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Abstract. This paper presents a system of argumentation which cap-
tures the kind of reasoning possible in qualitative probabilistic networks,
including reasoning about expected utilities of actions and the propa-
gation of synergies between actions. In these latter regards it is an ex-
tension of our previous work on systems of argumentation which reason
with qualitative probabilities.

1 Introduction

In the last few years there have been a number of attempts to build systems for
reasoning under uncertainty that are of a qualitative nature—that is they use
qualitative rather than numerical values, dealing with concepts such as increases
in belief and the relative magnitude of values. Three main classes of system can
be distinguished—systems of abstraction, infinitesimal systems, and systems of
argumentation. In systems of abstraction, the focus is mainly on modelling how
the probabilities of hypotheses change when evidence is obtained. Such systems
provide an abstract version of probability theory, known as qualitative proba-
bilistic networks (QPNs) [25], which is sufficient for planning [25], explanation
[5] and prediction [18] tasks. Infinitesimal systems deal with beliefs that are
very nearly 1 or 0, providing formalisms that handle order of magnitude prob-
abilities. Such systems may be used for diagnosis [4] and have been extended
with infinitesimal utilities to give complete decision theories [21,26]. Systems
of argumentation are based on the idea of constructing logical arguments for
and against formulae. Such systems of have been applied to problems such as
diagnosis, protocol management and risk assessment [11], as well as handling
inconsistent information [1], and providing a framework for default reasoning
[10,16].

In a previous paper [17], we provided a hybridisation of the argumentation
and abstraction approaches by introducing a system called the qualitative prob-
abilistic reasoner (QPR) which constructed arguments about how probabilities
change. In this paper we extend the kind of reasoning possible using QPR to
deal with information about changes in utilities, thus providing a qualitative
utility reasoner QUR which provides an abstraction of classical decision mak-
ing rather than just of probability theory and so captures the kind of reasoning
possible in QPNs.



2 The logical language

This section introduces the language used by our system. We build on the lan-
guage of QPR by introducing notions of utility, but to save space here we only
deal with non-categorical changes in value, simplify the language by not deal-
ing with logical conjunction, restrict ourselves to causally directed reasoning,
and cut the discussion of those features drawn from QPR. A fuller account is
contained in [19].

2.1 Basic concepts

We start with a set of atomic propositions £ which includes the symbol V. We
also have a set of connectives {—, =, ), >, ~»,~5}, and the following set of rules
for building the well-formed formulae (wffs) of the language.

1. If I € £ then [ is a well-formed simple formula (swff).

2. If [ is an swff, then —l is an swff.

3. If [ and m are swffs, then | — m is a well-formed implicational formula
(iuff).

4. If I is an swff, then [ = V is a well-formed value formula (vwff).

5. If I, m and n are swffs, then I W m ~» n and [ Wm ~> V are well-formed
synergistic formulae (ywffs).

We denote the set of all swff's which can be defined using £ by S, while Z,
yg and V. denote the corresponding sets of iwffs, ywffs and vwffs respectively.
The set of all wffs which can be defined using £ is W = S UZ, U y; UVre.
W may then be used to build up a database A where every item d € A is a
triple (¢ : I : s) in which 7 is a token uniquely identifying the database item
(for convenience we will use the letter ‘i’ as an anonymous identifier), | € W,
and s gives information about the probability of /. In particular we take triples
(i : 1:7) to denote the fact that Pr(l) increases (due to some piece of evidence),
and similar triples (i : [ : |), to denote the fact that Pr(l) decreases. Triples
(i : 1 : +) denote the fact that Pr(l) is known to neither increase nor decrease,
and triples (i : [ : J) denote we don’t know whether Pr(l) increases or decreases.
It should be noted that the triple (¢ : [ : 1) indicates that Pr(l) either goes up,
or does not change—this inclusive interpretation of the notion of “increase” is
taken from QPNs—and of course a similar proviso applies to (i : [ : }).

