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Abstract. This paper reviews and relates two default reasoning mech-
anisms, lexicographic (lex) and maximum entropy (me) entailment. Me-
entailment requires that defaults be assigned specific strengths and it is
shown that lex-entailment can be equated to me-entailment for a class
of specific strength assignments. By clarifying the assumptions which
underlie lex-entailment, it is argued that me-entailment is a superior
method of handling default inference for reasons of both expressiveness
and objective justification.

1 Introduction

The most widely accepted extension to a set of defaults is its p-closure [6] which
is the fixed point result of applying the rules of System P. The p-closure contains
all defaults which can be probabilistically entailed in the sense of Adams [1]. But
the p-closure is too conservative to sanction common patterns of nonmonotonic
reasoning such as the ability to ignore irrelevant information or to allow inheri-
tance to exceptional subclasses. Lehmann and Magidor’s rational closure [8], or
equivalently Pearl’s System Z [10], succeeded in solving the first problem but
the inheritance problem requires more sophisticated machinery.

This paper examines two systems which have been proposed to deal with the
exceptional inheritance problem. Lexicographic (lex) entailment [2,7] (section
2.3) which is justified by presumptions of typicality, independence, priority and
specificity, and maximum entropy (me) entailment [4, ?] (section 3) which uses
the principle of maximum entropy as a means of selecting the least biased proba-
bility distribution associated with an incomplete set of probabilistic constraints.
Both systems are described and shown to exhibit the required behaviour.

It is shown (section 4) that it is possible to recreate the lexicographic closure
of a set of defaults under maximum entropy by assigning appropriate strengths to
the defaults. An algorithmic definition is given which translates the lex-ordering
into an me-ranking and hence finds a set of canonical me-strengths for the de-
faults. This implies that lex-entailment can be thought of as a subset of me-
entailment corresponding a particular choice of strength assignments.

The dynamic behaviour of the system of lex-entailment is examined (section
5). It is shown that the semantics of a default, when interpreted as its canonical



me-strength, is highly dependent on its surrounding defaults with respect to the
lex-ordering. Under maximum entropy, however, a default’s semantics can be
fixed and independent of other defaults. This finding is used to argue that the
lex-ordering requires the user to accept some rather strong assumptions.

By connecting the two systems, the intuitions underlying lex-entailment are
clarified, and, it is argued, the more general approach of me-entailment is both
more expressive, since it allows variable strength defaults to be represented ex-
plicitly, and more justifiable, by virtue of its grounding in a well-understood
principle of reasoning rationally from incomplete information.

2 Lexicographic entailment

2.1 Definitions and notation

First some preliminary definitions and notation. A finite propositional language
L is made up of propositions a, b, ¢, ...and the usual connectives =, A, V, —.
A default is a pair of propositions or formulas joined by a default connective =,
e.g., a = b. The language has a finite set of models, M. A model m verifies a
default a = b if m = a A b, where |= is classical entailment, and falsifies it if
m = aA-b. A default r tolerates a set of defaults A iff it has a verifying model
which does not falsify any defaults in A; such a model will be called a confirming
model of r with respect to A.

It has been shown in [8] that any consequence relation that satisfies all the
rules of System P plus that of rational monotonicity is equivalent to a total
ordering of the models of M and, conversely, any total ordering of the models
of M is equivalent to a so-called rational consequence relation. The rank of a
formula in such an ordering is the rank of its minimal satisfying model(s). A
ranking, k, is called admissible with respect to a set of defaults, A, iff for all
a=>b¢c A, klanb) < k(a A -b). Similarly, a default ¢ = d belongs to the
rational consequence relation determined by « iff k(¢ A d) < k(¢ A =d). Three
mechanisms for generating such a total order are provided by System Z (section
2.2), the lex-ordering (section 2.3) and the me-ranking (section 3).

