
De�ning normative systems for qualitativeargumentationSimon Parsons121 Advanced Computation Laboratory, Imperial Cancer Research Fund,P.O. Box 123, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.2 Department of Electronic Engineering, Queen Mary and West�eld College,Mile End Road, London E1 4NS, United Kingdom.S.Parsons@qmw.ac.ukAbstract. Inspired by two di�erent approaches to providing a qualita-tive method for reasoning under uncertainty|qualitative probabilisticnetworks and systems of argumentation|this paper attempts to com-bine the advantages of both by de�ning systems of argumentation thathave a probabilistic semantics.1 IntroductionIn the last few years there have been a number of attempts to build systemsfor reasoning under uncertainty that are of a qualitative nature|that is theyuse qualitative rather than numerical values, dealing with concepts such as in-creases in belief and the relative magnitude of values. In particular, two types ofqualitative system have become well established, namely qualitative probabilis-tic networks (QPNs) [4, 18], and systems of argumentation [8, 11, 12]. Whilethe former are built as an abstraction of probabilistic networks where the linksbetween nodes are only modelled in terms of the qualitative inuence of the par-ents on the children, and therefore have an underlying probabilistic semantics,some of the latter lack such a sound foundation. Instead they o�er a greaterdegree of resolution, allowing more precise deductions to be made.In this paper we present several normative systems of argumentation. Theseare systems of argumentation which have a probabilistic semantics, and are thusnormative in that they behave according to the norms of probability theory.Such systems aim to extend both QPNs in the sense of reducing the degreeof abstraction of the former, and argumentation in the sense of providing itwith a probabilistic semantics whilst using only qualitative or semi-qualitativeinformation3. Of course this extension might not always be desired, but may beuseful at times to ensure that a given system reasons within probabilistic norms.The systems are built upon the framework introduced by Fox, Krause and theircolleagues [8, 11], and we begin by introducing this framework.3 If we don't have any commitment to qualitative information, we can use ordinaryprobabilities as suggested by Krause et al. [11].



2 Introducing systems of argumentationIn classical logic, an argument is a sequence of inferences leading to a conclusion.If the argument is correct, then the conclusion is true. Consider the simpledatabase �1 which expresses some very familiar information in a Prolog-likenotation in which variables are capitalised and ground terms and predicate namesstart with small letters.f1 : human(socrates): �1r1 : human(X) ! mortal(X):The argument�1 ` mortal(socrates) may be correctly made from this databasebecause mortal(socrates) follows from �1 given the usual logical axioms andrules of inference. Thus a correct argument simply yields a conclusion which inthis case could be paraphrased `mortal(socrates) is true in the context of f1and r1'. In the system of argumentation proposed by Fox and colleagues [11]this traditional form of reasoning is extended to allow arguments to indicatesupport and doubt in propositions, as well as proving them, by assigning labelsto arguments which denote the con�dence that the arguments warrant in theirconclusions. This form of argumentation may be summarised by the followingschema: Database `ACR (Sentence;Grounds; Sign)where `ACR is a suitable consequence relation. Informally, Grounds (G) are thefacts and rules used to infer Sentence (St), and Sign (Sg) is a number or asymbol drawn from a dictionary of possible numbers or symbols which indicatethe con�dence warranted in the conclusion.To formalise this kind of reasoning we start with a language, and we will takeL, a set of propositions, including ?, the contradiction. We also have a set ofconnectives f!;:g4, and the following set of rules for building the well formedformulae of the language:{ If l 2 L then l is a well formed formula (w�).{ If l 2 L then :l is a w�.{ If l;m 2 L then l ! m, l ! :m, :l ! m and :l! :m are w�s.{ Nothing else is a w�.The members of W, the set of all w�s that may be de�ned using L, may thenbe used to build up a database � where every item d 2 � is a triple (i : l : s)in which i is a token uniquely identifying the database item (for convenience wewill use the letter `i' as an anonymous identi�er), l is a w�, and s is a sign. Withthis formal system, we can take a database and use the argument consequencerelation `ACR given in Figure 1 to build arguments for propositions in L thatwe are interested in.4 Note that both the set of connectives and the rules for building w�s are more re-strictive than for other similar systems of argumentation [11]. A normative systemwhich does not su�er from these limitations is discussed in [13].



