ON ORDER OF MAGNITUDE REASONING AND QUALITATIVE PROBABILITY

Simon Parsons,
Department of Electronic Engineering,
Queen Mary and Westfield College,
Mile End Road,

London, E1 4NS, UK.

Abstract

In recent years there has been a spate of papers describ-
ing systems for probabilistic reasoning which do not use
numerical probabilities. In some cases these systems are
unable to make any useful inferences because they deal
with changes in probability at too high a level of abstrac-
tion. This paper discusses one of the problems this level
of abstraction can cause, and shows how the use of a tech-
nique for order of magnitude reasoning can solve it.

1 INTRODUCTION

In the past few years there has been a good deal of
interest in qualitative approaches to reasoning under
uncertainty—approaches which do not make use of precise
numerical values. These approaches range from systems
of argumentation [1, 5, 9] to systems for nonmonotonic
reasoning [10, 14] and abstractions of precise quantitative
systems [7, 22]. Qualitative abstractions of probabilistic
networks, in particular, have proved popular, finding use
in areas in which the full numerical formalism is neither
necessary nor appropriate. Applications have been re-
ported in explanation [11], diagnosis [6, 12], engineering
design [13], and planning [22].

In qualitative probabilistic networks (QPNs) [22], the
focus is rather different from that of ordinary probabilis-
tic systems. Whereas in probabilistic networks the main
goal is to establish what the probabilities of hypotheses
are when particular observations are made, in qualitative
systems the main aim is to establish how values change.
Since the approach is qualitative, the size of the changes
are not the focus. It only matters whether a given change
is positive, written as [+], negative [—], or zero [0]. In
some cases it is not possible to resolve the change with
any precision so that its value remains unknown, and it
is written as [?]. Clearly this information is rather weak,
but as the applications show it is sufficient for some tasks.
Furthermore, reasoning with qualitative probabilities is

much more efficient than reasoning with precise proba-
bilities, since computation is quadratic in the size of the
network [7], rather than NP-hard [2].

The popularity of qualitative probabilistic networks
prompted work on abstractions of other uncertainty han-
dling formalisms [17, 18]. This latter uses techniques from
qualitative reasoning to generalize the approach provided
by qualitative probabilistic networks to what are termed
qualitative certainty networks (QCNs). Using this ap-
proach it is possible to propagate qualitative probability,
possibility [8, 23] and Dempster-Shafer belief [21] in a uni-
form way.

The degree of abstraction in both QPNs and QCNs
leads to situations in which certain changes may only be
determined as [?] despite the presence of information that
allows more precise inferences to be made. Whilst this is
not always problematic, there are situations in which it
causes difficulties, and in such situations techniques from
order of magnitude reasoning may be helpful [15]. In this
paper we extend the order of magnitude approach, pro-
viding a means of resolving problems of over-abstraction
that goes beyond anything suggested so far.

2 QUALITATIVE PROBABILITY

QCNs are built around the notion of influences between
variables, where the influence may be given a probabilistic
semantics, as in QPNs, or a semantics in terms of possi-
bility or Dempster-Shafer theory. Formally, a QCN is a
pair G = (V, @), where V is a set of variables or nodes in
the graph, represented by a capital letter, and @ is a set of
sets of qualitative relations among the values of the vari-
ables which reflect the influences between the variables.
The qualitative relations are expressed in terms of the
derivatives that relate the different values of the variables
together. In the case of a probabilistic QCN (QP/CN) we

have:

Definition 1 (qualitative derivative) The qualitative
derivative [ggrrgzll))] relating the probability of C taking
value c1 to the probability of A taking value ay has the

value [+], #f, for all az and X :

Pr(ci a1, X) > Pr(c1|az, X)
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Table 1: Sign multiplication.
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Table 2: Sign addition.

Derivatives with values [—] and [0] are defined by replacing
> with < and =. If a derivative cannot be determined
to be [+], [=], or [0], then it takes the value [?]. If A
has possible values {ai1,a2,as} and C has possible values
{c1,c2}, and if we write the probability of A taking value
a; as [APr(a;)] (the square brackets denoting that it is
the qualitative value of the quantity that we are interested
in), then we have:

arre) = [ SR o aria) )

where ® is qualitative multiplication, as defined in Table 1
and the overall effect of multiple changes on a single node
is calculated using @, as defined in Table 2. QCNs with
possibilistic or Dempster-Shafer belief semantics handle
changes in value in a similar way, but define qualitative
derivatives differently [17].