2.2 System Z

System Z [10], or equivalently rational closure [8], can be defined as follows.
Given a p-consistent set of defaults!, A, it is possible to identify a subset A
made up of all the defaults which tolerate all other defaults in A. Then, given
A — Ay it is possible to identify another subset, Ay, made up of all the defaults
which tolerate all members of A — Ay, and the process continues until all the
remaining defaults tolerate each other. This process gives the unique z-partition
A=AyUA U...UA,. Each default is assigned a z-rank which is the index
of the A; to which it belongs, and each model is assigned a z-rank of 1 plus

LA set of defaults is p-consistent iff every non-empty subset is confirmable [1] or,
equivalently, iff there exists an admissible ranking function with respect to that set.



m|bfpw|z m|bfpw|z m|bfpw|z m|bfpw|z
m1(0 00 00 ms|0 10 0|0 mg|100 0|1 mi3|110 0|1
m2(000 1|0 me|0 10 1|0 mio(1 00 1|1 m14|110 110
m3(001 0|2 m7(0110|2 m11|1 01 0|1 mis5|1 11 0|2
m4|0 01 1|2 mg|011 1|2 mi2|1 01 111 mig|l 11 1|2

Fig. 1. The z-rankings for the penguin example.

the highest z-rank of all the defaults it falsifies, or 0 if it falsifies no defaults.
This z-ranking is admissible with respect to A and z-entailment is determined
from this ranking. Since the higher the z-rank of a model the more abnormal
(in the sense of being less probable) it is, a default is z-entailed iff the z-rank
of its minimal verifying model(s) is strictly less than the z-rank of its minimal
falsifying model(s) (meaning that it is more normal for the default to be verified
than falsified).

Ezample 1 (Penguins).
A={b= f,b=>w,p=b,p=-f}

(the intended interpretation of this database is that birds fly, birds have wings,
penguins are birds but penguins do not fly). The z-partition of this database is:
Ao={b=>f,b=>w} and A ={p=bp=f}

Here £ has four atoms so M contains only 16 models. Figure 1 enumerates these
models along with their z-ranks. To establish whether the default “penguins
have wings” is z-entailed, it is necessary to consider the z-ranks of the minimal

verifying and falsifying models of p = w (m12 and mq;, respectively):

zpAw) = 1 = z(pA-w)

and so p = w is not z-entailed. °

This example illustrates one of the problems with z-entailment—it does not allow
inheritance to exceptional subclasses.

2.3 The lexicographic ordering

The lexicographic ordering was proposed by Lehmann [7] who argued that the
behaviour of the ideal rational consequence relation should satisfy four presump-
tions of typicality, independence, priority and specificity. He also drew attention
to the differences between the presumptive reading of a default, as first de-
veloped by Reiter [11], and the prototypical reading for which, he claims, the
rational closure [8,10] is the “correct formalization”. A more flexible variant of
Lehmann’s lexicographic closure is given by Benferhat et al. [2] who allow the



m1]0 0 0 0](0,0) ms]0 10 0[(0,0) me (100 0](2,0) mas|1 10 0[(1,0)
m2|0 0 0 1{(0,0) ms|0 10 1(0,0) mio|1 0 0 1|(1,0) mi4|1 10 1((0,0)
ms|0 0 1 0[(0,1) m7|0 11 0/(0,2) mi1|1 01 0/(2,0) mis|1 11 0(1,1)
ma|0 0 1 1{(0,1) ms|0 11 1(0,2) mi2|1 01 1|(1,0) ms|l 11 1|(0,1)

Fig. 2. The lex-tuples for the penguin example.

user to determine the priorities of defaults, rather than being restricted to the
ranks determined by the z-partition.

Lexicographic entailment is defined as follows. The lex-ordering over the mod-
els of £ is based on the z-partition but takes into account all defaults violated
by a model, not just that with the greatest z-rank. The result is a form of en-
tailment which is a direct extension of System Z in the sense that all z-entailed
defaults are also lex-entailed.

