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ABSTRACT

The solution of environmental problems such as waste water treatment are

usually based upon the development of  sets of differential equations. A complete

analytical solution of the model requires that every numerical constant in this

set of equations is precisely known. This paper describes a computer program

that implements a method from artificial intelligence which permits the

solution of such sets of equations when constant values are unknown, whilst

allowing those values that are known to be used. The use of the system is

illustrated with the solution of a set of equations describing an anaerobic

fermentor.

INTRODUCTION

The basis of modern engineering is knowledge of laws of nature such as the law

of mass conservation, which form the foundation of any equation-oriented

mathematical model. Given a particular environmental system it is usually

not difficult to collect together a set of relevant differential equations, based on

laws of nature, which will form the nucleus of the mathematical model of that

system. These equations describe the dynamic behaviour of  various key

variables, whose values, when the equations are solved, predict the  state of the

system at any instant. However, to take this nucleus and flesh it out with all the

necessary information that will make it an accurate and realistic working

model is far from simple.

This is because the laws of nature on their own are not sufficient to build a

good model. What is needed are the precise values of the constants that relate the

variables in the differential equations. Unfortunately, real environmental

systems are complex, integrated, ill-known, unique, and difficult to measure,

in particular when their dynamic behaviour is considered. They may be subject

to complex relations with their surroundings which may make it nearly



impossible to isolate them without distorting any measurements made.

Therefore knowledge of such systems may be inconsistent, and sparse, and it

may be extremely time-consuming and difficult, and therefore expensive, to

identify the value of every numerical constant. Without the values of all the

constants the set of equations have no practical value. This is because the kind

sets of complex equations that arise from the study of environmental systems

are  can only be solved by simulation, and it is not  possible to run a classical

simulation when constant values are unknown.

Thus incomplete and uncertain knowledge of the necessary numerical

constants would seem to rule out projects such as modelling the scaling up of

laboratory fermentors, risk evaluation, and cost estimation by conventional

methods. It need not, however, prevent the use of artificial intelligence

techniques such as qualitative reasoning1.

QUALITATIVE REASONING

Qualitative reasoning is a method that attempts to capture the essence of

human reasoning about complex systems. Rather than attempt to deal with a

mass of numerical data, values are only distinguished as positive (+) , zero (0),

negative (-), or unknown (?) . These values are sufficient to identify many of

the interesting features of the behaviour of the important variables in a given

system. Thus if we are interested in a key variable x , a substrate concentration

say, whose value is known to be positive, and we can establish from the

qualitative simulation of the model that the first time derivative of x  is positive,

while the second time derivative of x is negative:

x  =  +
dx
dt

   =  + 
d2x

dt2
   =  - (1)

then we know that the behaviour of the concentration over time will be to rise to

some limiting value (Figure 1). We may not  know what the limit is, but we do

know that the concentration will eventually level off, and this less precise

information may be sufficient.

time

x

Figure 1. The qualitative behaviour described by (1)

Clearly if we are trying to establish that the substrate concentration is stable in

the long term then the information we are able to deduce is quite adequate, and

in many cases the fact that we can learn something from qualitative reasoning



far outweighs the fact that what we can learn is not very detailed. That this is

true is borne out by the success of  the qualitative approach in practice1–3.

Despite this undoubted success, there are some problems with qualitative

reasoning that make it unsuitable for modelling certain systems. These

problems stem from the limited number of values that any constant or variable

can adopt. Raiman4 illustrates this with a simple example from mechanics.

Consider two masses which collide whilst travelling towards one another along

the same line. One has a large mass M  and velocity V , the other has a small

mass and velocity m  and v:

M, V m, v

The net momentum from right to left above is given by  the law of the

conservation of momentum as:

M V - m v (2)

Since M , V, m and v are all positive values, they all have qualitative value + ,

and the net leftwards momentum is established by the calculation:

+ ¥ + - + ¥ + (3)

where - is the operator representing the difference of two qualitative values, and

¥ is the operator representing the multiplication of two such values. It is clear

that the product of two positive values will itself be positive so that the calculation

reduces to:

+ -  + (4)

Again, brief consideration will show that the difference of two values which

are only known to be positive can be either positive, negative or zero, depending

on the relative sizes of the values. Thus qualitative reasoning can only deduce

that the overall leftwards momentum will be ? , while intuitively we can see that

it will be + . In the remainder of this paper we present a generalisation of

qualitative reasoning, known as semiqualitative reasoning, which solves this

problem, and has other advantages which make it especially suitable for

solving complex sets of  differential equations.