To allow belief propagation it is necessary to propagate
qualitative changes in value in both directions. This is
made possible by the following theorem [17]:

Theorem 2 (symmetry of influences) {ggi(i)} =

[ghten] i [SEten] = (4] or ] or if [ S50 ] = (o]

and |:§§;((:;))i| =[0] for all ¢;, 1 #£ 1.

The impact of evidence on a given node can be calculated
by taking the sign of the change in value at the evidence
node and multiplying it by the sign of every link in the
sequence that connects it to the node of interest. To see
how this works, consider the example in Figure 1 (from
[12]) in which the value labeling each arc is the value of
the qualitative derivative linking the probabilities of the
events represented by the nodes at the end of the arc. If
we observe that the radio is dead, so that the probability
of the radio being ok decreases, [APr(radio ok)] = [—],

and we want to know the impact of this on the probability

battery alternator
old ok
battery battery
good charging
battery
ok
radio lights
ok ok

Figure 1: Part of a car diagnosis network

of the battery being good we calculate the effect as [—] ®
[+] ® [+]. With the definition of sign multiplication in
Table 1 this gives a change in Pr(battery good) of [—]. If
we also observed that the lights were not ok, and wanted
to assess the impact of both pieces of evidence on the
probability that the battery was good, we would establish
the two individual effects and sum them using & (Table 2).

Described in these terms, QP/CNs are essentially equiv-
alent to QPNs, the only difference being that the relation
between two variables is described by a single qualitative
value in a QPN and by a set of qualitative values in a
QP/CN. However, QP/CNs can also go somewhat further.
In particular, we can describe the propagation of values
in terms of “separable” derivatives [17] where the effect of
a change in the probability of one value of A on the prob-
ability of a value of C is calculated without considering
its effects on the other values of A. We have:

Definition 3 (separable qualitative derivative) The
separable qualitative derivative [%:—%] relating the
probability of C' taking value ¢1 to the probability of A

taking value a; has the value [Pr(c; |a1)].

Qualitatively this value will always be [+], but it is the
numerical value that will be important in the application
of order of magnitude techniques. When using separable
derivatives [A Pr(c;)] is calculated as:

[APr(c1)] = [g%rgcczll))] @B b))
- [ gss 5:((2; ))] ® [APr(az)]
[t owmn o

3 OVER-ABSTRACTION

Now, the problem of over-abstraction with which we are
concerned stems from the definition of qualitative deriva-
tives. The problem is that for a broad class of networks



Figure 2: The causal network representation of the
electricity distribution problem.

there are values of C for which it is not possible to predict
the effect of a change in the probability of a given value
of A using Definition 1 because the values of the con-
ditional probabilities are such that the derivative which
links the two has value [?]. Some of these networks will be
genuinely ambiguous in the sense that it would take a de-
tailed calculation to determine what the influence of the
given value of A is. However, others will be such that the
effect of a change in the value of A will be immediately
obvious, and it is these which we consider to be instances
of over-abstraction and which we can resolve using order
of magnitude techniques.

The problem which we address is thus different from,
and complementary to, that discussed in [15] where order
of magnitude techniques were used to resolve indetermi-
nacy in the change at a given node due to conflicting in-
fluences from two of more nodes to which it is connected.

As an example, consider the network of Figure 2 which
drawn from the domain of fault diagnosis in electricity
networks. The domain knowledge is greatly simplified.
Nodes L1, L2 and L3 represent the fault states of three
transmission lines, and have possible values fault and ok.
Node 51 represents the fault states of a large conductor
(a “busbar”) which connects transmission lines together
and also has possible values fault and ok. Nodes D1, D2,
D3, D11, D12 and D13 represent the state of the circuit
breakers that detect short-circuits on the lines and in the
busbar. They have possible values reflecting the three
states that they may be in—instantaneous alarm (inst),
delayed alarm (del) and no alarm (ok). The exact meaning
of the alarms does not concern us here (but see [19, 20]
for more detail).