2.2 Non-material implication

Now, “—” does not represent material implication but a connection between the
probabilities of antecedent and consequent. We take an iwff, which we will also
call an “implication”, to denote that the antecedent of the iwff has a probabilistic
influence on the consequent. Thus we are not concerned with the probability of
the swff, but what the wff says about the probabilities of its antecedent and



consequent. More precisely we take the triple (i : a = ¢: +) to denote the fact
that:
Pr(cla, X) > Pr(c|~a, X) 1

for all X € {z, -z} for which there is a triple (i : X — ¢ : s) (where s is any
sign) or (i : ¢ = X : s). The effect of the X in this inequality is to ensure
that the restriction holds whatever is known about formulae other than ¢ and
a—whatever the probabilities of a and ¢, the constraint on the conditional prob-
abilities holds. It is possible to think of this as meaning that there is a constraint
on the probability distribution over the formulae ¢ and a such that an increase
in the probability of a entails an increase in the probability of c¢. The triples
(t:a—c:—)and (i : a = ¢:0) denote that (1) holds with > replaced by
< and = respectively. We also have implications such as (i : @ — ¢ : 7) which
denotes the fact that the relationship between Pr(c|a, X) and Pr(c|—a, X) is not
known, so that if the probability of a increases it is not possible to say how the
probability of ¢ will change.

With this interpretation, implications correspond to qualitative influences in
QPNs, and, as is the case in all probabilistic networks, [20] are causally directed
in the sense that the antecedent is a cause of the consequent. This restriction is
necessary to ensure that QUR is sound, for the reasons discussed in [17].

2.3 Values

The proposition V' denotes the same thing as the value node in an influence
diagram [13]—that is the utility of the decision maker. It can be used, just
like any other swff to form triples, and these denote a change in utility. Thus
(i : V : 1) means that utility increases. QUR also makes use of triples based on
vwffs, and a vwff (i:a >V :+) is taken to mean:

Ua,X) > U(—a,X) (2)

where, as before, X ranges across all other propositions which affect V', in this
case all other propositions which are antecedents of vwffs. The meaning of the
triple, as given by (2), is that a positively influences utility. Similar triples with
sign — and 0 denote that (2) holds with > replaced by < and = respectively, and
we use the sign ? to denote situations in which the relationship is not known.

2.4 Synergy

Being able to handle synergy relations is an important part of any qualitative
probabilistic system. A detailed discussion of synergy is beyond the scope of
this paper!, but, informally, there is synergy between two variables with respect
to a third if a change in the value of one of the first two has an effect on the
relationship between the second and the third. Thus, A and B have a synergistic
relationship with respect to C, if an increase in the probability of A changes the

! See [5,6,25] for detail on the subject.



strength of the probabilistic influence between B and C'. In our system synergies
are represented by formulae such as a W b ~ ¢ which represents the synergy
which exists between a and b with respect to c¢. Such synergistic formulae form
the basis of triples such as (i : aW b~ ¢ : +) in just the same way as simple
and implicational formulae do, but with yet another denotation. In particular,
(i :aWb~» c:+) denotes the fact that:

Pr(c|a,b, X) + Pr(c|—-a,-b, X) > Pr(c¢|-a,b, X) + Pr(c|a, =b, X) (3)

where as ever, X ranges across all other formulae such that there are triples
(i:X = c:s)or(i:c— X :s). Similarly, (i : aWb~» ¢: —) and (i : awb~ ¢ : 0)
denote that (3) holds with > replaced by < and = respectively. As with the case
of implications, synergies have sign ? when the relationship is not known. These
synergy expressions are [18,25] precisely the conditions necessary and sufficient
to capture the fact that a change in Pr(a) has an effect on the influence of Pr(b)
on Pr(c). It is perfectly possible to have synergies with respect to the value node
represented by triples such as (i : a Wb ~> V : +). This latter denotes the fact
that:

Ula,b,X) +U(—a,—b,X) > U(—a,b,X) + U(a, b, X) (4)

where X is as before. Similarly, (i : aWb~ V : —) and (i : aWb~» V : 0) denote
that (4) holds with > replaced by < and = respectively. Note that all synergies
are symmetrical, and that the synergies we deal with here are known as additive
synergies. In contrast, QPR [17] deals only with product synergies.

3 The proof theory

The previous section introduced a language for describing probabilistic influences
between formulae. For this to be useful, we need to give a mechanism for taking
sentences in that language and using them to derive new sentences.

