
Connecting Lexicographic withMaximum Entropy EntailmentRachel A. Bourne and Simon ParsonsDepartment of Electronic Engineering,Queen Mary and West�eld College,University of London, London E1 4NS, UKr.a.bourne,s.d.parsons@elec.qmw.ac.ukAbstract. This paper reviews and relates two default reasoning mech-anisms, lexicographic (lex) and maximum entropy (me) entailment. Me-entailment requires that defaults be assigned speci�c strengths and it isshown that lex-entailment can be equated to me-entailment for a classof speci�c strength assignments. By clarifying the assumptions whichunderlie lex-entailment, it is argued that me-entailment is a superiormethod of handling default inference for reasons of both expressivenessand objective justi�cation.1 IntroductionThe most widely accepted extension to a set of defaults is its p-closure [6] whichis the �xed point result of applying the rules of System P. The p-closure containsall defaults which can be probabilistically entailed in the sense of Adams [1]. Butthe p-closure is too conservative to sanction common patterns of nonmonotonicreasoning such as the ability to ignore irrelevant information or to allow inheri-tance to exceptional subclasses. Lehmann and Magidor's rational closure [8], orequivalently Pearl's System Z [10], succeeded in solving the �rst problem butthe inheritance problem requires more sophisticated machinery.This paper examines two systems which have been proposed to deal with theexceptional inheritance problem. Lexicographic (lex) entailment [2, 7] (section2.3) which is justi�ed by presumptions of typicality, independence, priority andspeci�city, and maximum entropy (me) entailment [4, ?] (section 3) which usesthe principle of maximum entropy as a means of selecting the least biased proba-bility distribution associated with an incomplete set of probabilistic constraints.Both systems are described and shown to exhibit the required behaviour.It is shown (section 4) that it is possible to recreate the lexicographic closureof a set of defaults under maximum entropy by assigning appropriate strengths tothe defaults. An algorithmic de�nition is given which translates the lex-orderinginto an me-ranking and hence �nds a set of canonical me-strengths for the de-faults. This implies that lex-entailment can be thought of as a subset of me-entailment corresponding a particular choice of strength assignments.The dynamic behaviour of the system of lex-entailment is examined (section5). It is shown that the semantics of a default, when interpreted as its canonical



me-strength, is highly dependent on its surrounding defaults with respect to thelex-ordering. Under maximum entropy, however, a default's semantics can be�xed and independent of other defaults. This �nding is used to argue that thelex-ordering requires the user to accept some rather strong assumptions.By connecting the two systems, the intuitions underlying lex-entailment areclari�ed, and, it is argued, the more general approach of me-entailment is bothmore expressive, since it allows variable strength defaults to be represented ex-plicitly, and more justi�able, by virtue of its grounding in a well-understoodprinciple of reasoning rationally from incomplete information.2 Lexicographic entailment2.1 De�nitions and notationFirst some preliminary de�nitions and notation. A �nite propositional languageL is made up of propositions a, b, c, . . . and the usual connectives :, ^, _, !.A default is a pair of propositions or formulas joined by a default connective ),e.g., a ) b. The language has a �nite set of models, M. A model m veri�es adefault a ) b if m j= a ^ b, where j= is classical entailment, and falsi�es it ifm j= a^ :b. A default r tolerates a set of defaults � i� it has a verifying modelwhich does not falsify any defaults in �; such a model will be called a con�rmingmodel of r with respect to �.It has been shown in [8] that any consequence relation that satis�es all therules of System P plus that of rational monotonicity is equivalent to a totalordering of the models of M and, conversely, any total ordering of the modelsof M is equivalent to a so-called rational consequence relation. The rank of aformula in such an ordering is the rank of its minimal satisfying model(s). Aranking, �, is called admissible with respect to a set of defaults, �, i� for alla ) b 2 �, �(a ^ b) � �(a ^ :b). Similarly, a default c ) d belongs to therational consequence relation determined by � i� �(c ^ d) � �(c ^ :d). Threemechanisms for generating such a total order are provided by System Z (section2.2), the lex-ordering (section 2.3) and the me-ranking (section 3).2.2 System ZSystem Z [10], or equivalently rational closure [8], can be de�ned as follows.Given a p-consistent set of defaults1, �, it is possible to identify a subset �0made up of all the defaults which tolerate all other defaults in �. Then, given���0 it is possible to identify another subset, �1, made up of all the defaultswhich tolerate all members of � � �0, and the process continues until all theremaining defaults tolerate each other. This process gives the unique z-partition� = �0 [ �1 [ : : : [ �n. Each default is assigned a z-rank which is the indexof the �i to which it belongs, and each model is assigned a z-rank of 1 plus1 A set of defaults is p-consistent i� every non-empty subset is con�rmable [1] or,equivalently, i� there exists an admissible ranking function with respect to that set.



