
ON ORDER OF MAGNITUDE REASONING AND QUALITATIVE PROBABILITYSimon Parsons,Department of Electronic Engineering,Queen Mary and West�eld College,Mile End Road,London, E1 4NS, UK.AbstractIn recent years there has been a spate of papers describ-ing systems for probabilistic reasoning which do not usenumerical probabilities. In some cases these systems areunable to make any useful inferences because they dealwith changes in probability at too high a level of abstrac-tion. This paper discusses one of the problems this levelof abstraction can cause, and shows how the use of a tech-nique for order of magnitude reasoning can solve it.1 INTRODUCTIONIn the past few years there has been a good deal ofinterest in qualitative approaches to reasoning underuncertainty|approaches which do not make use of precisenumerical values. These approaches range from systemsof argumentation [1, 5, 9] to systems for nonmonotonicreasoning [10, 14] and abstractions of precise quantitativesystems [7, 22]. Qualitative abstractions of probabilisticnetworks, in particular, have proved popular, �nding usein areas in which the full numerical formalism is neithernecessary nor appropriate. Applications have been re-ported in explanation [11], diagnosis [6, 12], engineeringdesign [13], and planning [22].In qualitative probabilistic networks (QPNs) [22], thefocus is rather di�erent from that of ordinary probabilis-tic systems. Whereas in probabilistic networks the maingoal is to establish what the probabilities of hypothesesare when particular observations are made, in qualitativesystems the main aim is to establish how values change.Since the approach is qualitative, the size of the changesare not the focus. It only matters whether a given changeis positive, written as [+], negative [�], or zero [0]. Insome cases it is not possible to resolve the change withany precision so that its value remains unknown, and itis written as [?]. Clearly this information is rather weak,but as the applications show it is su�cient for some tasks.Furthermore, reasoning with qualitative probabilities is0

much more e�cient than reasoning with precise proba-bilities, since computation is quadratic in the size of thenetwork [7], rather than NP-hard [2].The popularity of qualitative probabilistic networksprompted work on abstractions of other uncertainty han-dling formalisms [17, 18]. This latter uses techniques fromqualitative reasoning to generalize the approach providedby qualitative probabilistic networks to what are termedqualitative certainty networks (QCNs). Using this ap-proach it is possible to propagate qualitative probability,possibility [8, 23] and Dempster-Shafer belief [21] in a uni-form way.The degree of abstraction in both QPNs and QCNsleads to situations in which certain changes may only bedetermined as [?] despite the presence of information thatallows more precise inferences to be made. Whilst this isnot always problematic, there are situations in which itcauses di�culties, and in such situations techniques fromorder of magnitude reasoning may be helpful [15]. In thispaper we extend the order of magnitude approach, pro-viding a means of resolving problems of over-abstractionthat goes beyond anything suggested so far.2 QUALITATIVE PROBABILITYQCNs are built around the notion of in
uences betweenvariables, where the in
uence may be given a probabilisticsemantics, as in QPNs, or a semantics in terms of possi-bility or Dempster-Shafer theory. Formally, a QCN is apair G = (V; Q), where V is a set of variables or nodes inthe graph, represented by a capital letter, and Q is a set ofsets of qualitative relations among the values of the vari-ables which re