3.1 Arguments

We derive new sentences using the consequence relation gy which is defined
in Figure 1. The definition is in terms of Gentzen-style proof rules where the
antecedents are written above the line and the consequence is written below.
The consequence relation operates on a database consisting of the kind of triples
introduced in the previous section and derives arguments about formulae from
them. There are two types of argument?:

Definition 1. An influence argument for a well-formed formula p from a data-
base A is a triple S(p, G, s) such that A oy S(p, G, s)

The sign s of an influence argument denotes something about the change in the
probability of p which can be inferred given the grounds G—the elements of the
database used in the derivation of p.

2 The use of S and Y to denote the different types is taken from [25].
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Fig. 1. The consequence relation Fqu

Definition 2. A synergy argument for a well-formed formula p from a database
A is a triple Y ((p, q,7),G, s) such that AFou Y((p,q,7),G, s)

Such an argument indicates that ¢ and r have a synergistic effect on p. The
sign gives the synergy of ¢ on the relation between r and p, or, equivalently, the
synergy of r on the relation between ¢ and p.

To see how the idea of an argument fits in with the proof rules in Figure 1,
consider the rules ‘Ax1’, and ‘—-E’. The first says that from a triple (i : [ : s)
it is possible to build an argument for [ which has sign s and a set of grounds
{i} (the grounds thus identify which elements from the database are used in
the derivation). The rule is thus a kind of bootstrap mechanism to allow the
elements of the database to be turned into arguments to which other rules can



impetim|+ 0 — 7 valprep|+ 0 — 7
o N T t [To T T
| o & | o o &
neg(s)| L © 1 Llvets Llvets
t ter] t 1ot ]

Fig. 2. The functions neg, impejim and valprop.

be applied. The second rule ‘—-E’ can be thought of as analogous to modus
ponens. From an argument for ¢ and an argument for ¢ — ¢ it is possible to
build an argument for ¢ once the necessary book-keeping with grounds and signs
has been carried out. The proof procedure used here has an important difference
from other similar logical proof systems which stems from the fact that QUR is
dealing with probability values (albeit changes in probability) rather than just
truth and falsity as is the case in classical logic. In logic, once there is a valid
proof for a formula, the formula is known to be true. Here we may have several
arguments which suggest different things about the probability of a formula and
it is necessary to establish all the arguments and then combine them.

3.2 Combination functions

In order to apply the proof rules to build arguments, it is necessary to supply the
functions used in Figure 1 to combine signs. Broadly speaking, all these functions
are exactly those introduced by Wellman [25] for the analogous operations in
QPNs3. The rules for handling negation are applicable only to swffs and permit
negation to be either introduced or eliminated by altering the sign, for example
allowing (i : —a : 1) to be rewritten as (i : a : |). This leads to the definition of
neg:

Definition 3. The function neg : Sg € {1,<,1.1} = S¢' € {1,<, 1.1} is
specified in Figure 2.

To deal with implication we need the function impejin to establish the sign of
formulae generated by the rule of inference —-E. This means that impejin, is used
to combine the change in probability of a formula a, say, with the constraint
that the probability of a imposes upon the probability of another formula c.

Definition 4. The function impeim : Sg € {1,4>,{,1} x S¢' € {+,0,—,7} —
Sg" € {1,4>, 1,1} is specified in Figure 2.

We also need the function valyo, which makes it possible to determine the
changes in utility.

Definition 5. The function valy, : Sg € {1,4,1,1} x S¢' € {+,0,—,7} —
Sg" € {1, <, 1,1} is specified in Figure 2.

3 The reason our notation differs is to allow our system to be extended to handle
categorical information exactly as in [17].
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Fig. 3. Synergy propagation synyop, and flattening functions flats and flaty.

This function is virtually identical to impejim, differing only in that it combines a
change in probability with a utility to give a change in expected utility, whereas
impeim derives a change in probability from a change in probability and a rela-
tionship between probabilities. We also need the function synyop in order to be
able to reason with synergies.

Definition 6. The function synpop : Sg € {+,0,—,7} x S¢’ € {+,0,—,7} —
Sg" € {+,0,—,7} is specified in Figure 3.

These functions are sufficient to apply Fg to build both influence and synergy
arguments.

