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tPlanning under un
ertainty requires the adoption ofassumptions about the 
urrent and future states of theworld, and the preparation of 
onditional plans basedon these assumptions. In any realisti
 domain, how-ever, there will be an exponential explosion in the num-ber of 
onditional plans required. One approa
h to thisproblem is to arti
ulate a set of s
enarios, whi
h to-gether are representative of the possible and/or likelyfutures. Doing this then 
reates the 
hallenge of rea-soning a
ross the s
enarios to de
ide a 
ourse of a
tion.We present an argumentation-based formalism for rep-resenting di�erent assumptions in a s
enario frameworkand for reasoning a
ross the resulting s
enarios.Introdu
tionConsider an agent operating in some 
omplex domain,perhaps a robot with the goal of 
olle
ting and deliv-ering obje
ts in a fa
tory (Parsons et al. 2000), or atele
ommuni
ations operator 
onsidering how to bestprovide future servi
es (M
Burney & Parsons 2001
).In both these 
ases, and in many others involving de
i-sions about what to do and how to do it, the de
ision-making entity is fa
ed with what is essentially a plan-ning problem|building a plan from a set of optionsavailable to it|but one in whi
h the best plan (and in-deed the best goal or set of goals, though we will saylittle about this matter here) is very dependent uponnot just the initial state of the world, but also on howthe world evolves over time. The plan that is initiallybest for the robot may turn out to be sub-optimal whena 
orridor is found to be blo
ked, and the plan that isinitially best for the tele
ommuni
ations operator mayturn out to be sub-optimal when global demand forwireless servi
es turns out to fall below proje
tions, orwhen 
ompeting te
hnologies emerge unexpe
tedly.There are two diÆ
ulties involved in identifying agood plan. First is the problem of dealing with thefa
t that any agent only has approximate knowledgeof the state of the world in whi
h it operates. This
an be ta
kled by the appli
ation of an appropriate un-
ertainty handling formalism, su
h as probability the-Copyright 

 2001, Ameri
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ory, to express the degree of belief that an agent hasin 
ertain fa
ts being true. However, in many impor-tant domains, absen
e of obje
tive data or the pres-en
e of 
on
i
ting per
eived interests, makes de
idingthe quanti�
ation of un
ertainty diÆ
ult. Argumen-tation formalisms have been proposed for the quali-tative representation of un
ertainty in these 
ir
um-stan
es (Krause et al. 1995) and have found appli
ationin intelligent systems, for example in medi
al and safetyanalysis domains (Carbogim, Robertson, & Lee 2000;Fox & Das 2000).In (M
Burney & Parsons 2000), we proposed a for-malism using diale
ti
al argumentation for representingand resolving the arguments for and against a 
laim ina given domain. This representation was grounded inspe
i�
 philosophies of rational human dis
ourse andwas 
entered on an ele
troni
 spa
e for presentationof arguments, whi
h we termed an Agora. In subse-quent work (M
Burney & Parsons 2001a), we extendedthis formalism and showed that it had several desir-able properties when used for inferen
e and de
ision-making.1 With this apparatus we believe it is possibleto handle the types of un
ertainty inherent in the plan-ning problems outlined above. However, doing this, aswith using probability theory in 
onventional planningsystems, does not deal with a se
ond diÆ
ulty in plan-ning under un
ertainty.This se
ond diÆ
ulty is the problem of handling the
onditional nature of plans under un
ertainty. Any planis built based on a set of assumptions about how theworld will 
hange (or stay the same) over time, andlinear planners basi
ally assume that the initial state ofthe world is only 
hanged by the deterministi
 a
tions ofthe planning agent. For a more sophisti
ated approa
h,whi
h 
an in
orporate both non-determinism of a
tionsand the operation of other agents, it is 
ommon to use
onditional planning,2 where the bran
hing stru
tureof the 
onditional plan 
overs all the ways in whi
h theworld may evolve as time passes, and gives a solution1Preprints of these papers are at:www.
s
.liv.a
.uk/�peter/pubs.html.2One 
an, of 
ourse, 
onsider the poli
y solutionsof MDPs and POMDPs as impli
it 
onditional plans(Boutilier, Dean, & Hanks 1999).



