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Abstract. Inspired by two different approaches to providing a qualita-
tive method for reasoning under uncertainty—qualitative probabilistic
networks and systems of argumentation—this paper attempts to com-
bine the advantages of both by defining systems of argumentation that
have a probabilistic semantics.

1 Introduction

In the last few years there have been a number of attempts to build systems
for reasoning under uncertainty that are of a qualitative nature—that is they
use qualitative rather than numerical values; dealing with concepts such as in-
creases in belief and the relative magnitude of values. In particular, two types of
qualitative system have become well established, namely qualitative probabilis-
tic networks (QPNs) [4, 18], and systems of argumentation [8, 11, 12]. While
the former are built as an abstraction of probabilistic networks where the links
between nodes are only modelled in terms of the qualitative influence of the par-
ents on the children, and therefore have an underlying probabilistic semantics,
some of the latter lack such a sound foundation. Instead they offer a greater
degree of resolution, allowing more precise deductions to be made.

In this paper we present several normative systems of argumentation. These
are systems of argumentation which have a probabilistic semantics, and are thus
normative in that they behave according to the norms of probability theory.
Such systems aim to extend both QPNs in the sense of reducing the degree
of abstraction of the former, and argumentation in the sense of providing it
with a probabilistic semantics whilst using only qualitative or semi-qualitative
information® Of course this extension might not always be desired, but may be
useful at times to ensure that a given system reasons within probabilistic norms.
The systems are built upon the framework introduced by Fox, Krause and their
colleagues [8, 11], and we begin by introducing this framework.

® If we don’t have any commitment to qualitative information, we can use ordinary
probabilities as suggested by Krause et al. [11].



2 Introducing systems of argumentation

In classical logic, an argument is a sequence of inferences leading to a conclusion.
If the argument is correct, then the conclusion is true. Consider the simple
database A; which expresses some very familiar information in a Prolog-like
notation in which variables are capitalised and ground terms and predicate names
start with small letters.

f1: human(socrates). Ay
rl: human(X) — mortal(X).

The argument Ay - mortal(socrates) may be correctly made from this database
because mortal(socrates) follows from A; given the usual logical axioms and
rules of inference. Thus a correct argument simply yields a conclusion which in
this case could be paraphrased ‘mortal(socrates) is true in the context of f1
and 71’. In the system of argumentation proposed by Fox and colleagues [11]
this traditional form of reasoning is extended to allow arguments to indicate
support and doubt in propositions, as well as proving them, by assigning labels
to arguments which denote the confidence that the arguments warrant in their
conclusions. This form of argumentation may be summarised by the following
schema:
Database F4cr (Sentence, Grounds, Sign)

where k4o is a suitable consequence relation. Informally, Grounds (G) are the
facts and rules used to infer Sentence (St), and Sign (Sg) is a number or a
symbol drawn from a dictionary of possible numbers or symbols which indicate
the confidence warranted in the conclusion.

To formalise this kind of reasoning we start with a language, and we will take
L, a set of propositions, including L, the contradiction. We also have a set of
connectives {—, = }*, and the following set of rules for building the well formed
formulae of the language:

— Ifl € £ then [ is a well formed formula (wff).

— Ifl € £ then =l is a wff.

— Ifl,me L thenl — m,l - —-m, =l - m and =l — —m are wffs.
— Nothing else is a wff.

The members of W, the set of all wffs that may be defined using £, may then
be used to build up a database A where every item d € A is a triple (i : [ : )
in which ¢ is a token uniquely identifying the database item (for convenience we
will use the letter ‘4> as an anonymous identifier), [ is a wif, and s is a sign. With
this formal system, we can take a database and use the argument consequence
relation Facpr given in Figure 1 to build arguments for propositions in £ that
we are interested in.

4 Note that both the set of connectives and the rules for building wffs are more re-
strictive than for other similar systems of argumentation [11]. A normative system
which does not suffer from these limitations is discussed in [13].
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Fig. 1. Argumentation Consequence Relation

Typically we will be able to build several arguments for a given proposition,
and so, to find out something about the overall validity of the proposition, we
will flatten the different arguments to get a single sign.

