
Propagating probabilities in System PRachel Bourne1 and Simon ParsonsDepartment of Electronic Engineering,Queen Mary and West�eld CollegeUniversity of London,London E1 4NS, UK.AbstractIn this paper we suggest a way of using the rules ofSystem P to propagate lower bounds on conditionalprobabilities. Using a knowledge base of default ruleswhich are considered to be constraints on a probabilitydistribution, the result of applying the rules of P givesus new constraints that were implicit in the knowledgebase and their associated lower bounds.IntroductionDefault reasoning has been widely studied in arti�cialintelligence, and a number of formalisms have beenproposed as a means of capturing such reasoning (Gins-berg 1987), most prominent among which are defaultlogic (Reiter 1980) and circumscription (McCarthy1980). Many of these systems, including default logicand circumscription, have proposed particular mech-anisms for default reasoning, and might therefore beconsidered quite specialised. However, there has alsobeen work on more general approaches which attemptto analyse in broader terms what default reasoninginvolves. An early attempt to do this was Shoham's(1987) proposal that all non-monotonic systems couldbe characterised in terms of the preference order overtheir models. A more proof-theoretic strand of this re-search has investigated the formalisation of the under-lying requirements for any non-monotonic consequencerelation. Perhaps the most in
uential piece of workwithin this area is that of Kraus et al. (1990).Kraus et al. investigated the properties of di�er-ent sets of Gentzen-style proof rules for non-monotonicconsequence relations, and related these sets of rules tothe model-theoretic properties of the associated log-ics. Their major result was that a particular set ofproof rules had the same model-theoretic propertiesthat Shoham had identi�ed for logics in which there isa preference order over models. This system of proofrules was termed System P by Kraus et al., the P1Supported by an EPSRC studentship.

standing for \preferential". System P has been thesubject of much research, and is now widely acceptedas the weakest interesting non-monotonic system; itsanctions the smallest acceptable set of conclusionsfrom a set of default statements.The reason that we are interested in the rules of Sys-tem P is that, in addition to a semantics in terms of apreference order over models, they also have a proba-bilistic semantics. In particular, Pearl (1988), follow-ing work by Adams (1975), showed that a semanticsbased on in�nitesimal probabilities satis�es the rulesof System P. While the use of in�nitesimal probabil-ities is theoretically interesting, it lacks something inpractical terms. If we are to use System P to rea-son about the real world we will have to write defaultswhich summarise our knowledge about it, and we maywell be unhappy making statements whose validity de-pends upon in�nitesimal values. To overcome this dif-�culty, we suggest using real probabilities along withthe rules of System P, giving each default statement alower bounded probability, and showing that proofs inthe System P can be used to propagate these boundsto �nd out something concrete about the probabilityof the derived results.Entailment in System PThe rules of inference for the System P (see Figure 1)may be applied to a knowledge base made up of con-ditional assertions of the form � j��. In this context� and � are well-formed formulae of classical proposi-tional logic, and j� is a binary relation between pairsof formulae. The connectives ^, _, ! and $ havetheir usual meanings. The inference rules are writtenin the usual Gentzen style, with antecedents above theline and consequents below it. Thus the rule `And'says that if it is possible to derive � j�� and it ispossible to derive � j� 
, then it is possible to derive� j�� ^ 
. The inference rules can thus be viewedas a means of obtaining new conclusions from currentknowledge; from an initial set of conditional assertions,
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 OrFigure 1: Rules of System Pfurther conditional assertions may be obtained by ap-plying the rules.Two things should be noted about the set of rules inFigure 1. Firstly, they only tell us how to derive newconditional assertions. If we wish to know whether weare justi�ed in inferring a new fact, say 
, given thatwe currently know some other fact, say �, and thisis all we know, it is necessary to determine whether� j� 
 is derivable from our knowledge base of condi-tional assertions. Secondly, the proof rules in Figure 1form a minimal set su�cient to characterise System P.Other rules may be derived from them in much thesame way that new conditional assertions are derived.Two such rules are given in Figure 2; Cut which al-lows the elimination of a conjunct from the antecedentside, and S which allows the derivation of a materialimplication. Both of these (as we shall see later in thepaper) may be derived directly by the application ofthe basic rules.The semantics for System P introduced by Adamsmakes the assumption that the propositional variablesare the basis of an unspeci�ed joint probability distri-bution which is constrained by the conditional asser-tions. These conditionals are taken to represent con-ditional probabilities of the consequent given the an-tecedent being greater than or equal to 1 � � for any� > 0, that is:� j�� represents P(�j�) � 1� � for all � > 0: (1)Probabilistic consistency is de�ned as the existenceof at least one probability distribution which satis�esthese constraints (Adams 1975); probabilistic entail-ment of a further conditional is de�ned as probabilistic