ect the in
uences between the variables.The qualitative relations are expressed in terms of thederivatives that relate the di�erent values of the variablestogether. In the case of a probabilistic QCN (QP/CN) wehave:De�nition 1 (qualitative derivative) The qualitativederivative � @ Pr(c1)@ Pr(a1)� relating the probability of C takingvalue c1 to the probability of A taking value a1 has thevalue [+], if, for all a2 and X:Pr(c1 ja1;X) � Pr(c1 ja2;X)




 [+] [0] [�] [?][+] [+] [0] [�] [?][0] [0] [0] [0] [0][�] [�] [0] [+] [?][?] [?] [0] [?] [?]Table 1: Sign multiplication.� [+] [0] [�] [?][+] [+] [+] [?] [?][0] [+] [0] [�] [?][�] [?] [�] [�] [?][?] [?] [?] [?] [?]Table 2: Sign addition.Derivatives with values [�] and [0] are de�ned by replacing� with � and =. If a derivative cannot be determinedto be [+], [�], or [0], then it takes the value [?]. If Ahas possible values fa1; a2; a3g and C has possible valuesfc1; c2g, and if we write the probability of A taking valuea1 as [�Pr(a1)] (the square brackets denoting that it isthe qualitative value of the quantity that we are interestedin), then we have:[�Pr(c1)] = � @ Pr(c1)@ Pr(a1)�
 [�Pr(a1)] (1)where 
 is qualitative multiplication, as de�ned in Table 1and the overall e�ect of multiple changes on a single nodeis calculated using �, as de�ned in Table 2. QCNs withpossibilistic or Dempster-Shafer belief semantics handlechanges in value in a similar way, but de�ne qualitativederivatives di�erently [17].To allow belief propagation it is necessary to propagatequalitative changes in value in both directions. This ismade possible by the following theorem [17]:Theorem 2 (symmetry of in
uences) h @ Pr(c1)@ Pr(a1)i =h @ Pr(a1)@ Pr(c1) i if h @ Pr(c1)@ Pr(a1)i = [+] or [�] or if h @ Pr(c1)@ Pr(a1)i = [0]and h @ Pr(ci)@ Pr(a1)i = [0] for all ci, i 6= 1.The impact of evidence on a given node can be calculatedby taking the sign of the change in value at the evidencenode and multiplying it by the sign of every link in thesequence that connects it to the node of interest. To seehow this works, consider the example in Figure 1 (from[12]) in which the value labeling each arc is the value ofthe qualitative derivative linking the probabilities of theevents represented by the nodes at the end of the arc. Ifwe observe that the radio is dead, so that the probabilityof the radio being ok decreases, [�Pr(radio ok)] = [�],and we want to know the impact of this on the probability
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batteryoldbatterygood batteryokradiook lightsokbatterychargingalternatorok[�] [+][+] [+][+][+]Figure 1: Part of a car diagnosis networkof the battery being good we calculate the e�ect as [�]
[+] 
 [+]. With the de�nition of sign multiplication inTable 1 this gives a change in Pr(battery good) of [�]. Ifwe also observed that the lights were not ok, and wantedto assess the impact of both pieces of evidence on theprobability that the battery was good, we would establishthe two individual e�ects and sum them using � (Table 2).Described in these terms, QP/CNs are essentially equiv-alent to QPNs, the only di�erence being that the relationbetween two variables is described by a single qualitativevalue in a QPN and by a set of qualitative values in aQP/CN. However, QP/CNs can also go somewhat further.In particular, we can describe the propagation of valuesin terms of \separable" derivatives [17] where the e�ect ofa change in the