SEMIQUALITATIVE REASONING

In semiqualitative reasoning5, the values of variables and constants are

restricted to a set of 2k +1  intervals. This set of intervals covers all numbers

from •  to -•, and the intervals are continuous and non-overlapping , so that any

real number falls into one, and only one, interval. The intervals are

symmetric about zero, which is itself an interval, and there are k  positive and k
negative intervals. The boundaries of the intervals may be set by an arithmetic



or geometric progression, or may be chosen to reflect what are considered to be

interesting values.  Since the set of values used in qualitative reasoning

corresponds to the set of semiqualitative intervals obtained for k = 1 , it is clear

that  semiqualitative reasoning is a generalisation of qualitative reasoning.

A basic understanding of how semiqualitative reasoning may be used to solve

sets of differential equations  may be obtained from a simple example. Consider

the  following set of equations as a model of a physical system:

x1 + x2 = x3 (5)

x1 .  x4 = x3 (6)

dx4
dt

 = x5 (7)

The total number of variables is 5. Further consider that we have the set of

intervals:

0-• -500 -100 -20 -10 10 20 100 500 •

The only values that we consider as quantifiers for the values of a variable,

and the values of its first and second derivatives, are the semiqualitative

intervals. Since third and higher derivatives are usually  unavailable, any

qualitative variable is considered to be fully specified by the triplet of value, first

derivative and second derivative. The following five triplets describes one set of

assignments of values to the  5 variables, and thus one conceivable state of the

system whose behaviour they describe:

x
dx
dt

 
d2x

dt2

x1 < (0–20) (0–10) 0 >

x2 < (20–100) (0–10) (-20 –-100) >

x3 < (10–20) (20–100) (20–100) >

x4 < (0–10) (0–10) 0 >

x5 < (10–20) (0–-10) 0 >

This state is not however a physically possible state of the system since it is not

a solution of equations (5)–(7). This is because x3 is determined from x1  = [0,

20] and x2  = [20, 100]  by (5), and [0, 20]  ⊕ [20, 100] = [20, 500], where ⊕

represents the addition of two intervals which is carried out using interval

arithmetic6, whereas x3 = [10, 20] . By similar means it is possible to identify

all the 5-triplets which are solutions of the set of equations, and these correspond

to all the qualitative solutions of the model.

By allowing variables to take on a wider range of values, semiqualitative

reasoning permits the use of those numerical values that are known, and this

means that it generates more precise solutions than are possible using



qualitative reasoning. However, the fact that it is not necessary to have any

more information than whether a quantity is positive, negative or zero means

that semiqualitative reasoning is very robust, and may be used in situations

where conventional methods cannot be used. In the next section, the use of

semiqualitative reasoning is demonstrated by  the solution of a problem from

waste water treatment.

AN EXAMPLE

This section describes the semiqualitative simulation of an anaerobic digester.

The digestion of organic waste is an important step in the treatment of waste

water, and so the simulation of digesters that achieve this is important in order

to establish the correct conditions under which the process should be carried out.

It is possible7 to write down a complex set of equations which fully describe the

action of  an anaerobic fermentor and which, when solved, provide a suitable

model of its behaviour. Unfortunately, the results of this analysis hinge upon the

values of a number of key constants whose values not only vary from fermentor

to fermentor, but are also extremely difficult to measure. As a result it is

difficult and expensive to provide accurate solutions from a conventional

analysis. A semiqualitative analysis is, however, possible using much less

precise data.