3.3 Flattening

In general it is possible to build several arguments for a single proposition. To
get firm conclusions we need to flatten all the arguments for a proposition to
get a single sign which tells us the combined change in the probability of that
proposition. We can describe this in terms of a function Flats(-) which maps
from a set of influence arguments Ag for a proposition St built from a particular
database A to the pair of that proposition and some overall measure of validity:

Flats : Ag — S(St,v)

where Ag is the set of all influence arguments which are concerned with St, that
is:

AS = {S(St, G,‘, Sg,') | A "QU S(St, G,‘, Sg,')}
and v is the result of a suitable combination of the Sg that takes into account
the structure of the arguments. Since in the precise case we are considering here,
the structure is unimportant (though in very similar cases it must be taken into
consideration [17]) we can ignore the grounds and define v as:

v = flats({Sg; | (St,G;,Sg;) € As})

where flats is as defined in Figure 3. We can formalise a similar notion for synergy
arguments in terms of a function Flaty(-) which maps from a set of synergy
arguments Ay for a proposition St to the pair of that synergistic relationship
and some overall measure of validity:

Flaty : Ay — Y/{((St,St',St"),v)



where Ay is the set of all synergy arguments which give the synergistic effect
of St' and St” on St:
Ay = {Y((St,St',St"),Gi,Sgi) | Atqu Y((St,St',St"),G;, Sg;)
or A I—QU Y((St, St”, Stl), Gi, Sg,')}

and v is defined by:
v = flaty({Sg; | ((St,St',St"),Gi,Sgi) € Ay})

where flaty is given in Figure 3.

4 Soundness and Completeness

We can show that QUR is sound with respect to decision theory, and determine
bounds on what it can deduce. First consider soundness®:

Theorem 1. The construction and flattening of influence and synergy argu-
ments in QUR using Fgu is sound with respect to decision theory.

To prove completeness, one first needs to establish a proof procedure. The pro-
cedure for computing the effect on some formula p is:

1. Add a triple (i : q : s) for every formula ¢ whose change in probability is
known.

Build Ag, the set of all influence arguments for p.

Flatten this set to S(p, vs).

Build Ay, the set of all synergy arguments for p.

Flatten this set to Y (p,vy).

Cuk N

This naturally backward chaining procedure can obviously be extended to com-
pute the effect on a whole set of propositions. Now, we also need to define the
sense in which we consider the system to be complete.

Definition 7. A well-formed formula p is said to be a cause of a well-formed
formula q if and only if it is possible to identify an ordered set of iwffs {p —
ai,a1 = ag,...,an — q}. If q is the value proposition V, the final member of
the set is a, — V.

In other words p is a cause of ¢ if it is possible to build up a trail of (causally
directed) implications which link p to g. We have a similar notion for synergies:

Definition 8. A well-formed formula p is said to be a synergistic cause of a
well-formed formula q if there is a ywif aWb ~» ¢ such that p is a cause of either
a or b and c is a cause of q. If q is the value proposition V, then the ywif in
question is of the form awWb~> V.

* All the proofs in this section are straightforward but lengthy, and so have been
omitted to save space. They may be found in [19] and are simple extensions of those
in [17].



Definition 9. A well-formed formula q is said to be an effect (respectively a
synergistic effect) of a well-formed formula p if and only if p is a cause (respec-
tively a synergistic cause) of q.

Definition 10. The construction and flattening of arguments is said to be causally
complete in some system of qualitative utility with respect to some formula p if
it is possible to use that system to compute the changes in probability of all the

effects of p.

Given these definitions we can prove that QUR is complete in the following
sense:

Theorem 2. The construction and flattening of influence arguments in QUR
using Fqu 1s causally complete with respect to any simple well-formed formula.

We also need to deal with synergy arguments. For them we need the following
notion of completeness:

Definition 11. The construction and flattening of arguments is said to be syn-
ergistically causally complete in some system of qualitative utility with respect
to some formula p if it is possible to use that system to compute the synergies
involving p and all its synergistic effects.

Given this we can show that:

Theorem 3. The construction and flattening of synergy arguments in QUR
using Fqu is synergistically causally complete with respect to any simple well-
formed formula.

Note that completeness is defined only in terms of swffs. This restriction is
considered in detail in [19].

5 Example

This section presents a short example of the kind of reasoning possible in QUR.
Since the example is one used in [25], it also helps to informally demonstrate the
fact that QUR captures the kind of reasoning possible in QPNs.