m b f p w zm1 0 0 0 0 0m2 0 0 0 1 0m3 0 0 1 0 2m4 0 0 1 1 2 m b f p w zm5 0 1 0 0 0m6 0 1 0 1 0m7 0 1 1 0 2m8 0 1 1 1 2 m b f p w zm9 1 0 0 0 1m10 1 0 0 1 1m11 1 0 1 0 1m12 1 0 1 1 1 m b f p w zm13 1 1 0 0 1m14 1 1 0 1 0m15 1 1 1 0 2m16 1 1 1 1 2Fig. 1. The z-rankings for the penguin example.the highest z-rank of all the defaults it falsi�es, or 0 if it falsi�es no defaults.This z-ranking is admissible with respect to � and z-entailment is determinedfrom this ranking. Since the higher the z-rank of a model the more abnormal(in the sense of being less probable) it is, a default is z-entailed i� the z-rankof its minimal verifying model(s) is strictly less than the z-rank of its minimalfalsifying model(s) (meaning that it is more normal for the default to be veri�edthan falsi�ed).Example 1 (Penguins).� = fb) f; b) w; p) b; p) :fg(the intended interpretation of this database is that birds y, birds have wings,penguins are birds but penguins do not y). The z-partition of this database is:�0 = fb) f; b) wg and �1 = fp) b; p) :fgHere L has four atoms soM contains only 16 models. Figure 1 enumerates thesemodels along with their z-ranks. To establish whether the default \penguinshave wings" is z-entailed, it is necessary to consider the z-ranks of the minimalverifying and falsifying models of p) w (m12 and m11, respectively):z(p ^ w) = 1 = z(p ^ :w)and so p) w is not z-entailed. �This example illustrates one of the problems with z-entailment|it does not allowinheritance to exceptional subclasses.2.3 The lexicographic orderingThe lexicographic ordering was proposed by Lehmann [7] who argued that thebehaviour of the ideal rational consequence relation should satisfy four presump-tions of typicality, independence, priority and speci�city. He also drew attentionto the di�erences between the presumptive reading of a default, as �rst de-veloped by Reiter [11], and the prototypical reading for which, he claims, therational closure [8, 10] is the \correct formalization". A more exible variant ofLehmann's lexicographic closure is given by Benferhat et al. [2] who allow the



m b f p w lexm1 0 0 0 0 (0,0)m2 0 0 0 1 (0,0)m3 0 0 1 0 (0,1)m4 0 0 1 1 (0,1) m b f p w lexm5 0 1 0 0 (0,0)m6 0 1 0 1 (0,0)m7 0 1 1 0 (0,2)m8 0 1 1 1 (0,2) m b f p w lexm9 1 0 0 0 (2,0)m10 1 0 0 1 (1,0)m11 1 0 1 0 (2,0)m12 1 0 1 1 (1,0) m b f p w lexm13 1 1 0 0 (1,0)m14 1 1 0 1 (0,0)m15 1 1 1 0 (1,1)m16 1 1 1 1 (0,1)Fig. 2. The lex-tuples for the penguin example.user to determine the priorities of defaults, rather than being restricted to theranks determined by the z-partition.Lexicographic entailment is de�ned as follows. The lex-ordering over the mod-els of L is based on the z-partition but takes into account all defaults violatedby a model, not just that with the greatest z-rank. The result is a form of en-tailment which is a direct extension of System Z in the sense that all z-entaileddefaults are also lex-entailed.Given a set of defaults, �, and its z-partition, �0 [�1 : : :[�n, each modelis assigned an (n+1)-tuple with the number of defaults violated in partition-set�i appearing in position i of the tuple. The lex-ordering of tuples (and hencemodels) is determined by considering the last elements of the tuples �rst. Ifone tuple has fewer default violations in the highest tuple element, it is lower(or preferred) in the lex-ordering; otherwise the next highest tuple element isconsidered. For example, (1; 1; 0) � (0; 0; 2) and (2; 0; 1) � (0; 1; 1). From thelex-ordering, entailment is determined as usual by comparing the lex-tuples ofthe