Given a set of defaults, A, and its z-partition, Ag U A; ... U A,,, each model
is assigned an (n + 1)-tuple with the number of defaults violated in partition-set
A; appearing in position ¢ of the tuple. The lex-ordering of tuples (and hence
models) is determined by considering the last elements of the tuples first. If
one tuple has fewer default violations in the highest tuple element, it is lower
(or preferred) in the lex-ordering; otherwise the next highest tuple element is
considered. For example, (1,1,0) < (0,0,2) and (2,0,1) < (0,1,1). From the
lex-ordering, entailment is determined as usual by comparing the lex-tuples of
the minimal verifying and falsifying models of a default.

Ezample 2 (Penguins (continued)). Figure 2 gives the lex-tuples of default vio-
lations for each model. Comparing the minimal verifying and falsifying models
of p = w gives:

lex(pAw) = (1,00 < (2,0) = 1lex(pA-w)
and so p = w is lex-entailed. .

As the example demonstrates, lex-entailment does provide for inheritance to
exceptional subclasses.

3 Maximum entropy entailment

Ranking functions can be viewed as an abstraction of a probabilistic semantics
for defaults [10]. A default can be thought of as a constraint on a probabilitity
distribution (PD) and so a set of defaults constrains the possible PDs. Usually
these will not be sufficient to completely specify a single PD. Goldszmidt et al. [4]
developed the maximum entropy approach to default reasoning by applying the
principle of maximum entropy which is a well understood means of selecting that
PD which satisfies a set of constraints and contains the least extra information



me-algorithm

Input: a set of variable strength defaults, {r;:a; %bz}
Output: an me-valid ranking, k, if one exists.

[1] Initialise all k(r;) = INF.
[2] While any k(r;) = INF do:
(a) For all r; with k(r;) = INF, compute
MINV(Ti) =+ s;.
(b) For all such 7; with minimal MINV(r;) + s,
compute MINF(r;).
(c) Select r; with minimal MINF(r;).
(d) If MINF(r;) = INF let w(r;):=0
else let k(r;):=s; +MINV(r;) — MINF(r;).
[3] Assign ranks to models using equation (2).
[4] Check constraints (1) to verify this is an me-valid ranking.

Fig. 3. The me-algorithm

[5]. If one has to select a PD from all possible ones, choosing one other than that
which has maximum entropy means making additional assumptions or implicitly
assuming extra constraints.

It would be useful therefore to be able to compare systems of default reason-
ing with the answers obtained from the me-approach in order to understand what
implicit assumptions underlie those systems. In order to do this, the me-approach
originally proposed by Goldszmidt et al. [4] has been extended by Bourne and
Parsons [3] to admit arbitrary sets of defaults with variable strengths. The me-
ranking of a set of defaults {r;} with strengths {s;} can be found by applying
the me-algorithm given in figure 3. The me-algorithm looks for a solution to the
following set of non-linear simultaneous equations:

m‘:rgil;lﬁbi[me(m)] = sz-+m':m;gbi[me(m)] (1)

me(m) = Z me(r;) (2)

The solution is a set of me-ranks corresponding to each default, {me(r;)}. From
these, using (2), the me-ranks of each model, {me(m)}, can be determined.

As discussed in detail in [3], the ranking found by the me-algorithm may
not always be a unique solution to the equations, indeed for certain strength
assignments no solution may exist, however the algorithm does find the unique
solution when there is one.

Ezample 3 (Penguins (continued)). Let each rule r; have an associated strength
of s;. The constraint equations (1) give rise to:

me(ry) = 51 me(r3) = s3 + min(me(ry), me(r2))
me(rs) = so + min(me(ry ), me(rs)) me(ry) = 84



mbfpw me m|bfpw me
m1|0 00 0 0 mo|1 00 0| s1+4 54
m20001 0 m101001 S1
m3[/0010 S1 + S2 mi11{1 010 S1 + s4
mal0 011 S1 + S2 mi2(1 011 S1
m50100 0 m131100 S4
me|0 101 0 mia(1 101 0
m7|0 110|281 + s2 + s3 mis|1 11 0|s; + s34+ 84
mg|0 11 1|2s1 + s2 + s3 mig|l 111 S1 + S3

Fig. 4. The me-ranks for the penguin example.

which have the unique solution me(r;) = s1, me(ry) = s1 + s2, me(rs) = s; + s3,
and me(ry4) = s4. The me-rankings are given in figure 4.
Comparing the minimal verifying and falsifying models of p = w gives:

me(pAw) = s < s +min(sz,s4) = me(pA-w)

and so p = w is me-entailed.

