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Abstract

In this paper we suggest a way of using the rules of
System P to propagate lower bounds on conditional
probabilities. Using a knowledge base of default rules
which are considered to be constraints on a probability
distribution, the result of applying the rules of P gives
us new constraints that were implicit in the knowledge
base and their associated lower bounds.

Introduction

Default reasoning has been widely studied in artificial
intelligence, and a number of formalisms have been
proposed as a means of capturing such reasoning (Gins-
berg 1987), most prominent among which are default
logic (Reiter 1980) and circumscription (McCarthy
1980). Many of these systems, including default logic
and circumscription, have proposed particular mech-
anisms for default reasoning, and might therefore be
considered quite specialised. However, there has also
been work on more general approaches which attempt
to analyse in broader terms what default reasoning
involves. An early attempt to do this was Shoham’s
(1987) proposal that all non-monotonic systems could
be characterised in terms of the preference order over
their models. A more proof-theoretic strand of this re-
search has investigated the formalisation of the under-
lying requirements for any non-monotonic consequence
relation. Perhaps the most influential piece of work
within this area is that of Kraus et al. (1990).

Kraus et al. investigated the properties of differ-
ent sets of Gentzen-style proof rules for non-monotonic
consequence relations, and related these sets of rules to
the model-theoretic properties of the associated log-
ics. Their major result was that a particular set of
proof rules had the same model-theoretic properties
that Shoham had identified for logics in which there is
a preference order over models. This system of proof
rules was termed System P by Kraus et al., the P
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standing for “preferential”. System P has been the
subject of much research, and is now widely accepted
as the weakest interesting non-monotonic system; it
sanctions the smallest acceptable set of conclusions
from a set of default statements.

The reason that we are interested in the rules of Sys-
tem P is that, in addition to a semantics in terms of a
preference order over models, they also have a proba-
bilistic semantics. In particular, Pearl (1988), follow-
ing work by Adams (1975), showed that a semantics
based on infinitesimal probabilities satisfies the rules
of System P. While the use of infinitesimal probabil-
ities is theoretically interesting, it lacks something in
practical terms. If we are to use System P to rea-
son about the real world we will have to write defaults
which summarise our knowledge about it, and we may
well be unhappy making statements whose validity de-
pends upon infinitesimal values. To overcome this dif-
ficulty, we suggest using real probabilities along with
the rules of System P, giving each default statement a
lower bounded probability, and showing that proofs in
the System P can be used to propagate these bounds
to find out something concrete about the probability
of the derived results.

Entailment in System P

The rules of inference for the System P (see Figure 1)
may be applied to a knowledge base made up of con-
ditional assertions of the form « |~ . In this context
«a and g are well-formed formulae of classical proposi-
tional logic, and |~ is a binary relation between pairs
of formulae. The connectives A, V, — and ¢ have
their usual meanings. The inference rules are written
in the usual Gentzen style, with antecedents above the
line and consequents below it. Thus the rule ‘And’
says that if it is possible to derive a |~/ and it is
possible to derive a |~+y, then it is possible to derive
a B A y. The inference rules can thus be viewed
as a means of obtaining new conclusions from current
knowledge; from an initial set of conditional assertions,
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Figure 1: Rules of System P

further conditional assertions may be obtained by ap-
plying the rules.

Two things should be noted about the set of rules in
Figure 1. Firstly, they only tell us how to derive new
conditional assertions. If we wish to know whether we
are justified in inferring a new fact, say v, given that
we currently know some other fact, say a, and this
1s all we know, it is necessary to determine whether
a vy is derivable from our knowledge base of condi-
tional assertions. Secondly, the proof rules in Figure 1
form a minimal set sufficient to characterise System P.
Other rules may be derived from them in much the
same way that new conditional assertions are derived.
Two such rules are given in Figure 2; Cut which al-
lows the elimination of a conjunct from the antecedent
side, and S which allows the derivation of a material
implication. Both of these (as we shall see later in the
paper) may be derived directly by the application of
the basic rules.