probability of one value of A on the prob-ability of a value of C is calculated without consideringits e�ects on the other values of A. We have:De�nition 3 (separable qualitative derivative) Theseparable qualitative derivative � @s Pr(c1)@s Pr(a1)� relating theprobability of C taking value c1 to the probability of Ataking value a1 has the value [Pr(c1 ja1)].Qualitatively this value will always be [+], but it is thenumerical value that will be important in the applicationof order of magnitude techniques. When using separablederivatives [�Pr(c1)] is calculated as:[�Pr(c1)] = � @s Pr(c1)@s Pr(a1)�
 [�Pr(a1)]� � @s Pr(c1)@s Pr(a2)�
 [�Pr(a2)]� � @s Pr(c1)@s Pr(a3)�
 [�Pr(a3)] (2)3 OVER-ABSTRACTIONNow, the problem of over-abstraction with which we areconcerned stems from the de�nition of qualitative deriva-tives. The problem is that for a broad class of networks
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D2Figure 2: The causal network representation of theelectricity distribution problem.there are values of C for which it is not possible to predictthe e�ect of a change in the probability of a given valueof A using De�nition 1 because the values of the con-ditional probabilities are such that the derivative whichlinks the two has value [?]. Some of these networks will begenuinely ambiguous in the sense that it would take a de-tailed calculation to determine what the in
uence of thegiven value of A is. However, others will be such that thee�ect of a change in the value of A will be immediatelyobvious, and it is these which we consider to be instancesof over-abstraction and which we can resolve using orderof magnitude techniques.The problem which we address is thus di�erent from,and complementary to, that discussed in [15] where orderof magnitude techniques were used to resolve indetermi-nacy in the change at a given node due to con
icting in-
uences from two of more nodes to which it is connected.As an example, consider the network of Figure 2 whichdrawn from the domain of fault diagnosis in electricitynetworks. The domain knowledge is greatly simpli�ed.Nodes L1, L2 and L3 represent the fault states of threetransmission lines, and have possible values fault and ok.Node S1 represents the fault states of a large conductor(a \busbar") which connects transmission lines togetherand also has possible values fault and ok. Nodes D1, D2,D3, D11, D12 and D13 represent the state of the circuitbreakers that detect short-circuits on the lines and in thebusbar. They have possible values re
ecting the threestates that they may be in|instantaneous alarm (inst),delayed alarm (del) and no alarm (ok). The exact meaningof the alarms does not concern us here (but see [19, 20]for more detail).Now, considering Figure 2 as a QP/CN we are inter-ested in how the probabilities of the line and busbar faultschange when the probabilities of circuit breaker alarmschange due to the observation of alarm states. To deter-mine the way in which they change we need informationabout the conditional probabilities. For a fraction of thenetwork these are given below, not as numerical valuesbut instead, as is often appropriate for problems whichare handled using qualitative methods, in terms of therelative magnitude of the values:Pr(L1= fault jD11=ok) � Pr(L1= fault jD11= inst)Pr(L1= fault jD11=del) � Pr(L1= fault jD11= inst)