Clearly, this default is me-entailed under any strength assignment because
the solution for the {me(r;)} holds for any {s;}. This will not be true in general as
different strength assignments may map to qualitatively different me-rankings.e

As the example demonstrates, me-entailment also provides for inheritance to
exceptional subclasses.

4 Translating lexicographic to maximum entropy

By changing the strengths assigned to defaults, it is possible to produce many
different me-rankings, all of which represent rational consequence relations [3].
The me-rankings differ because the different strengths change the default infor-
mation being encoded. However, the me-ranking corresponding to any given set
of strengths represents the least biased estimate of the underlying probability
distribution [5]. In contrast, the lex-ordering is unique and fixed for a given set of
defaults [7]. It follows that the lex-ordering implies some additional assumptions
are being made about what default information represents and it is reasonable to
ask what these might be. By showing that the lex-ordering can be equated to a
class of me-rankings, this section aims to make explicit the underlying semantics
of lexicographic entailment.

The similarity between these two forms of entailment lies in the fact that
in both methods the ordering makes use of all defaults falsified by each model.
In the lex-ordering the tuple represents the position and number of defaults
falsified, whilst for the me-ranking, the me-rank of each model is the sum of the
me-ranks of each default it falsifies. Thus by assigning appropriate me-ranks to
the defaults it is possible to create an me-ranking which is equivalent to the lex-
ordering, in the sense that the ordering of models is the same. It is then possible



Translation algorithm

Input: A partitioning of A, AgUA;...UA,.
Output: The canonical me-ranking, mea, plus associated strength
assignment, {s;}.

[1] Let me(r;) =1 for all r; € Ag.
[2] For k=1 to n:
(a) Let me(Ag) = (|JAr—1| + 1) *me(Ar_1).
(b) Let me(r;) =me(Ag) for all r; € Ay.
[3] For each r;:
(a) Find the ranks of its minimal verifying and falsifying models,
mea(vy;) and mea(fr;), using equation (2).
(b) Set s; =mea(fr;) —mea(vr,).

Fig. 5. The translation algorithm

to compute what strength assignment over defaults gives rise to this me-ranking.
From the characteristics of this strength assignment, it is possible to interpret
what exactly the lex-ordering means in terms of what the implications are for
the relative strengths of defaults.

In order to create an me-ranking equivalent to the lex-ordering, all defaults in
a given partition-set should have the same me-rank. This ensures that whenever
two models falsify different defaults which belong to the same partition-set,
the “penalty” associated with each is the same. In addition, it must always be
worse to falsify defaults in a certain partition-set than to falsify any number of
defaults in lower sets. Thus the me-rank assigned to defaults in the partition-set
A;, denoted me(4;), must be greater than the sum of the me-ranks of all defaults
in lower sets. The translation-algorithm given in figure 5 accomplishes such an
assignment of me-ranks to defaults.

Note that the me-rank assignment in step [2](a), is arbitrary to the extent
that any integer greater than the sum of the me-ranks of all defaults in lower
partition sets would suffice. Thus there is a whole class of me-rankings which are
equivalent to a given lex-ordering.

Once the me-ranks have been assigned to rules it is a simple matter to calcu-
late the corresponding strength assignment necessary to achieve this me-ranking:
each default has a strength which is equivalent to the difference between the me-
ranks of its minimal falsifying and verifying models. The strength of any default
in the me-ranking found using the translation algorithm will be called the canon-
ical me-strength of that default. Note that not only the defaults in the original
set, but also any default which is lex-entailed (and hence me-entailed in the
canonical me-ranking) will have an associated canonical me-strength?.