Ax� `ACR (St; fig; Sg) (i : St : Sg) 2 �!-E� `ACR (St;G; Sg) � `ACR (St ! St0; G0; Sg0)� `ACR (St0; G [G0; comb(Sg; Sg0))!-I � [ (St; ;; Sg) `ACR (St0; G; Sg0)� `ACR (St ! St0; G; comb0(Sg; Sg0))Fig. 1. Argumentation Consequence RelationTypically we will be able to build several arguments for a given proposition,and so, to �nd out something about the overall validity of the proposition, wewill atten the di�erent arguments to get a single sign.Together L, the rules for building the formulae, the connectives, and `ACRde�ne a formal system of argumentation, which, for want of a name we willcall SA. In fact, SA is really the basis of a family of systems of argumentation,because one can de�ne a number of variants of SA by using di�erent dictionariesof signs. Each dictionary will have its own combination functions comb andcomb0, and its own means of attening arguments, and the meanings of the signs,the attening function, and the combination function delineate the semanticsof the system of argumentation. Thus SA gives us a general framework forexpressing logical facts which can incorporate di�erent models of uncertainty byvarying the signs and their associated combination and attening functions aswell as a means of representing default information and of handling inconsistentinformation [15].3 A �rst normative systemOne commonly used system of argumentation within the framework of SA is onein which the dictionary consists of three symbols, +, � and 0, which representthe notion of an increase, a decrease and no change in belief respectively. Whena proposition is labelled with +, it is taken to represent the fact that there is anincrease in belief in the proposition, while labelling the rule:human! mortalwith a + is taken to represent the fact that showing that there is an increase inbelief in the proposition \human" causes an increase in belief in the proposition\mortal". The combination function comb for this system of argumentation is
 of Table 1, while comb0 is its inverse 
�1, also given in Table 1|blank spacesmark impossible combinations. As with all combinator papers in this paper, the�rst argument of the function described by the table is drawn from the �rstcolumn, and the second argument is drawn from the �rst row. The attening
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 and 
�1function is one that implements a form of improper linear model with uniformweights and no constant term [3]. This counts the number of + and � weightedarguments for a proposition, takes the sign that occurs most often and makesthat the sign of the proposition, thus taking the sum of all the arguments whilegiving each argument equal weight. We will refer to the system of argumentationwhich uses this dictionary and set of functions along with the argument buildingcapabilities of SA as NA1. The question that faces us here is how NA1 may begiven a probabilistic semantics. Now, the use of + and � to represent changes inbelief suggests a link between this system of argumentation and QPNs [18] sincethe latter make use of a similar notion. Indeed, it turns out that we can modifythe notion of a probabilistic inuence in a QPN to give our database facts andrules a probabilistic interpretation. In particular we take triples (i : l : +), wherel 2 W and l does not include the connective !, to denote the fact that Pr(l) isknown to increase, and similar triples (i : l : �), to denote the fact that Pr(l) isknown to decrease. Triples (i : l : 0), clearly denote the fact that Pr(l) is knownto neither increase nor decrease. With this interpretation facts correspond to thenodes in a QPN, and as in QPNs we deal with changes in their probability.Database rules can similarly be given a probabilistic interpretation by makingthe triple (i : n! m : +), where m and n are members ofW which do not includethe connective !, denote the fact that:Pr(m jn;X) � Pr(m j:n;X)for any X 2 fx;:xg for which there is a triple (i : x! m : s) or (i : :x! m : s)(where s is any sign), while the triple (i : n! m : �) denotes the fact that:Pr(m jn;X) � Pr(m j:n;X)again for any X for which there is a triple (i : x ! m : s) or (i : :x ! m : s).We do not make use of triples such as (i : n ! m : 0) since such rules haveno useful e�ect. As a result a rule (i : n ! m : +) means that there is aprobability distribution over the propositions m and n such that an increase inthe probability of n makes m more likely to be true, and a rule (i : n! m : �)means that there is a probability distribution over the propositions m and nsuch that an increase in the probability of n makes m less likely to be true.With this interpretation, rules correspond to qualitative inuences in QPNs. Itshould be noted that the e�ect of declaring that there is a rule (i : n! m : +)



