secondly it extends the compara-
tive study of the use of differing uncertainty handling techniques [3, 4, 7, 10] to
cover a new problem—that of modelling the impact of changing constraints in
protein topology prediction. This problem contains a number of different types
of uncertainty, and the fact that different models seem appropriate from different
points of view provides empirical evidence for the validity of work on the differ-
ent models. In addition, since no model seems to naturally model every aspect of
the uncertainty, the protein topology problem provides motivation for working



on using the different models in combination in the same problem. Further to
this motivation, this paper, as is the case with the companion paper [7], has
suggested some means of combining different methods within one problem, and,
using results generated using the implementation of this work in the Mummu
system, has illustrated the use of combinations of formalisms in solving a real
problem. Thus the paper has provided some empirical demonstration that using
combinations of formalisms is both feasible and useful.
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