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tQualitative probabilisti
 networks have been designedfor probabilisti
 reasoning in a qualitative way. Asa 
onsequen
e of their 
oarse level of representationdetail, qualitative probabilisti
 networks do not pro-vide for resolving trade-o�s and typi
ally yield ambigu-ous results upon inferen
e. We present an algorithmfor 
omputing more informative results for unresolvedtrade-o�s. The algorithm builds upon the idea of zoom-ing in on the truly ambiguous part of a qualitativeprobabilisti
 network and identifying the informationthat would serve to resolve the trade-o�s present.Introdu
tionQualitative probabilisti
 networks were introdu
ed inthe early 1990s for probabilisti
 reasoning with un
er-tainty in a qualitative way (Wellman 1990). A quali-tative probabilisti
 network en
odes variables and theprobabilisti
 relationships between them in a dire
teda
y
li
 graph. The en
oded relationships basi
ally rep-resent in
uen
es on the variables' probability distribu-tions. Ea
h of these in
uen
es is summarised by a qual-itative sign indi
ating a dire
tion of shift in probabil-ity distribution. For probabilisti
 inferen
e with qual-itative networks, an elegant algorithm based upon theidea of propagating and 
ombining signs is available(Druzdzel and Henrion 1993a).Qualitative probabilisti
 networks 
apture the rela-tionships between their variables at a 
oarse level ofrepresentation detail. These networks do therefore notprovide for resolving trade-o�s, that is, for establishingthe net result of two or more 
on
i
ting in
uen
es ona variable's probability distribution. If trade-o�s arerepresented in a qualitative probabilisti
 network, thenprobabilisti
 inferen
e will typi
ally yield ambiguous re-sults. On
e an ambiguity arises, it will spread through-out most of the network upon inferen
e, even if only avery small part of the network is truly ambiguous.The issue of dealing with trade-o�s in qualitativeprobabilisti
 networks has been addressed by several re-sear
hers. S. Parsons (1995) has introdu
ed, for exam-ple, the 
on
ept of 
ategori
al in
uen
es. A 
ategori
alCopyright 
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in
uen
e is either an in
uen
e that serves to in
rease aprobability to 1 or an in
uen
e that de
reases a prob-ability to 0, regardless of any other in
uen
es, therebyresolving any trade-o� in whi
h it is involved. C.-L. Liuand M.P. Wellman (1998) have designed a method forresolving trade-o�s based upon the idea of reverting tonumeri
al probabilities whenever ne
essary. S. Renooijand L.C. van der Gaag (1999) have enhan
ed the for-malism of qualitative probabilisti
 networks by distin-guishing between strong and weak in
uen
es. Trade-o�resolution during inferen
e is then based on the ideathat strong in
uen
es dominate over 
on
i
ting weakin
uen
es.In this paper, we present a new algorithm for deal-ing with trade-o�s in qualitative probabilisti
 networks.Rather than resolve trade-o�s by providing for a �nerlevel of representation detail, our algorithm identi�esfrom a qualitative probabilisti
 network the informa-tion that would serve to resolve the trade-o�s present.From this information, a more insightful result thanambiguity is 
onstru
ted.Our algorithm for dealing with trade-o�s builds uponthe idea of zooming in on the part of a qualitative prob-abilisti
 network where the a
tual trade-o�s reside. Af-ter an observation has been entered into a network, thesign of the in
uen
e of this observation on a variableof interest is 
omputed. If the sign is ambiguous, thenthere are trade-o�s present in the network. In fa
t,a trade-o� must reside along the reasoning 
hains be-tween the observation and the variable of interest. Ouralgorithm isolates these reasoning 
hains to 
onstitutethe part of the network that is relevant for address-ing trade-o�s. From this relevant part, an informa-tive result is 
onstru
ted for the variable of interest interms of values for the variables involved and the rela-tive strengths of the in
uen
es among them.The paper is organised as follows. We set out by pre-senting some preliminaries 
on
erning qualitative prob-abilisti
 networks. We then introdu
e the basi
 idea ofour algorithm for zooming in on trade-o�s informally,by means of an example. The algorithm is thereupondis
ussed in further detail. The paper ends with some
on
luding observations.1