minimal verifying and falsifying models of a default.Example 2 (Penguins (continued)). Figure 2 gives the lex-tuples of default vio-lations for each model. Comparing the minimal verifying and falsifying modelsof p) w gives:lex(p ^ w) = (1; 0) � (2; 0) = lex(p ^ :w)and so p) w is lex-entailed. �As the example demonstrates, lex-entailment does provide for inheritance toexceptional subclasses.3 Maximum entropy entailmentRanking functions can be viewed as an abstraction of a probabilistic semanticsfor defaults [10]. A default can be thought of as a constraint on a probabilititydistribution (PD) and so a set of defaults constrains the possible PDs. Usuallythese will not be su�cient to completely specify a single PD. Goldszmidt et al. [4]developed the maximum entropy approach to default reasoning by applying theprinciple of maximum entropy which is a well understood means of selecting thatPD which satis�es a set of constraints and contains the least extra information



me-algorithmInput: a set of variable strength defaults, fri : ai si) big.Output: an me-valid ranking, �, if one exists.[1] Initialise all �(ri) = INF.[2] While any �(ri) = INF do:(a) For all ri with �(ri) = INF, computeMINV(ri) + si.(b) For all such ri with minimal MINV(ri) + si,compute MINF(ri).(c) Select rj with minimal MINF(ri).(d) If MINF(rj) = INF let �(rj) := 0else let �(rj) := sj + MINV(rj)� MINF(rj).[3] Assign ranks to models using equation (2).[4] Check constraints (1) to verify this is an me-valid ranking.Fig. 3. The me-algorithm[5]. If one has to select a PD from all possible ones, choosing one other than thatwhich has maximum entropy means making additional assumptions or implicitlyassuming extra constraints.It would be useful therefore to be able to compare systems of default reason-ing with the answers obtained from the me-approach in order to understand whatimplicit assumptions underlie those systems. In order to do this, the me-approachoriginally proposed by Goldszmidt et al. [4] has been extended by Bourne andParsons [3] to admit arbitrary sets of defaults with variable strengths. The me-ranking of a set of defaults frig with strengths fsig can be found by applyingthe me-algorithm given in �gure 3. The me-algorithm looks for a solution to thefollowing set of non-linear simultaneous equations:minmj=ai^:bi[me(m)] = si + minmj=ai^bi[me(m)] (1)me(m) = Xrimj=ai^:bi me(ri) (2)The solution is a set of me-ranks corresponding to each default, fme(ri)g. Fromthese, using (2), the me-ranks of each model, fme(m)g, can be determined.As discussed in detail in [3], the ranking found by the me-algorithm maynot always be a unique solution to the equations, indeed for certain strengthassignments no solution may exist, however the algorithm does �nd the uniquesolution when there is one.Example 3 (Penguins (continued)). Let each rule ri have an associated strengthof si. The constraint equations (1) give rise to:me(r1) = s1me(r2) = s2 +min(me(r1); me(r3)) me(r3) = s3 +min(me(r1); me(r2))me(r4) = s4



m b f p w mem1 0 0 0 0 0m2 0 0 0 1 0m3 0 0 1 0 s1 + s2m4 0 0 1 1 s1 + s2m5 0 1 0 0 0m6 0 1 0 1 0m7 0 1 1 0 2s1 + s2 + s3m8 0 1 1 1 2s1 + s2 + s3