is to create considerable constraints on the probability distribution over m andn to the extent that the e�ect of other rules relating m and n are determinedabsolutely. That is, a necessary consequence of (i : n ! m : +) is that we haveconstraints on the conditional probability distributions across the propositionsin the database equivalent to the rules (i : :n ! m : �), (i : n ! :m : �)and (i : :n ! :m : +), and similar restrictions are imposed by rules like(i : n! m : �).With this interpretation of rules and facts, the combination function 
 hasa natural probabilistic interpretation as the function by which changes in prob-ability are combined with probabilistic inuences. Indeed 
 is the function usedto combine the two in QPNs, and 
�1 remains as de�ned above. The atteningfunction also has an obvious probabilistic interpretation in terms of calculatingthe overall change in probability of a proposition. However, in order for the im-proper linear model to make sense probabilistically, it is necessary to apply arestriction to the sizes of changes in probability represented by (i : l : +) and(i : l : �). In particular, it requires that all arguments, irrespective of how manysteps they contain, have the same strength. This clearly places a great restrictionon the number of probabilistic models that can be captured by this system.In the kind of minimal logic we have taken as the base language for oursystem, any negated formula :l is taken as shorthand for a formula l !?. Thusin our system we should replace any formula (i : :l : s) with (i : l!? : s), andany formula (i : :l ! m : s) with (i : (l ! ?) ! m : s) before constructingany arguments. However, our probabilistic semantics give us an alternative wayof replacing negated propositions, since (i : :l : +) � (i : l : �) and (i : :l !m : +) � (i : l ! m : �), which does not involve introducing the contradiction(from which x!? follows where x is any proposition), and this is the methodwe prefer.As an example of the kind of reasoning that can be performed in NA1,consider the following simple database �2 of propositional rules and facts. Whatthese rules say is that there are three events that may have an e�ect on whetheror not I lose my job|I have a high research output, I am ill, and I am a good tutorto my students. The �rst and third have a negative inuence on the probabilityof me losing my job, while the other has a positive inuence. The database factssay that there is evidence which leads to an increased probability of me beingill and having a high research output, and a decreased probability of me beinga good tutor: f1 : high research output : +: �2f2 : ill : +:f3 : good tutor : �:r1 : high research output! lose job : �:r2 : ill ! lose job : +:r3 : good tutor! lose job : �:



From �2 we can build the arguments:�2 `ACR (lose job; (f1; r1);�):�2 `ACR (lose job; (f2; r2);+):�2 `ACR (lose job; (f3; r3);+):And the improper linear model will atten them to come up with the overallconclusion that there is an increase in the probability of me losing my job afterthe facts of my situation are known.4 A second normative systemAs stated above,NA1 is highly restrictive because its attening function requiresall arguments to have the same strength. To relax this restriction we clearlyneed a new attening function. One suitable function is that used by QPNsfor combining the e�ect of several inuences on one variable. This function is� as speci�ed in Table 2. The use of this function to de�ne a new system ofargumentation NA2 is straightforward after the dictionary of signs is extendedto become f+;�; 0; ?g where labelling a fact with ? indicates that the change inprobability of that fact is unknown, and a rule (i : n! m : ?) denotes that therelationship between Pr(m jn;X) and Pr(m j :n;X) is unknown, so that if theprobability of n increases it is not possible to say how the probability of m willchange.With this interpretation, there is a direct correspondence between a databaseof formulae drawn fromW and a qualitative probabilistic network, and it is quiteeasy to see that any conclusion drawn by NA2 from a database would also bedrawn by the corresponding QPN. The fact that qualitative multiplication dis-tributes over addition ensures that the fact that argumentation builds separatearguments for the same proposition and then attens them does not mean thatit gives a di�erent answer to the equivalent QPN.To illustrate the di�erence between NA1 and NA2, consider what NA2would conclude from �2. Firstly it would build the same arguments as NA1:�2 `ACR (lose job; (f1; r1);�):�2 `ACR (lose job; (f2; r2);+):�2 `ACR (lose job; (f3; r3);+):� + 0 � ?+ + + ? ?0 + 0 � ?� ? � � ?? ? ? ? ?Table 2. The function �



But this time the attening function would conclude that the overall change inbelief in the proposition lose job was ?, indicating that it cannot be accuratelyidenti�ed. This is, of course, probabilistically correct|without information onthe relative e�ects of the various causes of a loss of job, the way in which itsprobability will change cannot be predicted.5 A more subtle normative systemNow, in the kind of applications for which SA was developed [7, 9], it is neces-sary to represent information of the form \X is known to be true", and \If X istrue then Y is true"|information that we might term categorical. It is thereforeinteresting to investigate if NA2 can be extended to cover categorical relation-ships. To do so we �rst extend the dictionary of signs to be f++;+;�;��g assuggested in [8, 11], where ++ and �� are labels for categorical information.It then turns out that we can give ++ and �� a probabilistic semantics, giv-ing a system of argumentation NA3 which is NA2 extended by allowing triplessuch as (i : l : ++) and (i : l : ��) and rules such as (i : n ! m : ++) and(i : n! m : ��).The meaning of (i : l : ++), where l is a w� which does not contain !, isthat the probability of l becomes 1, and (i : l : ��) means that the probabilityof l decreases to 0, and to make this clear, we write (i : l : ") for (i : l : ++), and(i : l : #) for (i : l : ��). The meaning of the rules is slightly more complicated.We want a rule (i : n ! m : ++), where neither m or n contain !, to denotea constraint on the probability distribution across m and n such that if Pr(n)becomes 1, so does Pr(m). This requires that:Pr(m jn;X) = 1for all X 2 fx;:xg such that the database contains (i : x! m : s) or (i : :x!m : s). [13]. Similarly, a probabilistic interpretation of a rule (i : n ! m : ��)requires that: Pr(m jn;X) = 0for all X 2 fx;:xg such that the database contains (i : x! m : s) or (i : :x!m : s). Considering the constraints on the conditional probabilities imposedby ++ and �� rules, a further pair of rules are suggested. These are a rule(i : n! m : �+) which requires that:Pr(m j:n;X) = 1for all X 2 fx;:xg such that the database contains (i : x! m : s) or (i : :x!m : s) (s now being able to take any value in the set f++;+�;+;�;�+;��g),and a rule (i : n! m : +�) which requires that:Pr(m j:n;X) = 0for all X 2 fx;:xg such that the database contains (i : x! m : s) or (i : :x!m : s). Once again, the introduction of such rules imposes restrictions on other
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 and 
�1rules involving the same propositions so that (i : n! m : ++) implies that theremust be restrictions equivalent to the rules (i : :n ! m : ��), (i : n ! :m :��) and (i : :n! :m : ++), and similar restrictions are imposed by the otherrules. As before, having introduced new qualitative values and ensured that theyhave a probabilistic meaning, we have to give a suitably probabilistic means ofcombining them if we want the whole system to be normative. It is reasonablyclear that suitable functions comb and comb0 are those variants of 
 and 
�1given in Table 3 [13]. Note the asymmetry in the tables. Once again, the baselogic compels us to replace negated literals before constructing any arguments,and again we do this by replacing facts and rules. It is clear that facts and ruleswith signs + and � are handled as before, and that (i : :l : ") � (i : l : #).Categorical rules are also handled by the appropriate substitution using, forinstance, the equivalencies (i : l ! :m : ++) � (i : l ! m : ��), (i : :l ! m :++) � (i : l ! m : �+) and (i : :l! :m : ++) � (i : l ! m : +�) [13].The correct way to atten normative arguments, some of which are categor-ical, is a little complex. The problem is that the very strong constraint that arule (i : n! m : ++) puts on the distribution over m and n greatly restricts thevalues of other rules whose consequent is m. In fact, if we have (i : n! m : s),s 2 f++;�+g then for any other (i : x ! m : s0), s0 2 f++;+;�;�+g and ifwe have (i : n ! m : s), s 2 f+�;��g then for any other (i : x ! m : s0),s0 2 f+�;+;�;��g [13, 14]. This means that we have a revised attening op-�� " + 0 � # ?" " " " " U "+ " + + ? # ?0 " + 0 � # ?� " ? � � # ?# U # # # # #? " ? ? ? # ?Table 4. A new attening function