Together £, the rules for building the formulae, the connectives, and Facgr
define a formal system of argumentation, which, for want of a name we will
call SA. In fact, SA is really the basis of a family of systems of argumentation,
because one can define a number of variants of S.A by using different dictionaries
of signs. Each dictionary will have its own combination functions comb and
comb’, and its own means of flattening arguments, and the meanings of the signs,
the flattening function, and the combination function delineate the semantics
of the system of argumentation. Thus S.A gives us a general framework for
expressing logical facts which can incorporate different models of uncertainty by
varying the signs and their associated combination and flattening functions as
well as a means of representing default information and of handling inconsistent
information [15].

3 A first normative system

One commonly used system of argumentation within the framework of SA is one
in which the dictionary consists of three symbols, +, — and 0, which represent
the notion of an increase, a decrease and no change in belief respectively. When
a proposition is labelled with 4+, 1t is taken to represent the fact that there is an
increase in belief in the proposition, while labelling the rule:

human — mortal

with a + is taken to represent the fact that showing that there is an increase in
belief in the proposition “human” causes an increase in belief in the proposition
“mortal”. The combination function comb for this system of argumentation is
® of Table 1, while comb’ is its inverse @ !, also given in Table 1—blank spaces
mark impossible combinations. As with all combinator papers in this paper, the
first argument of the function described by the table is drawn from the first
column, and the second argument is drawn from the first row. The flattening
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function is one that implements a form of improper linear model with uniform
weights and no constant term [3]. This counts the number of + and — weighted
arguments for a proposition, takes the sign that occurs most often and makes
that the sign of the proposition, thus taking the sum of all the arguments while
giving each argument equal weight. We will refer to the system of argumentation
which uses this dictionary and set of functions along with the argument building
capabilities of SA as N A;. The question that faces us here is how N 4; may be
given a probabilistic semantics. Now, the use of 4+ and — to represent changes in
belief suggests a link between this system of argumentation and QPNs [18] since
the latter make use of a similar notion. Indeed, it turns out that we can modify
the notion of a probabilistic influence in a QPN to give our database facts and
rules a probabilistic interpretation. In particular we take triples (¢ : [ : 4), where
[ € W and [ does not include the connective —, to denote the fact that Pr(l) is
known to increase, and similar triples (¢ : { : —), to denote the fact that Pr(l) is
known to decrease. Triples (i : { : 0), clearly denote the fact that Pr(/) is known
to neither increase nor decrease. With this interpretation facts correspond to the
nodes in a QPN, and as in QPNs we deal with changes in their probability.

Database rules can similarly be given a probabilistic interpretation by making
the triple (i : n = m : 4), where m and n are members of W which do not include
the connective —, denote the fact that:

Pr(m|n, X) > Pr(m|—-n, X)

for any X € {x, —~a} for which there isa triple (i : @ > m :s) or (i : =& = m : 5)
(where s is any sign), while the triple (i : n = m : —) denotes the fact that:

Pr(m|n, X) < Pr(m|—-n, X)

again for any X for which there is a triple (i : @ =5 m :s) or (i : ~x = m : s).
We do not make use of triples such as (¢ : n — m : 0) since such rules have
no useful effect. As a result a rule (¢ : n — m : 4) means that there is a
probability distribution over the propositions m and n such that an increase in
the probability of n makes m more likely to be true, and a rule (i : n = m : —)
means that there is a probability distribution over the propositions m and n
such that an increase in the probability of n makes m less likely to be true.
With this interpretation, rules correspond to qualitative influences in QPNs. It
should be noted that the effect of declaring that there is a rule (i : n = m : 4)



1s to create considerable constraints on the probability distribution over m and
n to the extent that the effect of other rules relating m and n are determined
absolutely. That is, a necessary consequence of (i : n = m : +) is that we have
constraints on the conditional probability distributions across the propositions
in the database equivalent to the rules (i : =n = m : =), (i : n > —-m : —)
and (¢ : =n — —m : +4), and similar restrictions are imposed by rules like
(i:n—>m:—).