The following set of equations provide a simplified model of the behaviour of

an anaerobic fermentor. The full model may also be solved using

semiqualitative methods, but the additional detail adds nothing to the

understanding of the technique:

dx1
dt

 + (k12 +k13).x1 + k11x1. x5 =  + k21.x2 (8)

dx2
dt

 + k21 x2 = k12 x1 (9)

dx3
dt

= k13 x1 + k43 x4 (10)

dx4
dt

+ k43 x4 = k11 x1 x5 (11)

dx5
dt

  + k53x5 + k11 x1 x5 = 0 (12)

where x1–x5 are concentrations of various substrates, either those wastes being

digested or the products of the digestion. In addition some of the values of the

constants are known:

k11 = 100

k13 = 5.0

k43 = 1.0

k53 = 0.3

k12
k21

 = 0.5



and we also know that  k12 = 1.5 , and k21 = 3.0 . This model is first  solved

with the boundaries of the semiqualitative intervals set as:

0-• -500 -100 -20 -10 10 20 100 500 •-1000 1000

We can specify additional constraints as:

x
dx
dt

 
d2x

dt2

x1 < (0–20) (0–10) 0 >

x2 < (10–1000) ? ? >

x3 < (0–20) ? ? >

x4 < (10–1000) ? ? >

x5 < (10–20) (0–-10) 0 >

This set of constraints may be considered as a query, in this case asking the

question:

“When x 1  is present  in a concentration of less than 20, what are the ways in

which it is possible to achieve a linear (d2x1/dt2 = 0) increase of concentration

of x1  of  less than 10 units per unit time while x5 is present  with a concentration

of between 10 and 20, and changes linearly (d2x5 /dt2 = 0)  at a rate of  less than

10 units per unit time?  Meanwhile  x3  is known to  have a positive concentration

of less than 20, while that of x2  and x4  is between  10 and 1000. The  way that

these last  three variables change with time is not known.”

Note that  ? is equivalent to the interval [-•, • ].  Solving the model with this

set of values gives the solution:

x
dx
dt

 
d2x

dt2

x2 < (20–100) (20–100) (0 –-10) >

x3 < (10–20) (500–1000) (-20–-100) >

x4 < (500–1000) (-500–-1000) (500-1000) >

Which gives us a reasonably detailed idea of what values the substrate

concentrations should have, and is a definite improvement on the information

we had initially. The model may  also be refined. for instance, if we want to

further investigate the value and first derivative of x2, say, we could choose a

new set of intervals, choosing the upper limit of the third positive interval to be

50 instead of 100 :



0-• -500 -50 -20 -10 10 20 50 500 •-1000 1000

With the same set of constraints as before the following solution is generated:

x
dx
dt

 
d2x

dt2

x2 < (20–50) (20–50) (0 –-10) >

x3 < (10–20) (500–1000) (-20–-50) >

x4 < (500–1000) (-500–-1000) (500-1000) >

which shows that by making certain  intervals narrower, it is possible to make

the solution more accurate.

A PROGRAM FOR SEMIQUALITATIVE ANALYSIS

Having seen the kind of results that semiqualitative analysis can generate, we

consider a software system which can perform a semiqualitative analysis on a

set of differential equations. In order to explain what the program does, and how

it is operated, we discuss in detail the process of solving the example discussed

above.

Preparing the input

The program for semiqualitative analysis works by considering the relations

between the semiqualitative variables of the set of equations as a series of

constraints upon their value. The analysis then consists of taking the known

values, and propagating these through the network of constraints, seeing how

they affect those values that are initially undefined. In order to do this the

program needs some way of specifying the relationships between variable

values, and this is done by means of a series of functional blocks (Figure 2).

Identification Description

M1

M2

M3

M4

M5

M6

Addition

Multiplication

Derivative

X > Y

DX > DY

DDX > DDY

Figure 2. Functional blocks, note that DX is short for 
dx
dt

 , and DDX for  
d2x

dt2

Each block in the semiqualitative system has one or two inputs, and a single

output, and specifies that a particular relationship holds between the inputs and

the output. For instance the M1 block has two inputs and a single output, and

specifies that the output must be equal to the semiqualitative sum of the inputs. In



some ways to talk of input and output is a little misleading, since the

propagation need not take place from input to output. Indeed what happens is that

a graph is constructed whose arcs are semiqualitative variables and whose

nodes are functional blocks, and the known constraints propagated around

until the values are as refined as possible.