m b f p w mem9 1 0 0 0 s1 + s4m10 1 0 0 1 s1m11 1 0 1 0 s1 + s4m12 1 0 1 1 s1m13 1 1 0 0 s4m14 1 1 0 1 0m15 1 1 1 0 s1 + s3 + s4m16 1 1 1 1 s1 + s3Fig. 4. The me-ranks for the penguin example.which have the unique solution me(r1) = s1, me(r2) = s1 + s2, me(r3) = s1 + s3,and me(r4) = s4. The me-rankings are given in �gure 4.Comparing the minimal verifying and falsifying models of p) w gives:me(p ^ w) = s1 < s1 +min(s2; s4) = me(p ^ :w)and so p) w is me-entailed.Clearly, this default is me-entailed under any strength assignment becausethe solution for the fme(ri)g holds for any fsig. This will not be true in general asdi�erent strength assignments may map to qualitatively di�erent me-rankings.�As the example demonstrates, me-entailment also provides for inheritance toexceptional subclasses.4 Translating lexicographic to maximum entropyBy changing the strengths assigned to defaults, it is possible to produce manydi�erent me-rankings, all of which represent rational consequence relations [3].The me-rankings di�er because the di�erent strengths change the default infor-mation being encoded. However, the me-ranking corresponding to any given setof strengths represents the least biased estimate of the underlying probabilitydistribution [5]. In contrast, the lex-ordering is unique and �xed for a given set ofdefaults [7]. It follows that the lex-ordering implies some additional assumptionsare being made about what default information represents and it is reasonable toask what these might be. By showing that the lex-ordering can be equated to aclass of me-rankings, this section aims to make explicit the underlying semanticsof lexicographic entailment.The similarity between these two forms of entailment lies in the fact thatin both methods the ordering makes use of all defaults falsi�ed by each model.In the lex-ordering the tuple represents the position and number of defaultsfalsi�ed, whilst for the me-ranking, the me-rank of each model is the sum of theme-ranks of each default it falsi�es. Thus by assigning appropriate me-ranks tothe defaults it is possible to create an me-ranking which is equivalent to the lex-ordering, in the sense that the ordering of models is the same. It is then possible



Translation algorithmInput: A partitioning of �, �0 [�1 : : : [�n.Output: The canonical me-ranking, me�, plus associated strengthassignment, fsig.[1] Let me(ri) = 1 for all ri 2 �0.[2] For k = 1 to n:(a) Let me(�k) = (j�k�1j+ 1) � me(�k�1).(b) Let me(ri) = me(�k) for all ri 2 �k.[3] For each ri:(a) Find the ranks of its minimal verifying and falsifying models,me�(vri) and me�(fri), using equation (2).(b) Set si = me�(fri)� me�(vri).Fig. 5. The translation algorithmto compute what strength assignment over defaults gives rise to this me-ranking.From the characteristics of this strength assignment, it is possible to interpretwhat exactly the lex-ordering means in terms of what the implications are forthe relative strengths of defaults.In order to create an me-ranking equivalent to the lex-ordering, all defaults ina given partition-set should have the same me-rank. This ensures that whenevertwo models falsify di�erent defaults which belong to the same partition-set,the \penalty" associated with each is the same. In addition, it must always beworse to falsify defaults in a certain partition-set than to falsify any number ofdefaults in lower sets. Thus the me-rank assigned to defaults in the partition-set�i, denoted me(�i), must be greater than the sum of the me-ranks of all defaultsin lower sets. The translation-algorithm given in �gure 5 accomplishes such anassignment of me-ranks to defaults.Note that the me-rank assignment in step [2](a), is arbitrary to the extentthat any integer greater than the sum of the me-ranks of all defaults in lowerpartition sets would su�ce. Thus there is a whole class of me-rankings which areequivalent to a given lex-ordering.Once the me-ranks have been assigned to rules it is a simple matter