Now, considering Figure 2 as a QP/CN we are inter-
ested in how the probabilities of the line and busbar faults
change when the probabilities of circuit breaker alarms
change due to the observation of alarm states. To deter-
mine the way in which they change we need information
about the conditional probabilities. For a fraction of the
network these are given below, not as numerical values
but instead, as is often appropriate for problems which
are handled using qualitative methods, in terms of the
relative magnitude of the values:

Pr(Ll=fault| D1l1=0k) <« Pr(Ll=fault|D11=inst)
Pr(Ll=fault|D1l=del) =~ Pr(Ll=fault|D11=inst)

where < indicates a difference of at least an order of mag-
nitude. Information about the prior values of the alarm
conditions is also available:

Pr(Dll=del) =~ Pr(D1ll=inst)
Pr(Dll=del) < Pr(D1l=ok)

In this situation applying Definition 1 gives:

dPr(D1l1=inst) dPr(D11=del)

|:3Pr(Ll:faU|t)i| — [7] |:3Pr(Ll:faU|t)i| — [7]

{amgm:fault) } — ]

oPr(D11=0k)

which, when we apply (1) by writing L1=fault for ¢; and
D1l=inst, D11=del and D11 =ok for a;, az and as gives:

Report inst | delayed | ok
[APr(Ll1=fault)] | [7] [7] [—]

Here the [?] indicates that it is not possible to predict
precisely how the probability of a line fault will change
when the probability of a line fault changes.

We consider this failure to produce an unambiguous
result to be over-abstraction since an unambiguous result
can easily be obtained using the information that is to
hand. The way in which this may be done is discussed
below. It should be noted that exactly the same problem
will occur if the situation is modelled using QPNs, so it is
clear that this is a problem of purely qualitative methods
in general rather than of QP/CNs in particular.

4 ORDER OF MAGNITUDE REASONING

The ambiguous inferences made by the purely qualitative
approach can be resolved by a slightly less abstract form of
reasoning which considers the relative magnitudes of the
quantities rather than their signs. If we take Definition 3
along with the information about the magnitudes of the
conditional values we find that:

8: Pr(L1 = fault) O: Pr(L1 = fault)
9. Pr(DIl=ok) & 0.Pr(DIl=inst)
O: Pr(L1 = fault) N O: Pr(L1 = fault)
D: Pr(D11 =del) ~ 9, Pr(D11 = inst)

Along with information about the change in value of
Pr(D11 = inst), Pr(D11 = del), and Pr(D11 = ok) this
is sufficient to tell us what the result of a delayed alarm
will be.

The argument is as follows. Initially Pr(D11=o0k) ~ 1
and Pr(D11 = inst) = Pr(D11 = del) ~ 0 (this follows
from the relative magnitudes of the priors). Since the
observation of a delayed alarm means that the probabil-
ity distribution over the states of D11 will alter so that
Pr(D11 = del) = 1 while Pr(D11 = inst) = Pr(D11 =
ok) =0, clearly |APr(D11=inst)] < |[APr(D11=o0k)| ~



(A1) A=A

(A2) A=B-—B=A

(A3) A=BBx(C—A=xC

(A4) A~B 3B~ A

(A5) A~B,B~C =3 A~C

(A6) Ax~xB -+ A~B

(A7) A=B—-CA=CB

(A8) A~B s CA~CB

(A9) A~1-[Al=[4]

(A10) A< B+ B=(B+A4)

(All) A<« B,B~(C—-AxC

(A12) A=B[C]1=[Al->(A+CO)Y=(B+(O)

(A13) A~BJ[CI=[A]l>(A+C)~(B+O)

(Al4) A~(A+ A

(Al5) A#2B« (A—-B)~Aor (B—A)~B

(P1) A~ B — [A] =[B]

(P3) A< B—-CAKCB

(P4) A€« B A~C—=C«B

(P13) A< B—|A|<|B|

(P26) A~B-—B~A

(P31) A<« B—A#B

(P35) A#B—>CA#CB

(P36) A#B,C«KA—(C<«(A-B)

(P38) A#BC=ADx=B—->C#%D
Table 3: Some of the axioms and properties of
ROM[K].

|APr(D11 = del)|. Thus when we compare the magni-
tudes of the terms in the quantitative version of (2):

0: P

APr(c;) = . Pi((i)) @ APr(a;)
0s Pr(cy
69

(( ® A Pr(az)
0; Pr(e1)
(

QPr c1 ®APr(a3)

0s Pr(as

to establish the change in line fault probability for a de-
layed alarm, the second term dominates and we have
APr(L1=fault) = [+]. This result suggests that provid-
ing a means of formalising the kind of reasoning performed
above would be useful.