where� indicates a di�erence of at least an order of mag-nitude. Information about the prior values of the alarmconditions is also available:Pr(D11=del) � Pr(D11= inst)Pr(D11=del) � Pr(D11=ok)In this situation applying De�nition 1 gives:h @ Pr(L1=fault)@ Pr(D11=inst)i = [?] h @ Pr(L1=fault)@ Pr(D11=del) i = [?]h @ Pr(L1=fault)@ Pr(D11=ok) i = [�]which, when we apply (1) by writing L1= fault for c1 andD11= inst, D11=del and D11=ok for a1, a2 and a3 gives:Report inst delayed ok[�Pr(L1= fault)] [?] [?] [�]Here the [?] indicates that it is not possible to predictprecisely how the probability of a line fault will changewhen the probability of a line fault changes.We consider this failure to produce an unambiguousresult to be over-abstraction since an unambiguous resultcan easily be obtained using the information that is tohand. The way in which this may be done is discussedbelow. It should be noted that exactly the same problemwill occur if the situation is modelled using QPNs, so it isclear that this is a problem of purely qualitative methodsin general rather than of QP/CNs in particular.4 ORDER OF MAGNITUDE REASONINGThe ambiguous inferences made by the purely qualitativeapproach can be resolved by a slightly less abstract form ofreasoning which considers the relative magnitudes of thequantities rather than their signs. If we take De�nition 3along with the information about the magnitudes of theconditional values we �nd that:@s Pr(L1 = fault)@s Pr(D11 = ok) � @s Pr(L1 = fault)@s Pr(D11 = inst)@s Pr(L1 = fault)@s Pr(D11 = del) � @s Pr(L1 = fault)@s Pr(D11 = inst)Along with information about the change in value ofPr(D11 = inst), Pr(D11 = del), and Pr(D11 = ok) thisis su�cient to tell us what the result of a delayed alarmwill be.The argument is as follows. Initially Pr(D11=ok) � 1and Pr(D11 = inst) � Pr(D11 = del) � 0 (this followsfrom the relative magnitudes of the priors). Since theobservation of a delayed alarm means that the probabil-ity distribution over the states of D11 will alter so thatPr(D11 = del) = 1 while Pr(D11 = inst) = Pr(D11 =ok) = 0, clearly j�Pr(D11= inst)j � j�Pr(D11=ok)j �



(A1) A � A(A2) A � B ! B � A(A3) A � B;B � C ! A � C(A4) A � B ! B � A(A5) A � B;B � C ! A � C(A6) A � B ! A � B(A7) A � B ! C:A � C:B(A8) A � B ! C:A � C:B(A9) A � 1! [A] = [+](A10) A� B $ B � (B +A)(A11) A� B;B � C ! A� C(A12) A � B; [C] = [A]! (A+C) � (B +C)(A13) A � B; [C] = [A]! (A+C) � (B +C)(A14) A � (A+A)(A15) A 6' B $ (A� B) � A or (B �A) � B(P1) A � B ! [A] = [B](P3) A� B ! C:A� C:B(P4) A� B;A � C ! C � B(P13) A� B ! jAj < jBj(P26) A � B ! B � A(P31) A� B ! A 6' B(P35) A 6' B ! C:A 6' C:B(P36) A 6' B;C � A! C � (A�B)(P38) A 6' B;C � A;D � B ! C 6' DTable 3: Some of the axioms and properties ofROM[K].j�Pr(D11 = del)j. Thus when we compare the magni-tudes of the terms in the quantitative version of (2):�Pr(c1) = @s Pr(c1)@s Pr(a1) 
�Pr(a1)� @s Pr(c1)@s Pr(a2) 
�Pr(a2)� @s Pr(c1)@s Pr(a3) 
�Pr(a3)to establish the change in line fault probability for a de-layed alarm, the second term dominates and we have�Pr(L1= fault) = [+]. This result suggests that provid-ing a means of formalising the kind of reasoning performedabove would be useful.Now, handling this kind of reasoning is precisely whatorder of magnitude systems such as ROM[K] [4] were de-signed to do. ROM[K] is based on the idea that the orderof magnitude of two quantities, Q1 and Q2, is usually ex-pressed in terms of their relative sizes, and there are fourpossible ways of expressing this relation: Q1 is negligiblewrt Q2, Q1 � Q2, Q1 is distant from Q2, Q1 6' Q2, Q1is comparable to Q2, Q1 � Q2, and Q1 is close to Q2,Q1 � Q2. Once the relation between pairs of quantities isspeci�ed, it is possible to deduce new relations by apply-ing the axioms and properties of ROM[K], some of whichare reproduced in Table 3.