The semantics for System P introduced by Adams
makes the assumption that the propositional variables
are the basis of an unspecified joint probability distri-
bution which is constrained by the conditional asser-
tions. These conditionals are taken to represent con-
ditional probabilities of the consequent given the an-
tecedent being greater than or equal to 1 — e for any
€ > 0, that is:

a |~ B represents P(Bla) > 1 —eforalle > 0. (1)

Probabilistic consistency is defined as the existence
of at least one probability distribution which satisfies
these constraints (Adams 1975); probabilistic entail-
ment of a further conditional is defined as probabilistic
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Figure 2: Two derived rules of System P

inconsistency of its counterpart, that is:

a |~ is p-entailed by A iff AU {a -4} is p-
inconsistent

This implies that all probability distributions that sat-
isfy A also satisfy a |~ 3. However this result may only
be achieved by using infinitesimal analysis so that the
derived conditional will be constrained to be greater
than 1 — § for any § > 0 if the € of the original condi-
tionals is made small enough. This can be paraphrased
as saying that System P allows us to make our conclu-
sions as close to certainty as we like, provided the con-
ditional probabilities associated with the conditional
assertions are sufficiently close to certainty. In the lit-
erature this is used to justify the conclusions drawn by
using System P; if we are sure of the conditional asser-
tions and so are willing to give them high conditional
probabilities, then the conditional assertions derived
from them will also have high probabilities.

However, using this interpretation of the rules means
assuming that we are able to give the conditional as-
sertions arbitrarily high conditional probabilities. This
is fine in the case that the assertions are pieces of de-
fault knowledge which are felt to hold almost all of
the time. However, with less reliable information, for
which € is not infinitesimal, it seems less justifiable to
accept the infinitesimal analysis. In particular, if a set
of conditional assertions are used to derive new asser-
tions and these new assertions are themselves used as
the basis for new deductions, then it seems likely that
some € values will be far from infinitesimal. Because of
this concern, this paper investigates the impact of non-
infinitesimal € values by considering what happens to
values of € and § when the rules of P are applied. The
result is twofold. First it is possible to track the ef-
fect of non-infinitesimal values, and second it becomes
possible to identify bounds on the actual conditional
probability of derived assertions.

Using real e-values

We associate with each conditional assertion an e-value
which represents, for a |~ 3, an upper bound on the
conditional probability P(—=8|a). We demonstrate how
using these values for each original conditional, we can
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Figure 3: The constraints for Or.

generate § values for the output conclusions. This en-
ables us to calculate the lower bound on the probability
of a conclusion based on the proof steps used to derive
it. We consider first the six basic rules of System P,
and then use the results obtained for those rules to
obtain results for S and Cut.

Reflexivity: A reflexive conditional assertion may be
introduced at any stage in a proof, and, since P(a|a) =
1 for all formulae «, any such conditional will have an
e-value of zero.

Left Logical Equivalence: This rule means that
we may take any conditional assertion and replace
its antecedent with a logically equivalent expression.
Clearly, the derived conditional will have the same e-
value as the original one.

Right Weakening: Right Weakening involves re-
placing the consequent of a conditional with any ex-
pression classically derivable from it. Now, § — v
means the models of § are a subset of the models of
and hence:

P(y,a) > P(B, )

Now, since:
Pol) = TS Pl = T
it follows that:
P(yla) = P(f|a) (2)

and therefore the e-value of a rule obtained by Right
Weakening will not be larger than the e-value of the
rule from which it was obtained. Since we are dealing
with lower bounds, we may use the same value for the
derived rule.

Cautious Monotonicity: Here we are interested in
the value of P(v|a, 3). Now:

P(v|e) = P(yla, B)P(Bla) + P(7|a, =B)P(=Bla) (3)

Substituting 1 — P(8|a) for P(—f|a) and rearranging,
we obtain

P(]a, ) = 2010 =

(1 = P(Bl)) P(v]a, ~B)
P(Bla)

(4)

We are required to minimize this expression subject to
the constraints:

1—¢ < P(Bla) < 1
1—e < P(vy|a) < 1
0 S P(’}/|Oé,_|ﬂ) S 1

Equation (4) is linear in P(y|a) and P(y|a,—3) and
will therefore attain its minimum when P(y|a) is min-
imum and P(vy|a, —0) is maximum. This gives us:

(1-e)-(0-PBla)
P(Bla)

€1

SN

which will be minimum when P(f|a) is minimum.
This gives us an e-value for the derived rule a A 3 |~y
of:

P(|a, B)

vV

€2

1—61

And: This time we are interested in P(83,v|a). Con-
sider:

P(a, 8,7)
P(a)

P(a,3,7)P(e, B)
P(a,B)P(a)

= P(yla, B)P(Ble) (5)

PB,7]a) =

We are required to minimize this expression subject to
the constraints:

l—-¢, < PPBla) < 1

l—ea < Pyla) < 1
and in the previous case we saw that these constraints
imply that:

1- 2

< P(yle,B) <1

Equation (5) will be minimum when both factors in
the product on the right-hand side are, so that

].—61

PGl > (1-12-)a-a)

].—61
= 1-(a+e) (6)
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Figure 4: Rules with associated bounds

which, as we would expect, is symmetrical in €; and €.
This gives us an e-value for the derived rule of €; + €.