Now, handling this kind of reasoning is precisely what
order of magnitude systems such as ROM[K] [4] were de-
signed to do. ROM[K] is based on the idea that the order
of magnitude of two quantities, (1 and ()2, is usually ex-
pressed in terms of their relative sizes, and there are four
possible ways of expressing this relation: ¢y is negligible
wrt Q2, h € Q2, (1 is distant from (G2, Q1 % Q2, Ch
is comparable to Q2, Q1 ~ @2, and (1 1is close to ()2,
(1 = 2. Once the relation between pairs of quantities is
specified, it is possible to deduce new relations by apply-
ing the axioms and properties of ROM[K], some of which
are reproduced in Table 3.

Using these rules we can formalise the process of deduc-
ing the fact that A Pr(L1=fault) = [+]. In the notation
of ROM[K] we know that:

8: Pr(L1 = fault)
8: Pr(D11 = ok)
O: Pr(L1 = fault)
s Pr(D11 = del)

O: Pr(L1 = fault) (3)
8: Pr(D11 = inst)
O: Pr(L1 = fault) (@)
8: Pr(D11 = inst)

APr(D11 =inst) < APr(D11 = del) (5)
APr(D11 =ok) =~ APr(D11l=del) (6)

Now, if we only take into consideration the magnitude of
the quantities, and if for convenience we write 9, Pr(L1 =
fault)/0: Pr(D11 = inst) as A, APr(D1l = inst) as B,
O: Pr(L1 = fault) /0, Pr(D11 = del) as C, A Pr(D11 = del)
as D, 0.Pr(L1 = fault)/0. Pr(D1l = ok) as F, and
APr(D11 = ok) as F, then the quantity we want to es-
tablish the sign of is C.D — (A.B 4+ E.F). The derivation

is as follows:

(D1) B.C=x~B.A (AT)(4)
(D2) B.C«CD (P3)(6)
(D3) B.A=~B.C (A2)(D1)
(D4) B.A~B.C (A6)(D3)
(D5) B A C.D (P4)(D2) (D4)
(D6) E.Dx E.F (AT)(5)
(D7) EF~FE.D (A2)(D6)
(D8) C.D< E.D (P3)(3)
(D9) CDAED (P31)(D8)
(b10) CD=C.D (A1)
(D11) C.DEE.F (P38)(D6)(D8)(D10)
(D12) AB<« (C.D—-E.F) (P36)(D5)(D11)
(D13) |A.B| < |(C.D — E.F)| (P13)(D12)
from which it is clear that A.B —(C.D — E.F') is negative,

so that [C.D — (A.B+ E.F)] =[+].

One may generalize this result so that it is possible to
calculate the sign of any qualitative change in a probabil-
ity Pr(cl) for which order of magnitude information about
the conditionals Pr(e; | a1), Pr(ci | az), and Pr(e; | as)
which relate it to the node A which influences it, and
about changes in the values of the Pr(a;). Given initial
information:

B: Pr(c1) vel 8; Pr(c1) o 8 Pr(cy)
O: Pr(ay) ! 9; Pr(asz) ? 9; Pr(as)
APr(a1) rels APr(az) rels APr(as)

where rel; € {&, #,~,~} we can use the following proce-
dure.

Step 1 Establish the relations between the products of
separable derivative and change:

B: Pr(c1) B: Pr(er)
aST(al)A Pr(al) rel5 mA Pr(a2)
B: Pr(c1) B: Pr(er)
9. Pr(as) Pria) APr(az) relg 9. Pr(as) A Pr(as)

using the following result:



rely
~ o~ & <
rel, | = | = ~ * <
~ |~ o~ U <
|z U U <«
| € € €& K

Table 4: How to establish rel. (Theorem 4)—U indicates
that the relation may not be established.

rele
=~ ~ * <
relq * £~ K
22~ <

*
*

e - A
(S VA S A7

AR 2R

Table 5: How to establish rels (Theorem 5)—U indicates
that the relation may not be established.

Theorem 4 (relative magnitude) If we are given that
O: Pr(z)/0. Pr(y) rely 9: Pr(w)/d. Pr(z) and APr(y) rely
APr(z), where rel,, rely € {~,~, %, <}, then the rela-
tionrel. that holds between 8: Pr(x)/0: Pr(y).APr(y) and
O: Pr(w) /0. Pr(z).APr(z) is given by Table 4 and the ob-
vious symmetrical results where * indicates that the re-
lation holds provided that Pr(y) < Pr(z) and ' indicates
that the relation holds provided that 9. Pr(z)/0: Pr(y) <
s Pr(w) /0, Pr(z).

Proof: See [15].