With this interpretation of rules and facts, the combination function ® has
a natural probabilistic interpretation as the function by which changes in prob-
ability are combined with probabilistic influences. Indeed ® is the function used
to combine the two in QPNs, and ® ! remains as defined above. The flattening
function also has an obvious probabilistic interpretation in terms of calculating
the overall change in probability of a proposition. However, in order for the im-
proper linear model to make sense probabilistically, it is necessary to apply a
restriction to the sizes of changes in probability represented by (¢ : [ : 4) and
(¢ : 1 :=). In particular, it requires that all arguments, irrespective of how many
steps they contain, have the same strength. This clearly places a great restriction
on the number of probabilistic models that can be captured by this system.

In the kind of minimal logic we have taken as the base language for our
system, any negated formula =/ is taken as shorthand for a formula! — L. Thus
in our system we should replace any formula (¢ : =/ : s) with (i : { = L : s), and
any formula (¢ : =l = m : s) with (¢ : ({ = L) = m : s) before constructing
any arguments. However, our probabilistic semantics give us an alternative way
of replacing negated propositions, since (i : =l :+) = (i : [ : —) and (¢ : =l —
m:+) = (i :{ = m : =), which does not involve introducing the contradiction
(from which # — L follows where # is any proposition), and this is the method
we prefer.

As an example of the kind of reasoning that can be performed in N Aj,
consider the following simple database A5 of propositional rules and facts. What
these rules say is that there are three events that may have an effect on whether
or not I lose my job—TI have a high research output, I amill, and I am a good tutor
to my students. The first and third have a negative influence on the probability
of me losing my job, while the other has a positive influence. The database facts
say that there is evidence which leads to an increased probability of me being
ill and having a high research output, and a decreased probability of me being
a good tutor:

f1: high_research_output : +. Ao
f2 4l +.

f3 :good_tutor . —.

rl : high_research_output — lose_job : —.

r2 il — lose_job . +.

r3 : good_tutor — lose_job : —.



From As we can build the arguments:
As Facr (lose_job, (f1,71), —).
Ay bFacr (lose_job, (f2,r2),4).
Ayt acr (lose_job, (f3,r3),+).

And the improper linear model will flatten them to come up with the overall
conclusion that there 1s an increase in the probability of me losing my job after
the facts of my situation are known.

4 A second normative system

As stated above, A" A1 is highly restrictive because its flattening function requires
all arguments to have the same strength. To relax this restriction we clearly
need a new flattening function. One suitable function is that used by QPNs
for combining the effect of several influences on one variable. This function is
@ as specified in Table 2. The use of this function to define a new system of
argumentation N A, is straightforward after the dictionary of signs is extended
to become {+, —, 0,7} where labelling a fact with ? indicates that the change in
probability of that fact is unknown, and a rule (i : n = m : 7) denotes that the
relationship between Pr(m|n, X) and Pr(m|-n, X) is unknown, so that if the
probability of n increases it is not possible to say how the probability of m will
change.

With this interpretation, there is a direct correspondence between a database
of formulae drawn from W and a qualitative probabilistic network, and it is quite
easy to see that any conclusion drawn by N A5 from a database would also be
drawn by the corresponding QPN. The fact that qualitative multiplication dis-
tributes over addition ensures that the fact that argumentation builds separate
arguments for the same proposition and then flattens them does not mean that
it gives a different answer to the equivalent QPN.

To illustrate the difference between N'.A; and N As, consider what N A,

would conclude from As. Firstly it would build the same arguments as N Aj;:
Ay bFacr (lose_job, (f1,rl),—).
As Facr (lose_job, (£2,72),+).
Ayt acr (lose_job, (f3,r3),+).
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Table 2. The function @



But this time the flattening function would conclude that the overall change in
belief in the proposition lose_job was 7, indicating that it cannot be accurately
identified. This is, of course, probabilistically correct—without information on
the relative effects of the various causes of a loss of job, the way in which its
probability will change cannot be predicted.