Or: Here we are interested in the value of P(y|laV 3).
Let P(—y|a) = € and P(—y|3) = €.
Consider the following:
P(~yla v B)

Plah—y)+ P(BA—y) —PlaABA)

P(a) + P(B) — P(a A B)
P(a)P(—y|a) + P(B)P(m|B) — Pla AB A )
P(a) + P(B) — P(a A B)
Q1 P(@) + P(B) = PlahfA ) -
P(a) + P(B) — P(a A B)

To find the maximum value of this expression, we note
that P(a), P(8) < P(aV () and we ignore the last

term of the numerator since it is negative and could be
zero. This gives us

P(—ylaVvB) <e +e

as an upper bound. This gives us an e-value for the
derived ruled of €; + €s.

For completeness sake, we examine the derived rules
Cut and S since they are the most useful rules when
proving things. To make the presentation clearer we
have denoted by |~., a conditional with e-value of €;.

S: For S we need to derive a v, , 8 — 7 and the
value of €pey from a A B v, v just using the basic
rules. This can be done as follows. First apply Right
Weakening to a A § |~¢, 77 to get:

anBarEY=(B=7)
(8)
aNB e, B—
We then apply Reflexivity followed by Right Weaken-
ing (twice) to a A =3 to get:
aN-fhoarN—B =B (B—=1)
aN=fB poB =y

(9)

Then we combine (8) and (9) using Or and apply Left
Logical Equivalence to get:

aNB e, B—=y,aN=0 o =
a|~€1ﬂ—>7

The consequent of this last derivation is the consequent
of S, and comparing this with the antecedent, we can
see that applying S has no effect on the e-value; the
value for the derived conditional assertion is the same
as for the original assertion.

Cut: For Cut, we need to discover how a |, . 7
may be derived from a A § ¢, v and « v, 8. This
turns out to be easy given the result for S. S tells us
that the e-value of a |~/ — « is the same as that
of a A B |~7, so we have a |, f — ~v and applying
And to a v, B = v and a |, 3, followed by Right
Weakening gives:

@ |~€1 B— v, |~€2 B
a l~€1+62 Y

Cut is thus proved, and the e-value for its consequent
established.

In obtaining these results, we have shown that using
each of the rules of P, and hence any derived rules, we
can obtain lower bounds on the conditional probability
of the conclusion given those of the antecedents. Fig-
ure 4 shows the basic rules plus S and Cut annotated
with lower probability bounds on antecedents and con-
sequents. It is clear that these lower bounds never
improve. Using rules And and Or, or rules derived
from these, means adding the e-values so that after
only a few proof steps our conclusions may attain high
e-values. A high e-value means that the lower bound on
the associated conditional probability is low and if this
becomes too low then we don’t have much information
about the probability since the upper bound is always
1. Clearly, therefore, our input values must either be
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Figure 5: Proofs of T |~g.26 ~linda and linda A steve |~o.061 great A —noisy

extremely small or our proofs short in order to obtain
useful results. However, as our example shows, these
conditions can be met without too much imagination.

Example

The following was inspired by examples given by Kraus
et al. (Kraus, Lehmann, & Magidor 1990).

Brian and Linda are two happy-go-lucky people
who are normally the life and soul of any party (so
if either go to a party it will normally be great).
Until recently Brian and Linda were married, but
then Linda ran off with a mime artist, Steve. As
a result, if both Brian and Linda go to the same
party they will probably have a screaming row and
ruin it (so it will not be great and it will be noisy).

If Linda goes to a party she will probably take her
new boyfriend Steve and get him to entertain the
guests with his marvellous miming. Thus if Linda
goes to a party, Steve will probably go to the same
party and if Linda and Steve go to a party together
it will normally not be noisy because everyone will
be watching his miming. Normally parties that
great are noisy and those that are not noisy are
not great.