Step 2 From the result of the first step, establish the
relationship between one product and the difference of the
others since this is the general pattern of all solutions:

9. Pr(er) APr(ar)
9, Pr(ar)’
B: Pr(c1) 8: Pr(er)
rel7 <83T(612)A PF(CEQ) — aST(a?))A Pr(a3)>

using Theorem 5.

Theorem 5 (difference) Given:

gs Plir((cli APr(a;)  rely gsiirgcl)) APr(az)
s Pr(a; . Pr(as
8: Pr(er) B: Pr(c1)
9. Pr(as) APr(az) rele 9. Pr(as) APr(as)

then the relation rely such that:
B: Pr(er)
O: Pr(ay)

0s Pr(e1) D Pr ( 1)
rele <83T(a2).A Pr(az) — 7———~ APr(a3)>

APr(ar)

s given by Table 5. Where two relations are given for rels
it indicates that either of them may hold, while * indicates
. Pr(c1)/9. Pr(a1).APr(a;)| >
(¢1)/0s Pr(az). APr(az)|, t indicates that the rela-
(¢1)/8: Pr(az2).APr(asz) (c1)/
0: Pr(as).APr(as)|, and ¥ indicates that the relation holds
(c1)/0: Pr(a1). APr(a) (c1)/0: Pr(as).
A Pr(as)|.

Proof: (sketch) The proof proceeds by using results such
as Al5, P4, P36 and P38 from Table 3 to establish rela-
tionships between one product and the difference of the
others. The full proof may be found in [16].

Step 3 From the result of the previous step, establish the
sign of 8: Pr(c1)/0. Pr(a1).APr(a1)—(8: Pr(c1)/0: Pr(az)
APr(az) + 8:Pr(c1)/0: Pr(as).APr(as)) using Theo-

rem 6.

Theorem 6 (signs) Given:

M APr(al)
9. Pr(ar)’
8 Pr(c1) 8. Pr(c1)
relg <83T(a2)'A Pr(as) — W.A Pr(a3)>
the sign of
0.Prien)
8. Pr(a1)’
9. Pr(c1) 8. Pr(c1)
<8ST(a2)'A Pr(as) — W.A Pr(a3)>

is [=] if relg is & or if rel (c1)/0s Pr(a2)
A Pr(az) (c1)/0s Pr(as). APr( 3))| and [+] if
relg is £ (¢1)/0s Pr(az).APr(az)| > |8: Pr(er)
/0. Pr(as). APr(ag))| Otherwise the sign is [?].

Proof: If relg is < then the application of P13 gives the
result immediately, while if rel; is % then we apply Al5
toget (AB—C.D+E.F)~ABor(CD—EF—AB)~
(CD — EF). In both cases the result follows from P1. If
relg is ~ or & then the magnitudes of the two quantities
are too close to give a result using ROM[K] [4].

5 SUMMARY

The main results of this paper are to show that order of
magnitude reasoning can be used to resolve indeterminate
qualitative probabilities, and to give formal results that
allow indeterminate values of three valued variables to be
resolved (for the extension to variables with more possi-
ble values see [16]). This work is far from being the final
word on the subject, but does go further in resolving in-
determinate qualitative probabilities reasoning than any
similar work.

There are three points which should be made about the
method presented in this paper. Firstly, the generality of
the QCN framework means that the results can be applied
to resolve indeterminate values when qualitative versions



of possibility and Dempster-Shafer theories are used. Sec-
ondly, it should be noted that the method is heuristic. As
with other order of magnitude techniques, there is a trade-
off between drawing safe conclusions which are correct but
unhelpful and drawing more aggressive conclusions which
are more useful but which can be wrong. In the case of
the technique employed here the trade-off emerges from
the mapping from numerical values to ROM[K] relations.
The more aggressive the mapping—the more small rela-
tive differences are mapped in to < and 7 relations—the
more the ambiguity that can be resolved, but also the
larger the chance of an error. Conversely, the more that
the mappings are made safe—the more that large rela-
tive differences are mapped into &~ and ~ relations—the
less the ambiguity can be resolved, but the safer the con-
clusions are guaranteed to be. Here the information is
provided in order of magnitude terms, but it will often
be provided numerically. Providing maximally safe map-
pings is the goal of future research, and seem likely to
make use of Dague’s system ROM[®] [3] which permits
numerical order of magnitude reasoning. The third point
is related to this. When the approach concludes that the
change is [?] it does not represent a failure, but the conclu-
sion that it is not safe to make any more precise inference
about the change.
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