5 A more subtle normative system

Now, in the kind of applications for which S.A was developed [7, 9], it is neces-
sary to represent information of the form “X is known to be true”, and “If X is
true then Y 1s true” —information that we might term categorical. It is therefore
interesting to investigate if A" A, can be extended to cover categorical relation-
ships. To do so we first extend the dictionary of signs to be {++,+,—, ——} as
suggested in [8, 11], where ++ and —— are labels for categorical information.
It then turns out that we can give +4+ and —— a probabilistic semantics, giv-
ing a system of argumentation A" Az which is A’ A, extended by allowing triples
such as (¢ : [ : 4++) and (¢ : { : ——) and rules such as (i : n = m : ++) and

(i:n—>m:——).
The meaning of (¢ : { : +4), where [ is a wff which does not contain —, is
that the probability of [ becomes 1, and (¢ : { : ——) means that the probability

of [ decreases to 0, and to make this clear, we write (¢ : { : 1) for (i : { : ++), and
(¢:1:]) for (¢ :1:—=). The meaning of the rules is slightly more complicated.
We want a rule (i : n = m : ++), where neither m or n contain —, to denote
a constraint on the probability distribution across m and n such that if Pr(n)
becomes 1, so does Pr(m). This requires that:

Pr(m|n,X)=1

for all X € {x, -z} such that the database contains (i : @ = m :s) or (i : ~& —
m : s). [13]. Similarly, a probabilistic interpretation of a rule (i : n = m : ——)
requires that:

Pr(m|n,X) =0

for all X € {x, -z} such that the database contains (i : @ = m :s) or (i : ~& —
m : s). Considering the constraints on the conditional probabilities imposed
by ++ and —— rules, a further pair of rules are suggested. These are a rule
(i : m — m : —+) which requires that:

Pr(m|-n,X)=1

for all X € {x, -z} such that the database contains (i : @ = m :s) or (i : ~& —
m : ) (s now being able to take any value in the set {++,4+—,+,—, —4, ——1}),
and a rule (¢ : n = m : +—) which requires that:

Pr(m|-n,X)=0

for all X € {x, -z} such that the database contains (i : @ = m :s) or (i : ~& —
m : s). Once again, the introduction of such rules imposes restrictions on other
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rules involving the same propositions so that (¢ : n — m : ++4) implies that there
must be restrictions equivalent to the rules (i : =-n > m: —=), (i : n = —m :
——) and (¢ : =n = —m : +4), and similar restrictions are imposed by the other
rules. As before, having introduced new qualitative values and ensured that they
have a probabilistic meaning, we have to give a suitably probabilistic means of
combining them if we want the whole system to be normative. It is reasonably
clear that suitable functions comb and comb’ are those variants of @ and @~*
given in Table 3 [13]. Note the asymmetry in the tables. Once again, the base
logic compels us to replace negated literals before constructing any arguments,
and again we do this by replacing facts and rules. It is clear that facts and rules
with signs 4+ and — are handled as before, and that (i : =l : 1) = (i : [ : }).
Categorical rules are also handled by the appropriate substitution using, for
instance, the equivalencies (i :l > —-m:4++)=(i:l=>m:—=), (i : =l > m:
++H)=@:l—=-m:—+)and (i: =l = -m:++)=(i:l > m:+-—) [13].

The correct way to flatten normative arguments, some of which are categor-
ical, is a little complex. The problem is that the very strong constraint that a
rule (7 : n = m : +4) puts on the distribution over m and n greatly restricts the
values of other rules whose consequent is m. In fact, if we have (i : n — m : s),
s € {++, —+} then for any other (i : 2 - m: '), s’ € {++,+,—, —+} and if

we have (i : n = m : s), s € {+—,——} then for any other (i : # = m : &),
s € {+—,4,—,——1} [13, 14]. This means that we have a revised flattening op-
lf+0-17
FEriios
HT++7 L7
01T +0-17
-t ?7-=17
Lrleitl
O E A

Table 4. A new flattening function



erator @, as given in Table 4 where the symbol U indicates that the result is
not defined. U may also be taken to indicate that if this is the result of flat-
tening, then the database on which its deduction is based violates the laws of
probability. Equipping N A3 with these extensions ensures that it is normative
in the sense that all its conclusions will either be in accordance with probability
theory or indicate that there has been a violation of the theory.