PreliminariesA qualitative probabilisti
 network en
odes statisti
alvariables and the probabilisti
 relationships betweenthem in a dire
ted a
y
li
 graph. Ea
h node in thedigraph represents a variable. Ea
h ar
 
an be lookedupon as expressing a 
ausal in
uen
e from the nodeat the tail of the ar
 on the node at the ar
's head.More formally, the digraph's set of ar
s 
aptures proba-bilisti
 independen
e between the represented variables.We say that a 
hain between two nodes is blo
ked ifit in
ludes either an observed node with at least oneoutgoing ar
 or an unobserved node with two in
om-ing ar
s and no observed des
endants. If all 
hains be-tween two nodes are blo
ked, then these nodes are saidto be d-separated and the 
orresponding variables are
onsidered 
onditionally independent given the enteredobservations (Pearl 1988).A qualitative probabilisti
 network asso
iates with itsdigraph qualitative in
uen
es and qualitative synergies(Wellman 1990). A qualitative in
uen
e between twonodes expresses how the values of one node in
uen
e theprobabilities of the values of the other node. A positivequalitative in
uen
e of node A on its su

essor B ex-presses that observing higher values for A makes highervalues for B more likely, regardless of any other di-re
t in
uen
es on B; the in
uen
e is denoted S+(A;B),where `+' is the in
uen
e's sign. A negative qualitativein
uen
e, denoted S�, and a zero qualitative in
uen
e,denoted S0, are de�ned analogously. If the in
uen
e ofnode A on node B is not monotoni
 or unknown, wesay that it is ambiguous, denoted S?(A;B).The set of in
uen
es of a qualitative probabilisti
network exhibits various properties (Wellman 1990).The property of symmetry states that, if the networkin
ludes the in
uen
e SÆ(A;B), then it also in
ludesSÆ(B;A), Æ 2 f+;�; 0; ?g. The property of transitivityasserts that qualitative in
uen
es along a 
hain thatspe
i�es at most one in
oming ar
 for ea
h node, 
om-bine into a single in
uen
e with the 
-operator fromTable 1. The property of 
omposition asserts that mul-tiple in
uen
es between two nodes along parallel 
hains
ombine into a single in
uen
e with the �-operator.
 + � 0 ? � + � 0 ?+ + � 0 ? + + ? + ?� � + 0 ? � ? � � ?0 0 0 0 0 0 + � 0 ?? ? ? 0 ? ? ? ? ? ?Table 1: The 
- and �-operators.In addition to in
uen
es, a qualitative probabilisti
 net-work in
ludes synergies that express how the value ofone node in
uen
es the probabilities of the values of an-other node in view of a value for a third node (Druzdzeland Henrion 1993b). A negative produ
t synergy ofnode A on node B (and vi
e versa) given the value 
 fortheir 
ommon su

essor C, denoted X�(fA;Bg; 
), ex-presses that, given 
, higher values for A render highervalues for B less likely. A produ
t synergy indu
es

a qualitative in
uen
e between the prede
essors of anode upon observation; the indu
ed in
uen
e is 
oinedan inter
ausal in
uen
e. Positive, zero, and ambiguousprodu
t synergies are de�ned analogously.Example 1 We 
onsider the small qualitative proba-bilisti
 network shown in Figure 1. The network rep-T FDA�+ ++�Figure 1: The qualitative antibioti
s network.resents a fragment of �
titious and in
omplete medi
alknowledge, pertaining to the e�e
ts of administeringantibioti
s on a patient. Node A represents whether ornot a patient takes antibioti
s. Node T models whetheror not a patient has typhoid fever and node D repre-sents presen
e or absen
e of diarrhoea. Node F de-s
ribes whether or not the 
omposition of a patient'sba
terial 
ora has 
hanged.Typhoid fever and a 
hange in ba
terial 
ora aremodelled as the possible 
auses of diarrhoea. As thepresen
e of either of them will in
rease the probabilityof a patient having diarrhoea, the in
uen
es of both Tand F on D are positive. Antibioti
s 
an 
ure typhoidfever by killing the ba
teria that 
ause the infe
tion; thein
uen
e of A on T , therefore, is negative. Antibioti
s
an also 
hange the 
omposition of a patient's ba
terial
ora, thereby in
reasing the risk of diarrhoea; the in
u-en
e of A on F is positive. Upon observing diarrhoeain a patient, the presen
e of typhoid fever in itself is asuÆ
ient explanation, redu
ing the probability that a
hange in ba
terial 
ora is also a 
ontributing 
ause; asimilar observation holds for a 
hange in 
omposition ofba
terial 
ora. Given diarrhoea, therefore, a negativeinter
ausal in
uen
e is indu
ed between T and F .The qualitative antibioti
s network models two 
on-
i
ting in
uen
es on the probability distribution ofnodeD and therefore 
aptures a trade-o�. For a patientwho is known to take antibioti
s, the trade-o� 
annotbe resolved and the result with regard to this patienthaving diarrhoea is ambiguous. �For inferen
e with a qualitative network, an elegant al-gorithm is available fromM.J. Druzdzel and M. Henrion(1993a). The basi
 idea of the algorithm is to tra
e thee�e
t of observing a node's value on the other nodesin a network by message-passing between neighbouringnodes. For ea
h node, a node sign is determined, indi-
ating the dire
tion of 
hange in the node's probabilitydistribution o