The example concerns the decisions made about digitalis therapy, and comes
initially from [22]. An increased dosage of digitalis (dig) has a negative effect
on conduction (con) (rl) and a positive effect on automaticity (aut) (r2). A
negative effect on conduction is the aim of the therapy since the conduction has
a positive effect on heart rate (hr) (r3) and a reduction in heart rate is what is
required (r4). Automaticity has a positive effect on ventricular fibrillation (vf)
(rd), a life threatening state (r6). High calcium levels (Ca) also have a positive
effect on automaticity (r7). Increasing the digitalis dose makes automaticity
more sensitive to calcium level (r8), and an increased heart rate means that



ventricular fibrillation has a more severe effect on the patient’s well-being. This
information can be expressed as:

(rl:dig — con: =) (rd:hr >V :=) (r7:Ca — aut:+) Ay
(r2: dig = aut : 4+) (r5:aut — of : +) (r8:digw Ca ~ aut : +)
(r3:con —hr:4) (6:uf S V:=) (r9:hrwuf > V:4)

Adding (f1 : dig, 1), indicating increased digitalis dosage, to this database, we
can build the influence arguments:

SV, {r1,r3,r4}, 1)
S(V,{r2,r5,r6}, )

These indicate, respectively, that there are reasons to both think that overall
utility will increase and that it will decrease. These flatten to give S(V, ) indi-
cating, exactly as with the equivalent QPN, that there is no conclusive argument.
We can also build two synergy arguments connecting dig and Ca with V:

Y((V7 00,, dig): {7'8, 7'57 7'6}7 _)
Y ((V, dig, Ca),{r9,r5,r7,r3,r1}, —)

These flatten to give Y ((V, dig, Ca), —), indicating that digitalis dosage and cal-
cium level have a negative synergistic effect on overall utility. Thus increasing
digitalis dosage reduces the effect that an increase in calcium level has on utility.

6 Discussion

The system introduced in this paper has its roots in Wellman’s QPNs [25],
the first attempt to build a qualitative decision theory, and draws its notion of
“qualitative” from QPNs. This is a notion close to that in qualitative physics [14]
where the basic abstraction is that which distinguishes between positive, negative
and zero quantities and the derivatives of those quantities. The main focus in
both QPNs and QUR is on the way in which values change with evidence.
These two factors, the extreme abstraction and the concentration on change,
distinguishes both QUR and QPNs from other qualitative systems.

As mentioned in the introduction, there have been a number of attempts to
devise qualitative decision theories where “qualitative” is taken to means some
form of relative order of magnitude based upon infinitesimal quantities. The
first such effort was that of Pearl [21] which abstracted utility values in this
way (earlier work, such as that of Darwiche [3] and Goldszmidt [12] had dealt
with probabilities of this form). In doing this, Pearl thus provided an order of
magnitude version of classical decision theory. This was then extended by Tan
[23,24] to deal with conditional preferences, so that it is possible to base decisions
on statements like “if 5 is preferred to a”. Around the same time Wilson [26]
provided an alternative way to formulate Pearl’s original qualitative version of
classical decision theory, and more recently Lehmann [15] has made a similar



proposal. The strand of this work which is most similar to ours is that of Bonet
and Geffner [2], who also keep track of the reasons behind the decision, in terms
of the information used to reach it.

The use of a different notion of “qualitative” is that investigated by Dubois,
Prade and colleagues [7-9]. Their system has a possibilistic rather than a prob-
abilistic semantics and is qualitative in the sense that only the ordinal rank of
quantities is important. It should be noted, however, that the values they use
are not infinitesimal (though one could build an infinitesimal version of their
theory), and so can be considered more expressive than those of Pearl et al. It
should also be noted that while, as described here, our system has a probabilistic
semantics, we can give it alternative semantics, as discussed in [19].

7 Summary

This paper has extended our previous work on proof theoretic approaches to
qualitative probabilistic reasoning [17] in two important ways. First this paper
has extended it to deal with statements of utility, making it possible to reason
about changes in expected utility as well as about changes in probabilities. This
is an important step in developing a qualitative decision theory. Second, this
paper has dealt with the concept of additive synergy, which is important in
determining dominating decision options [25].
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