% In [3], the me-ranking is shown to be the unique solution to equations (1) and (2)
if it satisfies a condition termed “robustness”. If the lex-ordering is robust then
so is the canonical me-ranking which in turn implies that the canonical me-strength



The following example shows the translation algorithm at work leading to a
canonical me-strength assignment which gives an identical rational consequence
relation to that given by the lex-ordering.

Ezample / (Bears).
A={r:b=>drs:t=>brg:t=-dyrs b= h,rs :t ANl = d}

(the intended interpretation of this knowledge base is that bears are dangerous,
teddies are bears, teddies are not dangerous, bears like honey, and teddies with
loose glass eyes are dangerous). The z-partition has three partition-sets:

Ag={b=d,b=h} Ay ={t=-d,t = b} Ay ={tAl=d}

Following the algorithm, set me(r1) = me(ry) = 1; then me(A;) = 3, so me(r2) =
me(r3) = 3; finally me(Az) =9, so me(rs) = 9. This me-ranking is robust and cor-
responds to a strength assignment of (1,2,2,1,7). The lex-ordering and canon-
ical me-ranking both induce the same rational consequence relation. Consider
the default “teddies which are dangerous and do not like honey are bears”. To
see whether this is entailed, it is necessary to examine the minimal verifying and
falsifying models of t Ad A —h = b:

lex(tAdA-hAD)=(1,1,0) < lex(tAdA-hA-b)=(0,2,0)
meaA(t AdA-hAD)=4 < mea(tAdA-hA-b)=6

and so this default is both lex-entailed and canonically me-entailed. .

The translation algorithm finds a set of canonical me-strengths for any set
of defaults that leads to an me-consequence relation which coincides with the
lex-consequence relation. In fact there is an infinite class of such strength as-
signments. The implication is that the lex-consequence relation is just a special
case of the me-consequence relation. So what are the additional assumptions
underlying the lex-ordering?

The canonical me-strengths of defaults increase exponentially with the index
of the partition set to which they belong. Effectively, the defaults in higher sets
are deemed to hold more strongly under lexicographical entailment. Now, the
z-ranking actually represents the exponent of qualitative probabilities, or the
relative order of magnitude of models. The strength of a default, in contrast,
represents an order of magnitude relation between sets of models. When the
lex-ordering is translated into an me-ranking, the strength associated with each
default is inversely connected with the probability of its minimal verifying model
so that the strength of a default increases as the probability of it actually being

assignment leads to a unique me-ranking. For non-robust lex-orderings, the canonical
me-strength assignment might lead to multiple me-solutions. However, since the
canonical me-ranking is already arbitrary to some extent, this does not have a bearing
on the analysis and can be safely ignored. Readers interested in robustness and
multiple solutions are referred to [3].



verified decreases. The principles used by Lehmann to justify the lex-ordering
[7] bear no relation to this observation, however. Benferhat’s version of the lex-
ordering [2], which allows the user to specify the priorities explicitly, has a better
justification since at least then the increase in strength can be viewed as the
realisation of the default priorities which the user has chosen to impose.

However, in both lex-systems, the canonical me-strengths which the trans-
lation algorithm supplies do not directly correspond either to the partition sets
or to the priorities the user assigns. This is because for two defaults which have
the same priority, the lex-tuples of their minimal verifying and falsifying models
may differ slightly leading to differences in their canonical me-ranks. In both sys-
tems, the priorities only determine the order of magnitude of the canonical me-
strengths which may vary slightly for defaults of the same priority. So although
the lex-ordering allows the priorities to be specified, this cannot be achieved in
isolation from the other defaults. In contrast, using the me-approach directly al-
lows the user to specify the default priorities explicitly and independently. Thus,
if the object of using a lexicographic ordering is to allow the knowledge engineer
to make explicit his judgments about default priorities, it can be argued that us-
ing maximum entropy and variable strengths is the fairest and most transparent
way to achieve this.