asioned by the new observation givenall previously observed node values. Initially, all nodesigns equal `0'. For the newly observed node, an ap-propriate sign is entered, that is, either a `+' for theobserved value true or a `�' for the value false. Ea
h2



node re
eiving a message updates its sign and subse-quently sends a message to ea
h neighbour that is notd-separated from the observed node and to every nodeon whi
h it exerts an indu
ed inter
ausal in
uen
e. Thesign of this message is the
-produ
t of the node's (new)sign and the sign of the in
uen
e it traverses. This pro-
ess is repeated throughout the network, building onthe properties of symmetry, transitivity, and 
omposi-tion of in
uen
es. Ea
h node is visited at most twi
e,sin
e a node 
an 
hange sign at most twi
e, and thepro
ess is therefore guaranteed to halt.Outline of the AlgorithmIf a qualitative probabilisti
 network models trade-o�s,it will typi
ally yield ambiguous results upon inferen
ewith the sign-propagation algorithm. From Table 1, wehave that whenever two 
on
i
ting in
uen
es on a nodeare 
ombined with the �-operator, an ambiguous signwill result. On
e an ambiguous sign is introdu
ed, itwill spread throughout most of the network and an am-biguous sign is likely to result for the node of interest.By zooming in on the part of the network where thea
tual trade-o�s reside and identifying the informationthat would serve to resolve them, a more insightful re-sult 
an be 
onstru
ted. We illustrate the basi
 idea ofour algorithm for this purpose.As our running example, we 
onsider the qualitativeprobabilisti
 network from Figure 2. Now, suppose thatthe value true has been observed for the node H andthat we are interested in its in
uen
e on the probabilitydistribution of node A. Tra
ing the in
uen
e of the ob-servation on every node's distribution by means of thebasi
 sign-propagation algorithm, results in the nodesigns as shown in Figure 3. These signs reveal thatat least one trade-o� must reside along the reasoning
hains between the observed node H and the node ofinterest A. These 
hains together 
onstitute the partof the network that is relevant for addressing the trade-o�s that have given rise to ambiguous results; this partis termed the relevant network. For the example, the

ABCD EFG HI JK
�+ �+ �+ ++ + ��

+�+

Figure 2: The example qualitative network.

???? ??0 ++ �+
�+ �+ �+ ++ + ��+�+

Figure 3: The result of propagating `+' for node H .relevant network is shown in Figure 4 below the dashedline. Our algorithm isolates this relevant network forfurther investigation. To this end, it deletes from thenetwork all nodes and ar
s that are 
onne
ted to, butno part of the reasoning 
hains from H to A.A relevant network for addressing trade-o�s typi-
ally in
ludes many nodes with ambiguous node signs.Often, however, only a small number of these nodesare a
tually involved in the trade-o�s that have givenrise to ambiguous results. Figure 4, for example, re-veals that, while the nodes A, B, and C have am-biguous node signs, the in
uen
es between them arenot 
on
i
ting. In fa
t, any unambiguous node signsign[C℄ for node C would result in the unambiguousnode sign sign [C℄
 ((+
�)��) = sign[C℄
� fornode A. For addressing the trade-o�s involved, there-fore, the part of the relevant network between node Cand node A 
an be disregarded. Node C is termedthe pivot node for the node of interest A. In general,the pivot node is a node with an ambiguous sign forwhi
h every possible unambiguous sign would uniquely