to calcu-late the corresponding strength assignment necessary to achieve this me-ranking:each default has a strength which is equivalent to the di�erence between the me-ranks of its minimal falsifying and verifying models. The strength of any defaultin the me-ranking found using the translation algorithm will be called the canon-ical me-strength of that default. Note that not only the defaults in the originalset, but also any default which is lex-entailed (and hence me-entailed in thecanonical me-ranking) will have an associated canonical me-strength2.2 In [3], the me-ranking is shown to be the unique solution to equations (1) and (2)if it satis�es a condition termed \robustness". If the lex-ordering is robust thenso is the canonical me-ranking which in turn implies that the canonical me-strength



The following example shows the translation algorithm at work leading to acanonical me-strength assignment which gives an identical rational consequencerelation to that given by the lex-ordering.Example 4 (Bears).� = fr1 : b) d; r2 : t) b; r3 : t) :d; r4 : b) h; r5 : t ^ l) dg(the intended interpretation of this knowledge base is that bears are dangerous,teddies are bears, teddies are not dangerous, bears like honey, and teddies withloose glass eyes are dangerous). The z-partition has three partition-sets:�0 = fb) d; b) hg �1 = ft) :d; t) bg �2 = ft ^ l) dgFollowing the algorithm, set me(r1) = me(r4) = 1; then me(�1) = 3, so me(r2) =me(r3) = 3; �nally me(�2) = 9, so me(r5) = 9. This me-ranking is robust and cor-responds to a strength assignment of (1; 2; 2; 1; 7). The lex-ordering and canon-ical me-ranking both induce the same rational consequence relation. Considerthe default \teddies which are dangerous and do not like honey are bears". Tosee whether this is entailed, it is necessary to examine the minimal verifying andfalsifying models of t ^ d ^ :h) b:lex(t ^ d ^ :h ^ b) = (1; 1; 0) � lex(t ^ d ^ :h ^ :b) = (0; 2; 0)me�(t ^ d ^ :h ^ b) = 4 < me�(t ^ d ^ :h ^ :b) = 6and so this default is both lex-entailed and canonically me-entailed. �The translation algorithm �nds a set of canonical me-strengths for any setof defaults that leads to an me-consequence relation which coincides with thelex-consequence relation. In fact there is an in�nite class of such strength as-signments. The implication is that the lex-consequence relation is just a specialcase of the me-consequence relation. So what are the additional assumptionsunderlying the lex-ordering?The canonical me-strengths of defaults increase exponentially with the indexof the partition set to which they belong. E�ectively, the defaults in higher setsare deemed to hold more strongly under lexicographical entailment. Now, thez-ranking actually represents the exponent of qualitative probabilities, or therelative order of magnitude of models. The strength of a default, in contrast,represents an order of magnitude relation between sets of models. When thelex-ordering is translated into an me-ranking, the strength associated with eachdefault is inversely connected with the probability of its minimal verifying modelso that the strength of a default increases as the probability of it actually beingassignment leads to a unique me-ranking. For non-robust lex-orderings, the canonicalme-strength assignment might lead to multiple me-solutions. However, since thecanonical me-ranking is already arbitrary to some extent, this does not have a bearingon the analysis and can be safely ignored. Readers interested in robustness andmultiple solutions are referred to [3].