We represent this by the following rules and e-values.
It should be understood that we are trying to ascer-
tain the likelihood of any given party having various
attributes (brian is present, it is noisy, and so on).

. brian .01 great
. linda |~¢.01 great
. brian A linda |~o.15 —great A noisy

= W N =

. linda |~ steve

5. linda A steve |~g o5 —"noisy
6. great |~o.1 noisy
7. —noisy |~g.1 "great

Figure 5 gives proofs for two new conditionals with jus-
tifications on the right and e-values propagated along
the way. T denotes any tautology. The first of these
gives us the lower bound on the probability of Linda
not attending any particular party given what we know
(which is what the T on the antecedent side means).
Remembering the denotation of (1), T |~p.26 ~linda
means that:

P(=linda|T)
P(=linda|T)

1-0.26

2
> 0.74

from which we can conclude that Linda is unlikely to
go to any particular party. However, this does not stop
us drawing conclusions about parties which we know
that Linda does go to. Indeed, Figure 5 shows such a
conclusion:

linda A steve I~g.061 great A —noisy

means that if Linda and Steve go to a party, then the
probability that it is both great and —noisy is greater
than 0.94. These results show that using our method
we can obtain usable numerical results from an initial
set of defaults.

This is particularly useful in unexpected or unlikely
circumstances (as in the case that we know Linda goes
to a party) since such cases could not be captured in
classical logic. To see this point consider what would
happen if we translated part of our knowledge about
parties into propositional logic:



1. linda D great
2. great D noisy
3. linda D steve
4. linda A steve D —noisy

From the first two sentences we could conclude noisy,
from the first, third and fourth sentences we could con-
clude —noisy and with the two we would have an in-
consistency. What System P does is to balance the
effects that Linda and Steve have on a party and our
approach extends this to allow us to predict just how
likely the balanced outcome is.

Conclusion

We have shown that given the assumption that condi-
tional assertions may be treated as conditional proba-
bilities with lower bounds, we can obtain lower bounds
for the derived conclusions. Thus if we know the lower
bounds on the conditional probabilities of a set of in-
put assertions, we can establish the lower bounds on
the conditional probabilities of the derived assertions.
Moreover these are given by simple functions of the
initial bounds calculated for each proof step in System
P. One advantage of this approach is that it allows us
to use real rather than infinitesimal probabilities since
by keeping track of the bounds we can tell which con-
clusions are justified;clearly any conclusion with a low
lower bound might be considered suspect. Another
advantage of this method is that only a lower bound
conditional probability is required for each default rule
rather than a point probability, and this may mean
that the numerical values are easier to assess. Clearly
we still require these values to be high or the results
obtained will be useless since derived conditionals will
only be known to have an associated conditional prob-
ability that is greater than some small value.

There are two drawbacks to this approach which
should be mentioned. Firstly System P is accepted
as being a sceptical reasoning mechanism, that is, only
conservative (and completely sound) conclusions can
be obtained. This is insufficient for most purposes
since we will often want to draw more tenuous con-
clusions. However, specialisations have been suggested
(Goldszmidt, Morris, & Pearl 1993; Pearl 1990) and it
may be possible for our approach to be extended in this
direction. Secondly, despite the appearance of the rules
of System P, it is not known whether a feasible proce-
dure for proof generation exists; a model-theoretic pro-
cedure for determining p-entailment (which guarantees
a proof) exists but the complexity prevents realistic
applications.

Naturally for our approach to be acceptable, it is
necessary to accept that defaults may be reasonably

taken to be statements about probabilities, in particu-
lar constraints on a joint probability distribution which
describes the state of the world. While this is natural
from a Bayesian perspective, it might seem more ques-
tionable to some. However, we feel that the position
can be justified from a pragmatic perspective as well.
Using probability to say what defaults mean gives them
a semantics which is comparatively simple, at least at
an informal level, and one which could, with our exten-
sion, be used in conjunction with real data about the
world. This seems a good justification for accepting
the semantics; in our opinion it is clearer and therefore
more plausible than other default reasoning systems.
Any reasoning mechanism that is required to treat de-
faults in a uniform way must have some representation
for them. Humans may use default rules in different
ways in differing contexts, but if we wish to build prac-
tical reasoning systems, we must find systematic ways
to approximate defaults. If this leads to making some
assumptions then, so long as they are clear, so be it.
We will achieve nothing unless we have a firm basis for
saying what we mean by a default.
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