ABCD EFG HI JK
�+ �+ �+ ++ + ��

+�+

Figure 4: The relevant network, below the dashed line.3



determine an unambiguous sign for the node of interest;in addition, the pivot node does not reside on an un-blo
ked 
hain from another node having this propertyto the node of interest, that is, the pivot node is thenode with this property \
losest" to the observed node.Our algorithm now 
omputes from the relevant networkthe pivot node for the network's node of interest.From the de�nition of pivot node, we have that theremust be two or more reasoning 
hains from the observednode to the pivot node; the net in
uen
e along these
hains must be 
on
i
ting. Our algorithm identi�es theinformation that would serve to resolve the ambiguity atthe pivot node. For this purpose, the algorithm sele
tsa minimal set of nodes, ea
h with two or more in
omingar
s, for whi
h unambiguous node signs would uniquelydetermine the signs of the separate in
uen
es on thepivot node. These nodes with ea
h other 
onstitute theresolution frontier for the pivot node. In terms of signsfor these nodes, the algorithm now 
onstru
ts a sign forthe pivot node by 
omparing the relative strengths ofits various 
on
i
ting reasoning 
hains.
CD EFÆ3 + � Æ4Æ1 + + Æ2

Figure 5: The 
onstru
tion of a sign for node C.In the example network, two in
uen
es are exerted onthe pivot node C: the in
uen
e from node F via nodeD on C and the in
uen
e from E on C. Note thatunambiguous signs for the nodes F and E would renderboth in
uen
es unambiguous. These nodes with ea
hother now are taken to 
onstitute the resolution frontierfor node C. For the sign Æ of the in
uen
e of node Fvia node D on C and for the sign Æ0 of the in
uen
e ofE on C, we �nd thatÆ = sign [F ℄
 Æ1 
 Æ3 Æ0 = sign [E℄
 Æ4= sign [F ℄
+ = sign [E℄
�where Æi, i = 1; 3; 4, are as in Figure 5. For the nodesign sign[C℄ of the pivot node, the algorithm now 
on-stru
ts the following result:if jÆj � jÆ0 j; then sign [C℄ = Æ; else sign [C℄ = Æ0where jÆj denotes the strength of the sign Æ. So, if thetwo in
uen
es on node C have opposite signs, then theirrelative strengths will determine the sign for node C.The sign of the node of interest A then follows dire
tlyfrom the sign of C.Splitting up and Constru
ting SignsIn this se
tion we further detail some of the issues in-volved in our algorithm for zooming in on trade-o�s.In doing so, we assume that a qualitative network doesnot in
lude any ambiguous in
uen
es, that is, ambigu-ous node signs upon inferen
e result from unresolved

trade-o�s. We also assume that a single observationis entered into the network and that sign-propagationresults in an ambiguous sign for the node of interest.We fo
us attention on identifying the pivot node fromthe relevant part of a qualitative network and on 
on-stru
ting an informative result for the network's nodeof interest; further details are provided in a forth
omingte
hni
al paper.Splitting up the NetworkOur algorithm identi�es from a qualitative network therelevant part for addressing the trade-o�s that have re-sulted in an ambiguous sign for the node of interest.From the relevant network, the pivot node is identi�ed.The relevant network is 
onstru
ted by redu
ing theoriginal network's digraph. First, the 
omputationallyrelevant part of the network is identi�ed. In a quantita-tive probabilisti
 network, a node is said to be 
omputa-tionally relevant to a node of interest, if its (
onditional)probability distribution is required for 
omputing theposterior probability distribution for this node of inter-est given all previously observed nodes. For 
omputingthe set of 
omputationally relevant nodes, the eÆ
ientBayes-Ball algorithm is available from R.D. Sha
hter(1998). From the 
omputationally relevant network, allnodes are identi�ed that do not reside on any reason-ing 
hain from the newly observed node to the nodeof interest; these nodes are removed to yield the rele-vant network. An eÆ
ient algorithm is available fromY. Lin and M.J. Druzdzel (1997) to identify these so-
alled nuisan
e nodes.From the relevant network, the pivot node is identi-�ed. We re
all that the pivot node is a node with anambiguous sign for whi
h any unambiguous sign woulduniquely determine an unambiguous sign for the nodeof interest. From this property, we have that the pivotnode is either the node of interest or an arti
ulationnode in the relevant network. An arti
ulation node isa node that upon removal, along with its in
ident ar
s,makes the digraph fall apart into various 
omponents;arti
ulation nodes are found by depth-�rst sear
h (Cor-men, Leiserson, and Rivest 1990). Our algorithm nowsets out by 
omputing all arti
ulation nodes in the rel-evant network. As any reasoning 
hain in the relevantnetwork from the observed node to the node of interestvisits all arti
ulation nodes, we have that there exists atotal ordering on these nodes. Numbering them from 1,
losest to the observed node, to m, 
losest to the nodeof interest, the pivot node basi
ally is the arti
ulationnode with the lowest number for whi
h an unambiguoussign would uniquely determine an unambiguous sign forthe node of interest. To identify the pivot node, our al-gorithm starts with the arti
ulation node numbered mand investigates whether an unambiguous sign for thisnode would result in an unambiguous sign for the nodeof interest upon sign propagation. If the sign of thenode of interest is ambiguous, then the node of interestitself is the pivot node. Note that, in the qualitativeantibioti
s network from Figure 1, the node of interest4