The first stage in the analysis is to write the equations (8)–(12) in form in

which they may easily be specified using the functional blocks. Initially they

are written as a series of variables related only by addition (there is no

subtraction block since subtraction causes problems in interval arithmetic, and

any equation written using subtraction may be rewritten using addition) and

equality. This generates a set of equations:

x6 +  x11  + x19 =  x12 (13)

x7  +  x12 = x14 (14)

x15  + x16 = x8 (15)

x9 + x16 = x19 (16)

x10  + x17  + x19 = x18 (17)

which may be directly written down in terms of functional blocks. There are

further equations which relate the variables in equations (13)–(17) to each other

and the variables whose values are specified in the query:

x6 =  
dx1
dt

x7  =  
dx2
dt

x8  = 
dx3
dt

x9 = 
dx4
dt

x10  =
dx5
dt

x11 = 6.5  ×  x1

x12  = 3.0   ×  x2

x13  = 100   ×  x1

x14  = 1.5   ×  x1

x15  = 5.0  ×  x1

x16  = 1.0  ×  x4

x17  = 0.3  ×  x5

x18  = 0

x19  = x13  ×  x5

x20 = x19  +  x11

x21 = x19  +  x17

The full set of equations, written in terms of functional blocks, form one part

of the input to the program. The second part of the input is the semiqualitative

query mentioned above, which sets the limit on the values of the variables in the

original set of equations, in this case variables x2-x4. These limits may be any

pair of the semiqualitative boundaries, which themselves form the third part of

the input. The fourth and final part of the input is a list of variables whose value

are required in the output. In the example since we are interested in the values of

x2-x4 this part of the input  will contain the names of these variables and their

first and second derivatives, since we want to know the value of all three.

What the program does

The first thing that the program does is to compile a set of combinator tables from

the set of semiqualitative intervals, a measure designed to make it more



efficient when it comes to applying the mathematical constraints. These tables

are compiled by considering the pairwise combination of every possible set of

intervals. Thus for the set of intervals in the example it would first consider

adding [1000, •]  to [1000, •] , which gives [1000, •] since the addition of two

numbers in the interval cannot lie outside the interval. Next it would try [1000,
•] and [500, 1000]  which would again give [1000, •], and continue until it

First test of the semiqualitative 

variable against the constraints

i = 1; k = 1

Next test against the constraints for the 

kth value of the ith derivative

Sucessful? i = i + 1

i > N? k = 1

Record 

Sucess

i = i - 1; k = k + 1

k > M?

i = i - 1

k = k + 1

i = 1 and k > M? END

k > M?

yes

yes

yes

yes

yesno
no

no

no

no

Figure 3. The basic algorithm used by the semiqualitative program

had added every interval to every other, including adding compound intervals

such as  [20, 500]  and [-10, 10]  to get [10, 1000] . Clearly this is a lengthy

process, and provides a powerful argument for reducing the number of

semiqualitative intervals, or at least keeping it as small as possible, but  when it



is complete the program can construct a look-up table which will provide very

swift arithmetic operations later in execution. The program then assembles

similar lookup tables for the other functional blocks.

Next the program decides on an order in which to test the values of the

variables. This is done in such a way that the most constrained variable has its

value propagated first, so that once its value is established the conceivable

values of all the related variables may be evaluated as swiftly as possible.

Again, establishing this order takes a little time, but it pays dividends in the

long run.

After these two steps the program begins the process of propagating the

constraints, essentially following the algorithm of Figure 3, for each and every

variable, where N  is the number of levels of derivative of the variable in

question (so N = 3  in our example since we have value, first derivative and

second derivative), i is the current level of derivative under consideration, M  is

the number of semiqualitative intervals that the value of the ith derivative can

take on, and k  is the index of the current value that is being considered for the ith
derivative.

Finally, after applying all the constraints to all the variables and

establishing their possible value, the system outputs a list of all the possible

interval values of all the derivatives of all the variables listed in the final part

of the input.

SUMMARY

This paper has described the method of semiqualitative analysis and the

application of a program for the semiqualitative analysis of a set of differential

equations to a problem from the treatment of waste water. Semiqualitative

analysis is an artificial intelligence method that combines the strengths of the

human ability to reason about the qualitative behaviour of systems, exemplified

by statements such as “if volume decreases then pressure must increase”, with

the use of whatever numerical data is available. As a result semiqualitative

analysis, and the program we have discussed, can be used to model complex

physical systems for which sets of differential equations may be written, but for

which the exact values of numerical constants are not known. Clearly the

method cannot provide exact answers from inexact data, that is impossible, but it

does permit the most exact possible answers to be established from the available

information and they, as the example illustrated, can often be fairly exact.
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