Using these rules we can formalise the process of deduc-ing the fact that �Pr(L1= fault) = [+]. In the notationof ROM[K] we know that:@s Pr(L1 = fault)@s Pr(D11 = ok) � @s Pr(L1 = fault)@s Pr(D11 = inst) (3)@s Pr(L1 = fault)@s Pr(D11 = del) � @s Pr(L1 = fault)@s Pr(D11 = inst) (4)�Pr(D11 = inst) � �Pr(D11 = del) (5)�Pr(D11 = ok) � �Pr(D11 = del) (6)Now, if we only take into consideration the magnitude ofthe quantities, and if for convenience we write @s Pr(L1 =fault)=@s Pr(D11 = inst) as A, �Pr(D11 = inst) as B,@s Pr(L1 = fault)=@s Pr(D11 = del) as C, �Pr(D11 = del)as D, @s Pr(L1 = fault)=@s Pr(D11 = ok) as E, and�Pr(D11 = ok) as F , then the quantity we want to es-tablish the sign of is C:D� (A:B+E:F ). The derivationis as follows:(D1) B:C � B:A (A7)(4)(D2) B:C � C:D (P3)(6)(D3) B:A � B:C (A2)(D1)(D4) B:A � B:C (A6)(D3)(D5) B:A� C:D (P4)(D2) (D4)(D6) E:D � E:F (A7)(5)(D7) E:F � E:D (A2)(D6)(D8) C:D� E:D (P3)(3)(D9) C:D 6' E:D (P31)(D8)(D10) C:D � C:D (A1)(D11) C:D 6' E:F (P38)(D6)(D8)(D10)(D12) A:B � (C:D �E:F ) (P36)(D5)(D11)(D13) jA:Bj< j(C:D�E:F )j (P13)(D12)from which it is clear that A:B�(C:D�E:F ) is negative,so that [C:D� (A:B+ E:F )] = [+].One may generalize this result so that it is possible tocalculate the sign of any qualitative change in a probabil-ity Pr(c1) for which order of magnitude information aboutthe conditionals Pr(c1 j a1), Pr(c1 j a2), and Pr(c1 j a3)which relate it to the node A which in
uences it, andabout changes in the values of the Pr(aj). Given initialinformation:@s Pr(c1)@s Pr(a1) rel1 @s Pr(c1)@s Pr(a2) rel2 @s Pr(c1)@s Pr(a3)�Pr(a1) rel3 �Pr(a2) rel4 �Pr(a3)where reli 2 f�; 6';�;�g we can use the following proce-dure.Step 1 Establish the relations between the products ofseparable derivative and change:@s Pr(c1)@s Pr(a1) :�Pr(a1) rel5 @s Pr(c1)@s Pr(a2) :�Pr(a2)@s Pr(c1)@s Pr(a2) :�Pr(a2) rel6 @s Pr(c1)@s Pr(a3) :�Pr(a3)using the following result:



relb� � 6' �rela � � � 6' �� � � U �6' 6' U U �z� � � �� �Table 4: How to establish relc (Theorem 4)|U indicatesthat the relation may not be established.rele� � 6' �reld � 6' 6' �; 6'z �� 6'� 6'� �; 6'z �6' 6'� 6'� 6'y 6'� U U �y 6'Table 5: How to establish relf (Theorem 5)|U indicatesthat the relation may not be established.Theorem 4 (relative magnitude) If we are given that@s Pr(x)=@s Pr(y) rela @s Pr(w)=@s Pr(z) and �Pr(y) relb�Pr(z), where rela, relb 2 f�;�; 6';�g, then the rela-tion relc that holds between @s Pr(x)=@s Pr(y):�Pr(y) and@s Pr(w)=@s Pr(z):�Pr(z) is given by Table 4 and the ob-vious symmetrical results where � indicates that the re-lation holds provided that Pr(y) < Pr(z) and z indicatesthat the relation holds provided that @s Pr(x)=@s Pr(y) <@s Pr(w)=@s Pr(z).Proof: See [15].Step 2 From the result of the �rst step, establish therelationship between one product and the di�erence of theothers since this is the general pattern of all solutions:@s Pr(c1)@s Pr(a1) :�Pr(a1)rel7 � @s Pr(c1)@s Pr(a2) :�Pr(a2)� @s Pr(c1)@s Pr(a3) :�Pr(a3)�using Theorem 5.Theorem 5 (di�erence) Given:@s Pr(c1)@s Pr(a1) :�Pr(a1) reld @s Pr(c1)@s Pr(a2) :�Pr(a2)@s Pr(c1)@s Pr(a2) :�Pr(a2) rele @s Pr(c1)@s Pr(a3) :�Pr(a3)then the relation relf such that:@s Pr(c1)@s Pr(a1) :�Pr(a1)relf � @s Pr(c1)@s Pr(a2) :�Pr(a2)� @s Pr(c1)@s Pr(a3) :�Pr(a3)�

is given by Table 5. Where two relations are given for relfit indicates that either of them may hold, while � indicatesthat the relation holds if j@s Pr(c1)=@s Pr(a1):�Pr(a1)j >j@s Pr(c1)=@s Pr(a2). �Pr(a2)j, y indicates that the rela-tion holds if j@s Pr(c1)=@s Pr(a2):�Pr(a2)j > j@s Pr(c1)=@s Pr(a3):�Pr(a3)j, and z indicates that the relation holdsif j@s Pr(c1)=@s Pr(a1). �Pr(a1)j > j@s Pr(c1)=@s Pr(a3):�Pr(a3)j.Proof: (sketch) The proof proceeds by using results suchas A15, P4, P36 and P38 from Table 3 to establish rela-tionships between one product and the di�erence of theothers. The full proof may be found in [16].Step 3 From the result of the previous step, establish thesign of @s Pr(c1)=@s Pr(a1):�Pr(a1)�(@s Pr(c1)=@s Pr(a2):�Pr(a2) + @s Pr(c1)=@s Pr(a3):�Pr(a3)) using Theo-rem 6.Theorem 6 (signs) Given:@s Pr(c1)@s Pr(a1) :�Pr(a1)relg � @s Pr(c1)@s Pr(a2) :�Pr(a2) � @s Pr(c1)@s Pr(a3) :�Pr(a3)�the sign of@s Pr(c1)@s Pr(a1) :�Pr(a1)� � @s Pr(c1)@s Pr(a2) :�Pr(a2) � @s Pr(c1)@s Pr(a3) :�Pr(a3)�is [�] if relg is� or if relg is 6' and j@s Pr(c1)=@s Pr(a2):�Pr(a2)j � j@s Pr(c1)=@s Pr(a3):�Pr(a3))j and [+] ifrelg is 6' and j@s Pr(c1)=@s Pr(a2):�Pr(a2)j � j@s Pr(c1)=@s Pr(a3):�Pr(a3))j. Otherwise the sign is [?].Proof: If relg is � then the application of P13 gives theresult immediately, while if relg is 6' then we apply A15to get (A:B�C:D+E:F ) � A:B or (C:D�E:F�A:B) �(CD �EF ). In both cases the result follows from P1. Ifrelg is � or � then the magnitudes of the two quantitiesare too close to give a result using ROM[K] [4].5 SUMMARYThe main results of this paper are to show that order ofmagnitude reasoning can be used to resolve indeterminatequalitative probabilities, and to give formal results thatallow indeterminate values of three valued variables to beresolved (for the extension to variables with more possi-ble values see [16]). This work is far from being the �nalword on the subject, but does go further in resolving in-determinate qualitative probabilities reasoning than anysimilar work.There are three points which should be made about themethod presented in this paper. Firstly, the generality ofthe QCN framework means that the results can be appliedto resolve indeterminate values when qualitative versions



of possibility and Dempster-Shafer theories are used. Sec-ondly, it should be noted that the method is heuristic. Aswith other order of magnitude techniques, there is a trade-o� between drawing safe conclusions which are correct butunhelpful and drawing more aggressive conclusions whichare more useful but which can be wrong. In the case ofthe technique employed here the trade-o� emerges fromthe mapping from numerical values to ROM[K] relations.The more aggressive the mapping|the more small rela-tive di�erences are mapped in to � and 6' relations|themore the ambiguity that can be resolved, but also thelarger the chance of an error. Conversely, the more thatthe mappings are made safe|the more that large rela-tive di�erences are mapped into � and � relations|theless the ambiguity can be resolved, but the safer the con-clusions are guaranteed to be. Here the information isprovided in order of magnitude terms, but it will oftenbe provided numerically. Providing maximally safe map-pings is the goal of future research, and seem likely tomake use of Dague's system ROM[<] [3] which permitsnumerical order of magnitude reasoning. The third pointis related to this. When the approach concludes that thechange is [?] it does not represent a failure, but the conclu-sion that it is not safe to make any more precise inferenceabout the change.AcknowledgementsThis work was partially supported by Esprit Basic Re-search Action 6156 DRUMS II (Defeasible Reasoning andUncertainty Management Systems).References[1] S. Benferhat, D. Dubois, and H. Prade. Argumen-tative inference in uncertain and inconsistent knowl-edge bases. In Proceedings of the 9th Conference onUncertainty in Arti�cial Intelligence, 1993.