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 SFigure 2: Two derived rules of System Pinconsistency of its counterpart, that is:� j�� is p-entailed by � i� � [ f� j�:�g is p-inconsistentThis implies that all probability distributions that sat-isfy � also satisfy � j��. However this result may onlybe achieved by using in�nitesimal analysis so that thederived conditional will be constrained to be greaterthan 1� � for any � > 0 if the � of the original condi-tionals is made small enough. This can be paraphrasedas saying that System P allows us to make our conclu-sions as close to certainty as we like, provided the con-ditional probabilities associated with the conditionalassertions are su�ciently close to certainty. In the lit-erature this is used to justify the conclusions drawn byusing System P; if we are sure of the conditional asser-tions and so are willing to give them high conditionalprobabilities, then the conditional assertions derivedfrom them will also have high probabilities.However, using this interpretation of the rules meansassuming that we are able to give the conditional as-sertions arbitrarily high conditional probabilities. Thisis �ne in the case that the assertions are pieces of de-fault knowledge which are felt to hold almost all ofthe time. However, with less reliable information, forwhich � is not in�nitesimal, it seems less justi�able toaccept the in�nitesimal analysis. In particular, if a setof conditional assertions are used to derive new asser-tions and these new assertions are themselves used asthe basis for new deductions, then it seems likely thatsome � values will be far from in�nitesimal. Because ofthis concern, this paper investigates the impact of non-in�nitesimal � values by considering what happens tovalues of � and � when the rules of P are applied. Theresult is twofold. First it is possible to track the ef-fect of non-in�nitesimal values, and second it becomespossible to identify bounds on the actual conditionalprobability of derived assertions.Using real �-valuesWe associate with each conditional assertion an �-valuewhich represents, for � j��, an upper bound on theconditional probability P (:�j�). We demonstrate howusing these values for each original conditional, we can
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); P (� ^ �)gFigure 3: The constraints for Or.generate � values for the output conclusions. This en-ables us to calculate the lower bound on the probabilityof a conclusion based on the proof steps used to deriveit. We consider �rst the six basic rules of System P,and then use the results obtained for those rules toobtain results for S and Cut.Re
exivity: A re
exive conditional assertion may beintroduced at any stage in a proof, and, since P (�j�) =1 for all formulae �, any such conditional will have an�-value of zero.Left Logical Equivalence: This rule means thatwe may take any conditional assertion and replaceits antecedent with a logically equivalent expression.Clearly, the derived conditional will have the same �-value as the original one.Right Weakening: Right Weakening involves re-placing the consequent of a conditional with any ex-pression classically derivable from it. Now, � ! 
means the models of � are a subset of the models of 
and hence: P (
; �) � P (�; �)Now, since:P (
j�) = P (
; �)P (�) , P (�j�) = P (�; �)P (�)it follows that: P (
j�) � P (�j�) (2)and therefore the �-value of a rule obtained by RightWeakening will not be larger than the �-value of therule from which it was obtained. Since we are dealingwith lower bounds, we may use the same value for thederived rule.Cautious Monotonicity: Here we are interested inthe value of P (
j�; �). Now:P (
j�) = P (
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We are required to minimize this expression subject tothe constraints:1� �1 � P (�j�) � 11� �2 � P (
j�) � 10 � P (
j�;:�) � 1Equation (4) is linear in P (
j�) and P (
j�;:�) andwill therefore attain its minimum when P (
j�) is min-imum and P (
j�;:�) is maximum. This gives us:P (
j�; �) � (1� �1)� (1� P (�j�))P (�j�)� 1� �1P (�j�)which will be minimum when P (�j�) is minimum.This gives us an �-value for the derived rule � ^ � j� 
of: �21� �1And: This time we are interested in P (�; 
j�). Con-sider: P (�; 
j�) = P (�; �; 
)P (�)= P (�; �; 
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j�; �)P (�j�) (5)We are required to minimize this expression subject tothe constraints:1� �1 � P (�j�) � 11� �2 � P (
j�) � 1and in the previous case we saw that these constraintsimply that:1� �21� �1 � P (
j�; �) � 1Equation (5) will be minimum when both factors inthe product on the right-hand side are, so thatP (�; 
j�) � �1� �21� �1� (1� �1)= 1� (�1 + �2) (6)
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j� _ �) � �1 + �2as an upper bound. This gives us an �-value for thederived ruled of �1 + �2.For completeness sake, we examine the derived rulesCut and S since they are the most useful rules whenproving things. To make the presentation clearer wehave denoted by j��1 a conditional with �-value of �1.S: For S we need to derive � j��new � ! 
 and thevalue of �new from � ^ � j��1 
 just using the basicrules. This can be done as follows. First apply RightWeakening to � ^ � j��1 
 to get:� ^ � j��1 
; j= 
 ! (� ! 