To see how the system incorporates categorical knowledge, consider the fol-
lowing variation on our example, which includes the categorical rule that being
found to embezzle funds from my organisation would lead to me losing my job:

f1:embezzle_funds : 1. As
F2 : good_research_output : 7.

rl : embezzle_funds — lose_job : ++ .

r2 : good_research_output — lose_job . —.

From this using N A3 we can build the arguments:

As Facr (lose_job, (f1,7r1),1).
Az Facr (lose_job, (£2,72), —).

which will flatten to tell us that I will definitely lose my job since the categorical
positive effect of embezzling outweighs the negative effect of not being ill.

6 Using order of magnitude information

As the example of Az demonstrated, N'.43 extends the kind of representation
and reasoning provided by QPNs by allowing the explicit handling of categorical
information. This 1s not the only extension that is possible. Another is to use
some form of order of magnitude reasoning. This would make it possible to say,
for instance, that because Pr(a) increases much more than Pr(b), and Pr(a)
influences Pr(¢) much more strongly than Pr(b) influences Pr(d), it is clear that
Pr(c) will undergo a much larger change in value than Pr(d). A particularly
appropriate system for performing this kind of reasoning, known as ROM[K],
is provided by Dague [1]. ROM[K] works by manipulating expressions about
the relative size of two quantities )1 and ()3. There are four possible ways of
expressing this relation: @1 is negligible with respect to @2, Q1 € @2, @1 18
distant from Q2, Q1 % Q2, Q1 is comparable to Q2, Q1 ~ (2, and @ is close
to @2, Q1 =~ Q2. Once the relation between pairs of quantities is specified, it
is possible to deduce new relations by applying the axioms and properties of
ROM[K], some of which are reproduced in Figure 2.

We can use ROM[K] to define a system of argumentation A .44 which extends
N As with relative order of magnitude reasoning about the size of the changes in
probability with which the system deals. As usual, we need to define combination
and flattening functions, though here they differ from those of other systems
in that they are comparative and additional to those used by N As. Once the
argument is established as being + or — using the function @ from N As, this
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Fig. 2. Some of the axioms and properties of ROM[K]

new combination function comb, gives the relation between the changes based
on the strength of the influences that cause the change while comb! may be
used to identify the relation between the influences of two rules based upon
the relation between the changes in probability of their antecedents and the
change in probability of their consequents. Similarly, the new flattening function
identifies the greatest influence on a given hypothesis allowing a 7 caused by two
conflicting arguments to resolved into a + or a —. The combination function
comb, is defined in Table 5—if the change in Pr(a) stands in relation rel; to the
change in Pr(b) (where rely is one of the relations of ROM[K]) and the strength
of the influence of Pr(a) on Pr(c) stands in relation rels to the strength of the
influence of Pr(b) on Pr(d) (rely also being one of the relations of ROM[K]),
then the relation rels between the changes in Pr(e) and Pr(d) is given by the
combinator table. Note that Table 5 only covers the cases in which the change
in Pr(a) is less than or equal to that in Pr(b) and the strength of the influence
between Pr(a) and Pr(c) is less than or equal to that of Pr(b) on Pr(d). Obvious
permutations of the table will cover the other cases. Also note that the letter
V indicates that rels may not be determined from the particular values of rely
and rels because to make any prediction would be to step outside the bounds of
probability.

Table 5 also defines comb’,, which as before is the inverse of comb, with rel;
and rels determining rel,. Note that for some combinations of input, the output

rel, rels
comb.|m ~ # & comb! [~ ~ * <
N v~ EK Rl o~ <
reli] ~ |~ ~V K rel;| =~ R, ~ <
* |2V VK * ~
< K LCCLL < R~ kL

Table 5. Combining ROM[K] relations.



1s ambiguous.