[2] G. F. Cooper. The computational complexity ofprobabilistic inference using belief networks. Arti-�cial Intelligence, 42:393{405, 1990.[3] P. Dague. Numeric reasoning with relative ordersof magnitude. In Proceedings of the 11th NationalConference on Arti�cial Intelligence, 1993.[4] P. Dague. Symbolic reasoning with relative orders ofmagnitude. In Proceedings of the 13th InternationalJoint Conference on Arti�cial Intelligence, 1993.[5] A. Darwiche. Argument calculus and networks. InProceedings of the 9th Conference on Uncertainty inArti�cial Intelligence, 1993.[6] A. Darwiche and M. Goldszmidt. On the relationbetween kappa calculus and probabilistic reasoning.In Proceedings of the 10th Conference on Uncertaintyin Arti�cial Intelligence, 1994.[7] M. J. Druzdzel and M. Henrion. E�cient propaga-tion in qualitative probabilistic networks. In Pro-ceedings of the 11th National Conference on Arti�cialIntelligence, 1993.

[8] D. Dubois and H. Prade. Possibility Theory: An Ap-proach to Computerised Processing of Uncertainty.Plenum Press, New York, 1988.[9] J. Fox, P. Krause, and S. Ambler. Arguments, con-tradictions and practical reasoning. In Proceedingsof the 10th European Conference on Arti�cial Intel-ligence, 1992.[10] M. Goldszmidt. Qualitative probabilities: a norm-ative framework for commonsense reasoning. PhDthesis, University of California at Los Angeles, 1992.[11] M. Henrion and M. J. Druzdzel. Qualitative propa-gation and scenario-based approaches to explanationof probabilistic reasoning. In Proceedings of the 6thConference on Uncertainty in Arti�cial Intelligence,1990.[12] M. Henrion, G. Provan, B. Del Favero, andG. Sanders. An experimental comparison of numer-ical and qualitative probabilistic reasoning. In Pro-ceedings of the 10th Conference on Uncertainty inArti�cial Intelligence, 1994.[13] N. F. Michelena. Monotonic in
uence diagrams: ap-plication to optimal and robust design. PhD thesis,University of California at Berkeley, 1991.[14] E. Neufeld. A probabilistic commonsense reasoner.International Journal of Intelligent Systems, 5:565{594, 1990.[15] S. Parsons. Re�ning reasoning in qualitative proba-bilistic networks. In Proceedings of the 11th Confer-ence on Uncertainty in Arti�cial Intelligence, 1995.[16] S. Parsons. Qualitative probability and order of mag-nitude reasoning. Technical report, Department ofElectronic Engineering, Queen Mary and West�eldCollege, 1996.[17] S. Parsons. Qualitative approaches to reasoning un-der uncertainty. MIT Press, Cambridge, MA, (toappear).[18] S. Parsons and E. H. Mamdani. On reasoning in net-works with qualitative uncertainty. In Proceedings ofthe 9th Conference on Uncertainty in Arti�cial In-telligence, 1993.[19] S. Parsons and A. Sa�otti. A case study in thequalitative veri�cation and debugging of numericaluncertainty. International Journal of ApproximateReasoning, 14:187{216, 1996.[20] A. Sa�otti, S. Parsons, and E. Umkehrer. A casestudy in comparing uncertainty management tech-niques. Microcomputers in Civil Engineering, 9:367{380, 1994.[21] G. Shafer. A mathematical theory of evidence.Princeton University Press, Princeton, NJ, 1976.[22] M. P. Wellman. Formulation of tradeo�s in planningunder uncertainty. Pitman, London, 1990.[23] L. A. Zadeh. Fuzzy sets as a basis for a theory ofpossibility. Fuzzy Sets and Systems, 1:1{28, 1978.