is the pivot node. Otherwise, the algorithm pro
eedsby investigating the arti
ulation node numbered m�1,and so on.Constru
ting ResultsFrom its de�nition, we have that the pivot node for aqualitative network's node of interest re
eives two ormore 
on
i
ting net in
uen
es and, hen
e, 
aptures atrade-o�. Our algorithm now fo
uses on this trade-o� and identi�es the information that would serve toresolve it. For this purpose, our algorithm 
omputesthe so-
alled 
andidate resolvers for the pivot node. A
andidate resolver is a node with an ambiguous nodesign that has two or more in
oming ar
s and resides ona 
hain from the observed node to the pivot node. Fromamong these 
andidate resolvers, a minimal set of nodesis 
onstru
ted for whi
h unambiguous node signs woulduniquely determine the signs of the separate in
uen
eson the pivot node. This set of nodes 
onstitutes theso-
alled resolution frontier. The resolution frontier is
omputed to be the set of 
andidate resolvers that donot reside on a 
hain from another 
andidate resolverto the pivot node. In terms of signs for the nodes fromthe resolution frontier, the algorithm now 
onstru
ts aninformative result for the pivot node by 
omparing therelative strengths of the various in
uen
es upon it.Let F be the resolution frontier for the pivot nodeP . For ea
h resolver Ri 2 F , let sign[Ri℄ be its nodesign. Let sij , j � 1, denote the signs of the di�erentreasoning 
hains from Ri to the pivot node. For ea
h
ombination of node signs sign[Ri℄, Ri 2 F , the sign ofthe pivot node is 
omputed to beif ����(sign [Ri℄
sij)=+ �sign[Ri℄
 sij���� �����(sign [Ri℄
sij)=� �sign[Ri℄
 sij����then sign[P ℄ = +; else sign [P ℄ = �where jÆj on
e again denotes the strength of the sign Æ.The pro
ess of thus 
onstru
ting informative results 
anbe repeated re
ursively for the pivot node's resolvers.Con
lusionsWe have presented a new algorithm for dealing withtrade-o�s in qualitative probabilisti
 networks. Ratherthan resolve trade-o�s by providing for a �ner level ofrepresentation detail, our algorithm identi�es from aqualitative network the information that would serveto resolve the trade-o�s present. For this purpose, thealgorithm zooms in on the ambiguous part of the net-work and identi�es the pivot node for the node of in-terest. For the pivot node, a more informative resultthan ambiguity is 
onstru
ted in terms of values for thenode's resolvers and the relative strengths of the in
u-en
es upon it. This pro
ess of 
onstru
ting informativeresults 
an be repeated re
ursively for the pivot node'sresolvers.We believe that qualitative probabilisti
 networks 
anplay an important role in the 
onstru
tion of Bayesian

belief networks for real-life appli
ation domains. The
onstru
tion of a Bayesian belief network typi
ally setsout with the 
onstru
tion of the network's digraph. Asthe assessment of the various probabilities required is afar harder task, it is performed only when the network'sdigraph is 
onsidered robust. Now, by assessing signsfor the in
uen
es modelled in the digraph, a qualitativenetwork is obtained that 
an be exploited for studyingthe proje
ted belief network's reasoning behaviour priorto the assessment of probabilities. For this purpose,algorithms are required that serve to derive as mu
hinformation as possible from a qualitative network. Welook upon our algorithm as a �rst step in this dire
tion.A
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