erator �� as given in Table 4 where the symbol U indicates that the result isnot de�ned. U may also be taken to indicate that if this is the result of at-tening, then the database on which its deduction is based violates the laws ofprobability. Equipping NA3 with these extensions ensures that it is normativein the sense that all its conclusions will either be in accordance with probabilitytheory or indicate that there has been a violation of the theory.To see how the system incorporates categorical knowledge, consider the fol-lowing variation on our example, which includes the categorical rule that beingfound to embezzle funds from my organisation would lead to me losing my job:f1 : embezzle funds : ": �3f2 : good research output : ":r1 : embezzle funds! lose job : ++ :r2 : good research output! lose job : �:From this using NA3 we can build the arguments:�3 `ACR (lose job; (f1; r1); "):�3 `ACR (lose job; (f2; r2);�):which will atten to tell us that I will de�nitely lose my job since the categoricalpositive e�ect of embezzling outweighs the negative e�ect of not being ill.6 Using order of magnitude informationAs the example of �3 demonstrated, NA3 extends the kind of representationand reasoning provided by QPNs by allowing the explicit handling of categoricalinformation. This is not the only extension that is possible. Another is to usesome form of order of magnitude reasoning. This would make it possible to say,for instance, that because Pr(a) increases much more than Pr(b), and Pr(a)inuences Pr(c) much more strongly than Pr(b) inuences Pr(d), it is clear thatPr(c) will undergo a much larger change in value than Pr(d). A particularlyappropriate system for performing this kind of reasoning, known as ROM[K],is provided by Dague [1]. ROM[K] works by manipulating expressions aboutthe relative size of two quantities Q1 and Q2. There are four possible ways ofexpressing this relation: Q1 is negligible with respect to Q2, Q1 � Q2, Q1 isdistant from Q2, Q1 6' Q2, Q1 is comparable to Q2, Q1 � Q2, and Q1 is closeto Q2, Q1 � Q2. Once the relation between pairs of quantities is speci�ed, itis possible to deduce new relations by applying the axioms and properties ofROM[K], some of which are reproduced in Figure 2.We can use ROM[K] to de�ne a system of argumentationNA4 which extendsNA2 with relative order of magnitude reasoning about the size of the changes inprobability with which the system deals. As usual, we need to de�ne combinationand attening functions, though here they di�er from those of other systemsin that they are comparative and additional to those used by NA2. Once theargument is established as being + or � using the function 
 from NA2, this



(A1) A � A (A9) A � 1! [A] = [+](A2) A � B ! B � A (A10) A� B $ B � (B + A)(A3) A � B;B � C ! A � C (A11) A� B;B � C ! A� C(A4) A � B ! B � A (A12) A � B; [C] = [A]! (A+ C) � (B +C)(A5) A � B;B � C ! A � C (A13) A � B; [C] = [A]! (A+ C) � (B +C)(A6) A � B ! A � B (A14) A � (A+A)(A7) A � B ! C:A � C:B (A15) A 6' B $ (A� B) � A or (B �A) � B(A8) A � B ! C:A � C:B(P3) A� B ! C:A� C:B (P26) A � B ! B � A(P35) A 6' B ! C:A 6' C:B (P38) A 6' B;C � A;D � B ! C 6' DFig. 2. Some of the axioms and properties of ROM[K]new combination function comb� gives the relation between the changes basedon the strength of the inuences that cause the change while comb0� may beused to identify the relation between the inuences of two rules based uponthe relation between the changes in probability of their antecedents and thechange in probability of their consequents. Similarly, the new attening functionidenti�es the greatest inuence on a given hypothesis allowing a ? caused by twoconicting arguments to resolved into a + or a �. The combination functioncomb� is de�ned in Table 5|if the change in Pr(a) stands in relation rel1 to thechange in Pr(b) (where rel1 is one of the relations of ROM[K]) and the strengthof the inuence of Pr(a) on Pr(c) stands in relation rel2 to the strength of theinuence of Pr(b) on Pr(d) (rel2 also being one of the relations of ROM[K]),then the relation rel3 between the changes in Pr(c) and Pr(d) is given by thecombinator table. Note that Table 5 only covers the cases in which the changein Pr(a) is less than or equal to that in Pr(b) and the strength of the inuencebetween Pr(a) and Pr(c) is less than or equal to that of Pr(b) on Pr(d). Obviouspermutations of the table will cover the other cases. Also note that the letterV indicates that rel3 may not be determined from the particular values of rel1and rel2 because to make any prediction would be to step outside the bounds ofprobability.Table 5 also de�nes comb0�, which as before is the inverse of comb� with rel1and rel3 determining rel2. Note that for some combinations of input, the outputrel2comb� � � 6' �� � � 6' �rel1 � � � V �6' 6' V V �� ���� rel3comb0� � � 6' �� � � 6' �rel1 � �, � �6' �� �, �, 6', �Table 5. Combining ROM[K] relations.