5 Behaviour of lexicographic entailment

It is interesting to examine the behaviour of systems of default reasoning from
the meta-level perspective. For example, it is well known that while System P
maps a set of defaults into a nonmonotonic consequence relation, System P itself
is strictly monotonic on the addition of further defaults. This behaviour has been
termed “semi-monotonic” by Pearl [10] but, in fact, System P behaves classically
if defaults are given the appropriate semantics (e.g., let a default correspond to
the set of its admissible ranking functions).

The behaviour of systems when their consequences are learned, i.e., an en-
tailed default is added to the set which entailed it, can be used to argue for the
reasonableness of adopting such a system. It has been suggested [9] that sys-
tems should satisfy rules like those of System P at the meta-level although how
these should be interpreted is not always obvious. Lehmann himself pointed out
that lex-entailment does not satisfy cautious monotonicity since adding entailed
defaults may lead to the retraction of previous conclusions [7]. The following the-
orems make clear why this occurs and what the implications are for the canonical
me-strengths with which defaults are entailed.

Theorem 5 shows that, provided a default is not entirely unexpected, i.e., its
converse is not z-entailed, then the z-partition (and hence the z-rank of defaults)
will not change radically on the addition of that default. In fact, a small ripple
effect occurs with the new default being added to the appropriate partition set
and defaults of equal or higher rank may or may not be ‘shunted up’ by one
degree.



Theorem 5 (Dynamics of z-partition). Consider a set of defaults, A, with
z-partition Ag U ... UA,. Let r be a default such that the z-rank, k, of its mini-
mal verifying model is not more than the z-rank of its minimal falsifying model
(equivalently, the converse of r is not z-entailed by A). Then (1) the z-partition
of A" = {r} U A is such that A} = A; for i <k, (2) r € A}, and (3) for all
r' € Ajsy, either v’ € A orr' € AL,

Proof. All confirming models for the defaults in Ag U ... U Ag_; neither verify
nor falsify 7 by the conditions of the theorem, hence the first k£ partition-sets in
the new z-partition will be the same, that is, for i < k, A, = A;, as required.

Now if v, is a minimum verifying model of r, it is also a confirming model
for r wrt {r} U A, U...UA,, since it may falsify defaults in A;<; but not in
higher sets. Thus r € A}, as required.

Finally, consider v,s, a verifying model for some default ' € Aj which
previously confirmed r' wrt Ay U...U A,. If v,s satisfies r then it is also a
confirming model of r' wrt {r} U Ay U...UA,, so ' € A]. Otherwise r'
does not tolerate {r} U A U...U A,,. Therefore separate Ay into those de-
faults which tolerate {r} U Ay U...UA,, say Ar,, and those which do not, say
A_1,. Then A}, = {r} U Ar, and it remains to partition Az U Agyq1...UA,.
Clearly all defaults in A7, tolerate A_p U Agyy ... U A, since they did pre-
viously and so A.p, C AZH. Separate Ag41 into those defaults which tolerate
Ao, Uy ... UA,, say Ar,,,, and those which do not, say A-7,,,. Then
Al = A1, UA7, and it remains to partition Az, UAgys...UA,. Pro-
ceeding in this way, the z-partition of A’ is formed such that for any default,
r' € Aj>y, it holds that either r' € A’ or ' € A%, as required. .

Theorem 6 shows that if a default is entirely expected, i.e., is z-entailed, then
no z-ranks change. This demonstrates why System Z can be called the rational
closure of the set, since the addition of a z-entailed default will not lead to any
new z-conclusions; there will undoubtedly be further lex-conclusions, however.

Theorem 6. Given the conditions of theorem 5, if the z-rank, k, of the minimal
verifying model of v is strictly less than the z-rank of its minimal falsifying model
according to A (equivalently, r is z-entailed by A), then A}, = {r} U Ay and
Al =A; fori# k.

Proof. Since r is z-entailed by A, all confirming models of defaults in Aj have
z-rank k and therefore cannot be falsifying models of r. Hence all defaults in Ay,
tolerate {r}UA, U...UA,, and A} = {r}UA. All other partition-sets remain
unchanged. °

Finally, theorem 7 demonstrates that adding a default to a set which lex-
entailed it, leads to the default obtaining a higher canonical me-strength. Clearly,
this is to be expected since when the lex-entailed default is learnt, violating it
takes on more significance.