veri�ed decreases. The principles used by Lehmann to justify the lex-ordering[7] bear no relation to this observation, however. Benferhat's version of the lex-ordering [2], which allows the user to specify the priorities explicitly, has a betterjusti�cation since at least then the increase in strength can be viewed as therealisation of the default priorities which the user has chosen to impose.However, in both lex-systems, the canonical me-strengths which the trans-lation algorithm supplies do not directly correspond either to the partition setsor to the priorities the user assigns. This is because for two defaults which havethe same priority, the lex-tuples of their minimal verifying and falsifying modelsmay di�er slightly leading to di�erences in their canonical me-ranks. In both sys-tems, the priorities only determine the order of magnitude of the canonical me-strengths which may vary slightly for defaults of the same priority. So althoughthe lex-ordering allows the priorities to be speci�ed, this cannot be achieved inisolation from the other defaults. In contrast, using the me-approach directly al-lows the user to specify the default priorities explicitly and independently. Thus,if the object of using a lexicographic ordering is to allow the knowledge engineerto make explicit his judgments about default priorities, it can be argued that us-ing maximum entropy and variable strengths is the fairest and most transparentway to achieve this.5 Behaviour of lexicographic entailmentIt is interesting to examine the behaviour of systems of default reasoning fromthe meta-level perspective. For example, it is well known that while System Pmaps a set of defaults into a nonmonotonic consequence relation, System P itselfis strictly monotonic on the addition of further defaults. This behaviour has beentermed \semi-monotonic" by Pearl [10] but, in fact, System P behaves classicallyif defaults are given the appropriate semantics (e.g., let a default correspond tothe set of its admissible ranking functions).The behaviour of systems when their consequences are learned, i.e., an en-tailed default is added to the set which entailed it, can be used to argue for thereasonableness of adopting such a system. It has been suggested [9] that sys-tems should satisfy rules like those of System P at the meta-level although howthese should be interpreted is not always obvious. Lehmann himself pointed outthat lex-entailment does not satisfy cautious monotonicity since adding entaileddefaults may lead to the retraction of previous conclusions [7]. The following the-orems make clear why this occurs and what the implications are for the canonicalme-strengths with which defaults are entailed.Theorem 5 shows that, provided a default is not entirely unexpected, i.e., itsconverse is not z-entailed, then the z-partition (and hence the z-rank of defaults)will not change radically on the addition of that default. In fact, a small ripplee�ect occurs with the new default being added to the appropriate partition setand defaults of equal or higher rank may or may not be `shunted up' by onedegree.



Theorem 5 (Dynamics of z-partition). Consider a set of defaults, �, withz-partition �0 [ : : :[�n. Let r be a default such that the z-rank, k, of its mini-mal verifying model is not more than the z-rank of its minimal falsifying model(equivalently, the converse of r is not z-entailed by �). Then (1) the z-partitionof �0 = frg [ � is such that �0i = �i for i < k, (2) r 2 �0k and (3) for allr0 2 �j�k, either r0 2 �0j or r0 2 �0j+1.Proof. All con�rming models for the defaults in �0 [ : : : [�k�1 neither verifynor falsify r by the conditions of the theorem, hence the �rst k partition-sets inthe new z-partition will be the same, that is, for i < k, �0i = �i, as required.Now if vr is a minimum verifying model of r, it is also a con�rming modelfor r wrt frg [ �k [ : : : [ �n, since it may falsify defaults in �i<k but not inhigher sets. Thus r 2 �0k, as required.Finally, consider vr0 , a verifying model for some default r0 2 �k whichpreviously con�rmed r0 wrt �k [ : : : [ �n. If vr0 satis�es r then it is also acon�rming model of r0 wrt frg [ �k [ : : : [ �n, so r0 2 �0k. Otherwise r0does not tolerate frg [ �k [ : : : [ �n. Therefore separate �k into those de-faults which tolerate frg [�k [ : : :[�n, say �Tk , and those which do not, say�:Tk . Then �0k = frg [�Tk and it remains to partition �:Tk [�k+1 : : : [�n.Clearly all defaults in �:Tk tolerate �:Tk [ �k+1 : : : [ �n since they did pre-viously and so �:Tk � �0k+1. Separate �k+1 into those defaults which tolerate�:Tk [ �k+1 : : : [ �n, say �Tk+1 , and those which do not, say �:Tk+1 . Then�0k+1 = �:Tk [�Tk+1 and it remains to partition �:Tk+1 [�k+2 : : :[�n. Pro-ceeding in this way, the z-partition of �0 is formed such that for any default,r0 2 �j�k, it holds that either r0 2 �0j or r0 2 �0j+1, as required. �Theorem 6 shows that if a default is entirely expected, i.e., is z-entailed, thenno z-ranks change. This demonstrates why System Z can be called the rationalclosure of the set, since the addition of a z-entailed default will not lead to anynew z-conclusions; there will undoubtedly be further lex-conclusions, however.Theorem 6. Given the conditions of theorem 5, if the z-rank, k, of the minimalverifying model of r is strictly less than the z-rank of its minimal falsifying modelaccording to � (equivalently, r is z-entailed by �), then �0k = frg [ �k and�0i = �i for i 6= k.Proof. Since r is z-entailed by �, all con�rming models of defaults in �k havez-rank k and therefore cannot be falsifying models of r. Hence all defaults in �ktolerate frg[�k [ : : :[�n, and �0k = frg[�k. All other partition-sets remainunchanged. �Finally, theorem 7 demonstrates that adding a default to a set which lex-entailed it, leads to the default obtaining a higher canonical me-strength. Clearly,this is to be expected since when the lex-entailed default is learnt, violating ittakes on more signi�cance.Theorem 7. If using me�, the canonical me-ranking for �, r is me-entailedwith strength s, then using me�0 , the canonical me-ranking for �0 = frg [�, ris me-entailed with strength s0 > s.