is ambiguous.For the attening function, if the change in Pr(a) stands in relation rel4 to thechange in Pr(b) (where rel4 is one of the relations of ROM[K]) and the strengthof the inuence of Pr(a) on Pr(c) stands in relation rel5 to the strength of theinuence of Pr(b) on Pr(c) (rel5 also being one of the relations of ROM[K]), thesign of the change in Pr(c) is given in Table 6 (where [�Pr(b)] indicates the signof the change in Pr(b)). Note that Table 6 only covers the cases in which thechange in Pr(a) is less than or equal to that in Pr(b) and the strength of theinuence between Pr(a) and Pr(c) is less than or equal to that of Pr(b) on Pr(c).Obvious permutations of the table will cover the other cases.As an example of the kind of reasoning that may be performed in NA4,consider the following variant of our running example.f1 : ill : +: �4f2 : embezzle funds : �:r1 : ill ! lose job : +:r2 : ill ! hospital : +:r3 : embezzle funds! lose job : +:In addition, consider we know that the relationship between the strengths of r1and r2 is �, while the changes in probability implied by f1 and f2 stand inrelation �. From the database we can build the arguments:�4 `ACR (lose job; (f1; r1);�):�4 `ACR (hospital; (f1; r2);+):�4 `ACR (lose job; (f2; r2);+):using the combination function fromNA2. Considering the �rst two arguments,the comb� may then be used to establish which has stronger support. Since botharguments are based upon the same fact, rel1 is `�', so that we can concludethat the relation rel3 between the changes in probability of `hospital' and lose jobmust be `�' so that the increase in belief that I will lose my job is much smallerthan the increase in belief that I will go to hospital. Similarly, attening thearguments for lose job with the old attening function will give ?, while the newattening function will establish that the probability of lose job will increase ascan be seen by looking at the intersection of 6' and � in Table 6.rel5� � 6' �� ? ? [�Pr(b)] [�Pr(b)]rel4 � ? ? ? [�Pr(b)]6' [�Pr(b)] ? ? [�Pr(b)]� [�Pr(b)] [�Pr(b)] [�Pr(b)] [�Pr(b)]Table 6. How to atten arguments in ROM[K]



7 Using numerical informationFurther precision may be obtained by incorporating numerical information aboutthe size of changes in probability and the strengths of inuences. Inspired byDubois et al. [6], we build a new system of argumentation NA5 with the samebase language as the other systems, but which has a dictionary which includes aset of \linguistic"5 labels, each of which is an identi�er for an interval probability,and may be used to give the strength of rules. A suitable set is:Strongly Positive � Weakly Positive � Zero �Weakly Negative � Strongly Negative(SP) (WP) (Z) (WN) (SN)(1; �] � [�;0) � 0 � (0;��] � [��;1)though we could take any set of intervals we desire|a larger set will give us a�ner degree of resolution but be more tedious to use as an example. Note thatthe open intervals explicitly do not allow the modelling of categorical inuences(if these are required we can simply add additional labels at either end of thescale). The dictionary also includes a second set of labels which quantify changesin probability:Complete Positive � Big Positive � Medium Positive � Little Positive � Zero(CP) (BP) (MP) (LP) (Z)1 � (1; 1� �] � [1 � �; �] � [�; 0) � 0The de�nition of the changes Little Negative (LN), Medium Negative (MN), BigNegative (BN) and Complete Negative (CN) are symmetrical, and again we coulduse a di�erent set if desired. Like the other systems of argumentation,NA5 usesthe argument consequence relation `ACR to build arguments for hypotheses,and so in order to be able to determine the strength of arguments we mustde�ne combination functions comb and comb0 which say how to combine the\linguistic" labels. To do so we must �rst choose suitable values of � and �, andon the grounds that we would like our intervals to be evenly sized, we choose� � 0:33 and � � 0:5. This then gives us the combination functions of Table 7where [MP, LP] stands for the interval whose upper limit is the upper limit ofMP and whose lower limit is the lower limit of LP. Results of combining withnegative inuences and changes can be obtained by symmetry.To combine several arguments for one proposition we need a suitable atten-ing function, and this is provided by interval addition. Furthermore, if we areto use the precision of the system we need a way to compare intervals in orderto identify which arguments have the greatest support. This may be done using�int where [a; b] �int [c; d] i� a � c and b � d [5]. To illustrate the use of NA55 The scare quotes denoting that no claim is being made that the probability intervalswith which we deal are in any way related to interpretations of natural language|weare just adopting Dubois et al.'s terminology.