Theorem 7. If using mea, the canonical me-ranking for A, r is me-entailed
with strength s, then using meas, the canonical me-ranking for A' = {r} U A, r
is me-entailed with strength s’ > s.



Proof. Let the z-partition of A be Ay U ... U A, and the lex-equivalent me-
ranks associated with each partition set be me(4y), ..., me(A,). Let the minimal
verifying and falsifying models for r in the me-ranking be v, and f;, respectively.
Then s =mea(f,) —mea(v,).

First suppose that r is z-entailed by A so that if z(v,) = k then z(f,) > k.
Then by theorem 6 the z-partition of A’ has A} = {r} U A; and A = A
for i # k. Hence me(A}) = me(4;) for i < k and me(A’) > me(4;) for j > k.
Now, mear(v,) = mea(v,) since v, only falsifies defaults in partition-sets Ay
to Ar_1. However, f,. now falsifies an extra default, r itself, and so its me-
rank must be higher by at least me(Ay). Hence s’ = mea/(f.) — mear (v,) >
mea(f,) +me(Ag) —mea(v,) > s, as required.

Now suppose that r is only lex-entailed so that z(v,) = z(f,) = k. Then the z-
partition of A’ is as described in theorem 5 so that r € Aj. Now me(A}) = me(4;)
for i < k. Again meas(v,) = mea(v,). However, since z(f,.) = k it follows that
mea(fy) < me(Ay) but mear(fr) > me(Ay). Hence s’ = mea (f)) — mear(v,) >
me(Ag) —mea(vy) > mea(fr) —mea(v,) = s, as required. .

Theorem 7 shows that adding a default to a set which lex-entailed it leads to it
obtaining a higher canonical me-strength than that with which it was previously
me-entailed. This would seem to be an explanation of the fact that lex-entailment
fails to satisfy cautious monotonicity. Syntactically, theorem 5 confirms this since
the addition of a lex-entailed default may lead to a revised z-partition which no
longer lex-entails old conclusions. However, one could argue that, according to
the semantic interpretation of lex-entailment as a form of me-entailment, it is
not possible to add a lex-entailed default to a set without changing its semantics,
i.e., its canonical me-strength. In a sense, this argument implies that cautious
monotonicity is simply not applicable to lex-entailment since the semantics of a
default cannot be specified independently of its surrounding defaults.

The behaviour of me-entailment on the addition of me-entailed defaults is
interesting. It depends critically on the strength assigned to the given default
compared with the degree to which it is me-entailed3. If it is assigned a lower
strength then no admissible me-ranking exists, whilst if it is assigned a higher
strength a revised unique me-ranking is produced. If the added default is assigned
a strength equal to the degree to which it was previously entailed, it is usually the
case that there are multiple solutions for the me-ranking. An me-ranking with
the added default taking zero me-rank is one solution—one could say in this case
that the default is redundant—but there may be other solutions in which it is not
the added default which is redundant but one of the originals. A more detailed
account of these findings may be found in [3]. Thus it is possible for the addition
of the default to lead to the same me-ranking, that is, me-entailment does satisfy
cautious monotonicity, however one must be careful since this solution may not
be unique.

% That is, the difference between the me-ranks of its minimal falsifying and verifying
models.



6 Conclusion

This paper has compared lexicographic entailment with maximum entropy en-
tailment and found the former to be a special case of the latter. It has been argued
that the me-approach is better justified since it is based on a well-understood
principle of indifference [5], and that it is a better method for representing judg-
ments about the relative priorities between defaults because these can be made
explicitly and independently. The behaviour of both systems was also examined
to show why lexicographic entailment fails to satisfy the meta-rule of cautious
monotonicity and how maximum entropy entailment does satisfy it under certain
conditions and with certain caveats.
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