For the flattening function, if the change in Pr(a) stands in relation rely to the
change in Pr(b) (where rels is one of the relations of ROM[K]) and the strength
of the influence of Pr(a) on Pr(e) stands in relation rels to the strength of the
influence of Pr(b) on Pr(c) (rels also being one of the relations of ROM[K]), the
sign of the change in Pr(c) is given in Table 6 (where [A Pr(b)] indicates the sign
of the change in Pr(b)). Note that Table 6 only covers the cases in which the
change in Pr(a) is less than or equal to that in Pr(b) and the strength of the
influence between Pr(a) and Pr(c) is less than or equal to that of Pr(b) on Pr(e).
Obvious permutations of the table will cover the other cases.

As an example of the kind of reasoning that may be performed in N Ay,
consider the following variant of our running example.

fl:dl: +. Ay
f2 :embezzle_funds . —.

rl il — lose_job : +.

r2 il — hospital : 4.

r3 : embezzle_funds — lose_job : +.

In addition, consider we know that the relationship between the strengths of 1
and r2 is <, while the changes in probability implied by f1 and f2 stand in
relation ~. From the database we can build the arguments:

Ay Facr (lose_job, (f1,71), —).
Ay acr (hospital, (f1,r2),4).
Ayt acr (lose_job, (f2,r2),4).

using the combination function from A .As. Considering the first two arguments,
the comb, may then be used to establish which has stronger support. Since both
arguments are based upon the same fact, rel; is ‘&’ so that we can conclude
that the relation rels between the changes in probability of ‘hospital’ and lose_job
must be ‘<€’ so that the increase in belief that I will lose my job is much smaller
than the increase in belief that T will go to hospital. Similarly, flattening the
arguments for lose_job with the old flattening function will give 7, while the new
flattening function will establish that the probability of lose_job will increase as
can be seen by looking at the intersection of % and = in Table 6.

o~
~

rels
R~ ~ * <
~ ? ? [APr(b)] [APr(b)]
rely |~ ? ? ? [APr(b)]
#1[APr(b)] ? ? [APr(b)]
L|[APr(b)] [APr(b)] [APr(b)] [APr(b)]

Table 6. How to flatten arguments in ROM[K]



7 Using numerical information

Further precision may be obtained by incorporating numerical information about
the size of changes in probability and the strengths of influences. Inspired by
Dubois et al. [6], we build a new system of argumentation A'.A5 with the same
base language as the other systems, but which has a dictionary which includes a
set of “linguistic”® labels, each of which is an identifier for an interval probability,
and may be used to give the strength of rules. A suitable set is:

Strongly Positive > Weakly Positive > Zero > Weakly Negative > Strongly Negative
(SP) (WP) (Z) (WN) (SN)

(1,a] > [, 0) > 0 2 (0, —qa] > [~a,1)

though we could take any set of intervals we desire—a larger set will give us a
finer degree of resolution but be more tedious to use as an example. Note that
the open intervals explicitly do not allow the modelling of categorical influences
(if these are required we can simply add additional labels at either end of the
scale). The dictionary also includes a second set of labels which quantify changes
in probability:

Complete Positive > Big Positive > Medium Positive > Little Positive > Zero
(CP) (BP) (MP) (LP) (Z)

1 > (L1=-8] 2 [1=88 = (3,0) B

The definition of the changes Little Negative (LN), Medium Negative (MN), Big
Negative (BN) and Complete Negative (CN) are symmetrical, and again we could
use a different set if desired. Like the other systems of argumentation, A" As uses
the argument consequence relation Facg to build arguments for hypotheses,
and so in order to be able to determine the strength of arguments we must
define combination functions comb and comb’ which say how to combine the
“linguistic” labels. To do so we must first choose suitable values of o and 3, and
on the grounds that we would like our intervals to be evenly sized, we choose
G ~ 0.33 and « & 0.5. This then gives us the combination functions of Table 7
where [MP, LP] stands for the interval whose upper limit is the upper limit of
MP and whose lower limit is the lower limit of LP. Results of combining with
negative influences and changes can be obtained by symmetry.