consider the database:f1 : embezzle funds : CP: �5f2 : ill : BP:r1 : embezzle funds! lose job : SP:r2 : ill ! lose job :WP:r3 : ill ! hospital : SP:From this we can build the arguments:�5 `ACR (lose job; (f1; r1); [BP;MP ]):�5 `ACR (lose job; (f2; r2); [MP;LP ]):�5 `ACR (hospital; (f2; r3); [BP;MP ]):The two arguments for lose job may be attened to give the overall value of[CP, MP] and using �int we learn that the increase in probability of hospital isless than or equal to that of lose job.8 DiscussionThis paper began with the claim that it would present a number of normativesystems of argumentation, taking this to mean that they have a probabilistic se-mantics, and that they would thus be an improvement on non-normative systemsof argumentation for those cases in which such norms are desirable. Furthermore,the claim was made that these systems would also be an improvement on qual-itative systems for reasoning with probability such as QPNs since they wouldallow more precise predictions to be made. In the event �ve di�erent systems,NA1{NA5, which meet these objectives to varying degrees, have been presented.NA1, uses a probabilistic notion of qualitative inuences between variablesto give meaning to logical rules. The fact that NA1 has a strict probabilisticsemantics means that it is an extension of non-normative systems of argumen-tation. However, the restrictions on the meaning of the rules imposed by theimproper linear model mean that NA1 is not an extension of QPNs. NA2 is asystem of argumentation which is roughly equivalent to QPNs. Thus NA2 whilstan extension of non-normative systems of argumentation on which it is based,is not an extension of QPNs.The problem of extending QPNs was addressed by NA3. The extension takesthe form of allowing the representation of categorical inuences between vari-ables. Giving these a qualitative representation and a probabilistic meaningcomb CP BP MP LP ZSP [BP, MP] [BP, MP] [MP, LP] LP ZWP [MP, LP] [MP, LP] [MP, LP] LP ZZ Z Z Z Z Z comb0 [BP, MP] [MP, LP] LP ZSP [CP, BP] MP LP ZWP [CP, MP] LP ZZ ZTable 7. Combining \linguistic" labels



makes NA3 a system which is both normative and can represent and reasonwith a wider range of information than is possible in a QPN whilst retaining thelatter's qualitative nature. Thus it meets overall objectives of the paper. Twofurther extensions were introduced in the form ofNA4 and NA5 which use orderof magnitude and interval information respectively.9 Relation to other workThere are a number of connections with the work of other authors. The closerelation between qualitative approaches to probabilistic reasoning in networksand probabilistic systems based on logic was suggested by Wellman [17] whilethe idea of a database of inuences which is equivalent to a probabilistic networkhas been discussed by, among others, Poole [16] and Wong [19]. The attemptto give an essentially logical system a probabilistic semantics makes our e�ortssimilar to Goldszmidt's work on normative systems for defeasible reasoning [10].This clearly has some similarities with our work, but di�ers in its intent. Gold-szmidt aims to build defeasible systems whose behaviour is justi�ed by theirprobabilistic semantics while we are intent on a more general system. The useof a probabilistic semantics is not our only goal|we are just interested in beingable to provide a normative system when one is required, with the choice ofalternative combination and attening functions allowing a broad range of pos-sible systems to be adopted. In addition, our work has strong connections withthat of Darwiche [2], this time di�ering in the way it is approached. His aim was\...to relax the commitment to numbers while retaining the desirable features ofprobability theory", which is rather di�erent to the aim of the work describedhere. We started from the opposite position, taking a completely abstract modelof reasoning and seeing how it could be instantiated to behave in a probabilisticway if so desired (which often it won't be since probability theory often imposesoverly strict constraints for the kind of reasoning that argumentation was de-signed to provide), and the fact that we did so suggests that the work presentedhere and that in [2] are to some extent complementary.AcknowledgementsThis work was partially supported by Esprit Basic Research Action 6156 DRUMSII (Defeasible Reasoning and Uncertainty Management Systems). Many thanksto Paul Krause, John Fox, Kathy Laskey and Jack Breese for making me thinkmore clearly about some of the issues discussed in this paper.References1. Dague, P. (1993) Symbolic reasoning with relative orders of magnitude, Proceedingsof the 13th International Joint Conference on Arti�cial Intelligence, Chambery,France.
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