Proof. Let the z-partition of � be �0 [ : : : [ �n and the lex-equivalent me-ranks associated with each partition set be me(�0), : : :, me(�n). Let the minimalverifying and falsifying models for r in the me-ranking be vr and fr, respectively.Then s = me�(fr)� me�(vr).First suppose that r is z-entailed by � so that if z(vr) = k then z(fr) > k.Then by theorem 6 the z-partition of �0 has �0k = frg [ �k and �0i = �ifor i 6= k. Hence me(�0i) = me(�i) for i � k and me(�0j) > me(�j) for j > k.Now, me�0(vr) = me�(vr) since vr only falsi�es defaults in partition-sets �0to �k�1. However, fr now falsi�es an extra default, r itself, and so its me-rank must be higher by at least me(�k). Hence s0 = me�0(fr) � me�0(vr) �me�(fr) + me(�k)� me�(vr) > s, as required.Now suppose that r is only lex-entailed so that z(vr) = z(fr) = k. Then the z-partition of�0 is as described in theorem 5 so that r 2 �0k. Now me(�0i) = me(�i)for i � k. Again me�0(vr) = me�(vr). However, since z(fr) = k it follows thatme�(fr) < me(�k) but me�0(fr) � me(�k). Hence s0 = me�0(f 0r) � me�0(vr) �me(�k)� me�(vr) > me�(fr)� me�(vr) = s, as required. �Theorem 7 shows that adding a default to a set which lex-entailed it leads to itobtaining a higher canonical me-strength than that with which it was previouslyme-entailed. This would seem to be an explanation of the fact that lex-entailmentfails to satisfy cautious monotonicity. Syntactically, theorem 5 con�rms this sincethe addition of a lex-entailed default may lead to a revised z-partition which nolonger lex-entails old conclusions. However, one could argue that, according tothe semantic interpretation of lex-entailment as a form of me-entailment, it isnot possible to add a lex-entailed default to a set without changing its semantics,i.e., its canonical me-strength. In a sense, this argument implies that cautiousmonotonicity is simply not applicable to lex-entailment since the semantics of adefault cannot be speci�ed independently of its surrounding defaults.The behaviour of me-entailment on the addition of me-entailed defaults isinteresting. It depends critically on the strength assigned to the given defaultcompared with the degree to which it is me-entailed3. If it is assigned a lowerstrength then no admissible me-ranking exists, whilst if it is assigned a higherstrength a revised unique me-ranking is produced. If the added default is assigneda strength equal to the degree to which it was previously entailed, it is usually thecase that there are multiple solutions for the me-ranking. An me-ranking withthe added default taking zero me-rank is one solution|one could say in this casethat the default is redundant|but there may be other solutions in which it is notthe added default which is redundant but one of the originals. A more detailedaccount of these �ndings may be found in [3]. Thus it is possible for the additionof the default to lead to the same me-ranking, that is, me-entailment does satisfycautious monotonicity, however one must be careful since this solution may notbe unique.3 That is, the di�erence between the me-ranks of its minimal falsifying and verifyingmodels.
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