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 (8)We then apply Re
exivity followed by Right Weaken-ing (twice) to � ^ :� to get:� ^ :� j�0 � ^ :�; j= :� ! (� ! 
)� ^ :� j�0 � ! 
 (9)

Then we combine (8) and (9) using Or and apply LeftLogical Equivalence to get:� ^ � j��1 � ! 
; � ^ :� j�0 � ! 
� j��1 � ! 
The consequent of this last derivation is the consequentof S, and comparing this with the antecedent, we cansee that applying S has no e�ect on the �-value; thevalue for the derived conditional assertion is the sameas for the original assertion.Cut: For Cut, we need to discover how � j��new 
may be derived from � ^ � j��1 
 and � j��2 �. Thisturns out to be easy given the result for S. S tells usthat the �-value of � j�� ! 
 is the same as thatof � ^ � j� 
, so we have � j��1 � ! 
 and applyingAnd to � j��1 � ! 
 and � j��2 �, followed by RightWeakening gives:� j��1 � ! 
; � j��2 �� j��1+�2 
Cut is thus proved, and the �-value for its consequentestablished.In obtaining these results, we have shown that usingeach of the rules of P, and hence any derived rules, wecan obtain lower bounds on the conditional probabilityof the conclusion given those of the antecedents. Fig-ure 4 shows the basic rules plus S and Cut annotatedwith lower probability bounds on antecedents and con-sequents. It is clear that these lower bounds neverimprove. Using rules And and Or, or rules derivedfrom these, means adding the �-values so that afteronly a few proof steps our conclusions may attain high�-values. A high �-value means that the lower bound onthe associated conditional probability is low and if thisbecomes too low then we don't have much informationabout the probability since the upper bound is always1. Clearly, therefore, our input values must either be



(i) linda ^ steve j�0:05 :noisy; linda j�0:1 stevelinda j�0:15 :noisy Cut 4,5(ii) linda j�0:15 :noisy; linda j�0:01 greatlinda j�0:16 great ^ :noisy And (i),2(iii) > j�0:16 :linda _ (great ^ :noisy);> j�0:1 noisy _ :great> j�0:26 :linda S, And (ii),7, RW(i) linda j�0:1 steve; linda j�0:01 greatlinda ^ steve j�0:011 great CM 4,2(ii) linda ^ steve j�0:05 :noisy; linda ^ steve j�0:011 greatlinda ^ steve j�0:061 great ^ :noisy And 5,(i)Figure 5: Proofs of > j�0:26 :linda and linda ^ steve j�0:061 great ^ :noisyextremely small or our proofs short in order to obtainuseful results. However, as our example shows, theseconditions can be met without too much imagination.ExampleThe following was inspired by examples given by Krauset al. (Kraus, Lehmann, & Magidor 1990).Brian and Linda are two happy-go-lucky peoplewho are normally the life and soul of any party (soif either go to a party it will normally be great).Until recently Brian and Linda were married, butthen Linda ran o� with a mime artist, Steve. Asa result, if both Brian and Linda go to the sameparty they will probably have a screaming row andruin it (so it will not be great and it will be noisy).If Linda goes to a party she will probably take hernew boyfriend Steve and get him to entertain theguests with his marvellous miming. Thus if Lindagoes to a party, Steve will probably go to the sameparty and if Linda and Steve go to a party togetherit will normally not be noisy because everyone willbe watching his miming. Normally parties thatgreat are noisy and those that are not noisy arenot great.We represent this by the following rules and �-values.It should be understood that we are trying to ascer-tain the likelihood of any given party having variousattributes (brian is present, it is noisy, and so on).1. brian j�0:01 great2. linda j�0:01 great3. brian ^ linda j�0:15 :great ^ noisy4. linda j�0:1 steve

5. linda ^ steve j�0:05 :noisy6. great j�0:1 noisy7. :noisy j�0:1 :greatFigure 5 gives proofs for two new conditionals with jus-ti�cations on the right and �-values propagated alongthe way. > denotes any tautology. The �rst of thesegives us the lower bound on the probability of Lindanot attending any particular party given what we know(which is what the > on the antecedent side means).Remembering the denotation of (1), > j�0:26 :lindameans that: P (:lindaj>) � 1� 0:26P (:lindaj>) � 0:74from which we can conclude that Linda is unlikely togo to any particular party. However, this does not stopus drawing conclusions about parties which we knowthat Linda does go to. Indeed, Figure 5 shows such aconclusion:linda ^ steve j�0:061 great ^ :noisymeans that if Linda and Steve go to a party, then theprobability that it is both great and :noisy is greaterthan 0.94. These results show that using our methodwe can obtain usable numerical results from an initialset of defaults.This is particularly useful in unexpected or unlikelycircumstances (as in the case that we know Linda goesto a party) since such cases could not be captured inclassical logic. To see this point consider what wouldhappen if we translated part of our knowledge aboutparties into propositional logic:



1. linda � great2. great � noisy3. linda � steve4. linda ^ steve � :noisyFrom the �rst two sentences we could conclude noisy,from the �rst, third and fourth sentences we could con-clude :noisy and with the two we would have an in-consistency. What System P does is to balance thee�ects that Linda and Steve have on a party and ourapproach extends this to allow us to predict just howlikely the balanced outcome is.ConclusionWe have shown that given the assumption that condi-tional assertions may be treated as conditional proba-bilities with lower bounds, we can obtain lower boundsfor the derived conclusions. Thus if we know the lowerbounds on the conditional probabilities of a set of in-put assertions, we can establish the lower bounds onthe conditional probabilities of the derived assertions.Moreover these are given by simple functions of theinitial bounds calculated for each proof step in SystemP. One advantage of this approach is that it allows usto use real rather than in�nitesimal probabilities sinceby keeping track of the bounds we can tell which con-clusions are justi�ed;clearly any conclusion with a lowlower bound might be considered suspect. Anotheradvantage of this method is that only a lower boundconditional probability is required for each default rulerather than a point probability, and this may meanthat the numerical values are easier to assess. Clearlywe still require these values to be high or the resultsobtained will be useless since derived conditionals willonly be known to have an associated conditional prob-ability that is greater than some small value.There are two drawbacks to this approach whichshould be mentioned. Firstly System P is acceptedas being a sceptical reasoning mechanism, that is, onlyconservative (and completely sound) conclusions canbe obtained. This is insu�cient for most purposessince we will often want to draw more tenuous con-clusions. However, specialisations have been suggested(Goldszmidt, Morris, & Pearl 1993; Pearl 1990) and itmay be possible for our approach to be extended in thisdirection. Secondly, despite the appearance of the rulesof System P, it is not known whether a feasible proce-dure for proof generation exists; a model-theoretic pro-cedure for determining p-entailment (which guaranteesa proof) exists but the complexity prevents realisticapplications.Naturally for our approach to be acceptable, it isnecessary to accept that defaults may be reasonably

taken to be statements about probabilities, in particu-lar constraints on a joint probability distribution whichdescribes the state of the world. While this is naturalfrom a Bayesian perspective, it might seem more ques-tionable to some. However, we feel that the positioncan be justi�ed from a pragmatic perspective as well.Using probability to say what defaults mean gives thema semantics which is comparatively simple, at least atan informal level, and one which could, with our exten-sion, be used in conjunction with real data about theworld. This seems a good justi�cation for acceptingthe semantics; in our opinion it is clearer and thereforemore plausible than other default reasoning systems.Any reasoning mechanism that is required to treat de-faults in a uniform way must have some representationfor them. Humans may use default rules in di�erentways in di�ering contexts, but if we wish to build prac-tical reasoning systems, we must �nd systematic waysto approximate defaults. If this leads to making someassumptions then, so long as they are clear, so be it.We will achieve nothing unless we have a �rm basis forsaying what we mean by a default.ReferencesAdams, E. 1975. The Logic of Conditionals. Dor-drecht, Netherlands: Reidel.Ginsberg, M. L., ed. 1987. Readings in NonmonotonicReasoning. San Mateo, CA: Morgan Kaufmann.Goldszmidt, M.; Morris, P.; and Pearl, J. 1993. Amaximum entropy approach to nonmonotonic reason-ing. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence 15:220{232.Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Non-monotonic reasoning, preferential models and cumu-lative logics. Arti�cial Intelligence 44:167{207.McCarthy, J. 1980. Circumscription|a form of non-monotonic reasoning. Arti�cial Intelligence 13:27{39.Pearl, J. 1988. Probabilistic Reasoning in IntelligentSystems: Networks of Plausible Inference. San Mateo,CA: Morgan Kaufmann.Pearl, J. 1990. System Z: a natural ordering of de-faults with tractable applications to default reason-ing. In Proceedings of the 3rd Conference on Theoret-ical Aspects of Reasoning about Knowledge, 121{135.Reiter, R. 1980. A logic for default reasoning. Arti-�cial Intelligence 13:81{132.Shoham, Y. 1987. Nonmonotonic logics: meaningand utility. In Proceedings of the 10th InternationalJoint Conference on Arti�cial Intelligence, 388{393.