To combine several arguments for one proposition we need a suitable flatten-
ing function, and this is provided by interval addition. Furthermore, if we are
to use the precision of the system we need a way to compare intervals in order
to identify which arguments have the greatest support. This may be done using
<int where [a,b] <;n¢ [¢,d] if @ < ¢ and b < d [5]. To illustrate the use of N A5

® The scare quotes denoting that no claim is being made that the probability intervals
with which we deal are in any way related to interpretations of natural language—we
are just adopting Dubois et al.’s terminology.



consider the database:

f1:embezzle_funds : C'P. Asg
f2:4l: BP.

rl : embezzle_funds — lose_job : SP.

r2 il — lose_job : WP.

r3 il — hospital : SP.

From this we can build the arguments:

As Facr (lose_job, (f1,r1),[BP, M P]).
As Facr (lose_job, (f2,r2),[M P, LP]).
As Facr (hospital, (f2,r3),[BP, M P]).

The two arguments for lose_job may be flattened to give the overall value of
[CP, MP] and using <;,: we learn that the increase in probability of hospital is
less than or equal to that of lose_job.

8 Discussion

This paper began with the claim that it would present a number of normative
systems of argumentation, taking this to mean that they have a probabilistic se-
mantics, and that they would thus be an improvement on non-normative systems
of argumentation for those cases in which such norms are desirable. Furthermore,
the claim was made that these systems would also be an improvement on qual-
itative systems for reasoning with probability such as QPNs since they would
allow more precise predictions to be made. In the event five different systems,
N A1-N As, which meet these objectives to varying degrees, have been presented.

NAj, uses a probabilistic notion of qualitative influences between variables
to give meaning to logical rules. The fact that A .A; has a strict probabilistic
semantics means that it is an extension of non-normative systems of argumen-
tation. However, the restrictions on the meaning of the rules imposed by the
improper linear model mean that A" A; is not an extension of QPNs. N’ A is a
system of argumentation which is roughly equivalent to QPNs. Thus A A5 whilst
an extension of non-normative systems of argumentation on which it 1s based,
1s not an extension of QPNs.

The problem of extending QPNs was addressed by N As. The extension takes
the form of allowing the representation of categorical influences between vari-
ables. Giving these a qualitative representation and a probabilistic meaning

comb| CP BP MP LPZ comb[[BP, MP] [MP, LP] LP Z
SP |[BP, MP] [BP, MP] [MP, LP] LP Z SP [[CP,BP] MP LPZ
WP |[MP, LP] [MP, LP] [MP, LP] LP Z WP [CP, MP] LP 7

Z Z Z A/ Z Z

Table 7. Combining “linguistic” labels



makes N A3z a system which is both normative and can represent and reason
with a wider range of information than is possible in a QPN whilst retaining the
latter’s qualitative nature. Thus it meets overall objectives of the paper. Two
further extensions were introduced in the form of A" A4 and M A5 which use order
of magnitude and interval information respectively.

9 Relation to other work

There are a number of connections with the work of other authors. The close
relation between qualitative approaches to probabilistic reasoning in networks
and probabilistic systems based on logic was suggested by Wellman [17] while
the idea of a database of influences which is equivalent to a probabilistic network
has been discussed by, among others, Poole [16] and Wong [19]. The attempt
to give an essentially logical system a probabilistic semantics makes our efforts
similar to Goldszmidt’s work on normative systems for defeasible reasoning [10].
This clearly has some similarities with our work, but differs in its intent. Gold-
szmidt aims to build defeasible systems whose behaviour is justified by their
probabilistic semantics while we are intent on a more general system. The use
of a probabilistic semantics is not our only goal—we are just interested in being
able to provide a normative system when one is required, with the choice of
alternative combination and flattening functions allowing a broad range of pos-
sible systems to be adopted. In addition, our work has strong connections with
that of Darwiche [2], this time differing in the way it is approached. His aim was
“...to relax the commitment to numbers while retaining the desirable features of
probability theory”, which is rather different to the aim of the work described
here. We started from the opposite position, taking a completely abstract model
of reasoning and seeing how it could be instantiated to behave in a probabilistic
way if so desired (which often it won’t be since probability theory often imposes
overly strict constraints for the kind of reasoning that argumentation was de-
signed to provide), and the fact that we did so suggests that the work presented
here and that in [2] are to some extent complementary.
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