for ea
h (Warren 1976; Peot & Smith 1992; Pryor &Collins 1996). The problem with this approa
h is thesheer number of 
onditional plans that may need to begenerated, and the subsequent 
omputational overheadfor even modestly 
omplex environments.One response to this 
omplexity problem is to buildplans for a number of likely or representative s
enar-ios rather than for all possible futures. The notion ofs
enario has found most widespread appli
ation in busi-ness fore
asting (S
hwartz 1991). In these appli
ationss
enarios are usually treated as alternative possible fu-tures, and they typi
ally di�er a

ording to the propo-sitions assumed true in ea
h. The di�erent impli
ationsof ea
h s
enario are then explored in order to guide thedevelopment and sele
tion of business strategy or publi
poli
y.The use of s
enario-based reasoning is also found ins
ien
e. For instan
e, in statisti
al me
hani
s a keyquestion is the extent to whi
h properties of a physi-
al system, su
h as its entropy at a given time, dependon the initial state of the system. Boltzmann (Boltz-mann 1872) explored this question by 
omparing thegiven system to a set of other, imaginary systems ea
hhaving di�erent initial 
onditions; one 
ould therebyassess the extent to whi
h the property of interest wasindependent of the initial system state. In this paper,we extend our work on diale
ti
al argumentation to al-low reasoning a
ross s
enarios, providing a qualitativeformalism whi
h 
ould be used for de
ision making in
onditional planning appli
ations.The next se
tion presents brief summaries of our pre-vious work on Agoras and the 
omparison of di�erents
enarios, whi
h this papers extends. The following se
-tion then proposes a framework in whi
h to 
ompare theresults of debates on the same topi
, but 
ondu
ted un-der di�erent s
enario assumptions or inferen
e me
h-anisms. We also explore the formal properties of ourframework. The subsequent se
tion presents an exam-ple and the last se
tion 
ompares our approa
h to re-lated work and dis
usses possible future resear
h.Agoras and S
enariosAgorasIn this se
tion we brie
y summarize the Agora frame-work for the qualitative representation of un
ertaintypresented in (M
Burney & Parsons 2000; 2001a). Inthis framework, arguments for and against 
laims arearti
ulated by parti
ipants in an ele
troni
 spa
e, 
alledan Agora. Claims are expressed as formulae in a propo-sitional language, typi
ally denoted by lower-
ase Greekletters. By means of de�ned lo
utions, parti
ipantsin the Agora 
an variously posit, assert, 
ontest, jus-tify, rebut, under
ut, qualify and retra
t 
laims, just ashappens in real dis
ourse. For example, a debate par-ti
ipant Pi 
ould demonstrate her argument A(! �)supporting a 
laim �, an argument to whi
h she was
ommitted with strength D , by means of the lo
ution:show arg(Pi : A(! �;D)).

The rules governing the use of ea
h permitted lo
utionare expressed in terms of a formal dialogue-game be-tween the parti
ipants (Hamblin 1971). We assumethat the Agora parti
ipants begin a debate with a setof agreed fa
ts, or assumptions, and a set of inferen
erules. Be
ause we want to model many forms of reason-ing, these rules need not be dedu
tive and may them-selves, in our Agora formulation, be the subje
t of de-bate.We demonstrated the use of this framework for therepresentation of un
ertainty by de�ning a set of un-
ertainty labels, whi
h are assigned to 
laims on thebasis of the arguments presented for and against themin the Agora. Essentially, one 
ould say that 
laimshave more 
redibility (and hen
e less un
ertainty) thefewer and the weaker are the arguments against them.While any set of labels 
ould be so de�ned, we drewon earlier work in argumentation (Krause et al. 1998)and used the set: fA

epted, Probable, Plausible, Sup-ported, Openg, with the elements listed in de
reasingorder of 
ertainty. For example, a 
laim was regardedas Probable at a parti
ular time if at least one 
onsis-tent argument had been presented for it in the Agora bythat time, but no arguments for its negation (rebuttals)nor for the negation of any of its assumptions (under-
uts) had been presented by then. We de�ned a 
laimas well-defended if there was an argument for it andany rebuttals or under
uts were themselves subje
t to
ounter-rebuttals or -under
uts. A

epted 
laims werede�ned as those whi
h are well-defended.We then de�ned the truth valuation of a 
laim � attime t , denoted vt(�), to be 1 if � had the label A
-
epted at this time, otherwise it was 0. Su
h a valuationsummarizes the knowledge of the 
ommunity of parti
-ipants at the parti
ular time, sin
e it in
orporates, viathe de�nitions of the labels, all the arguments for andagainst � arti
ulated to that time. Consequently, as-sessing the truth-status of a 
laim at a parti
ular time
an be viewed as taking a snapshot of an Agora de-bate. Of 
ourse, be
ause these de�nitions are time-dependent, and arguments may be arti
ulated in theAgora at any time, su
h an assignment of un
ertaintylabels and truth valuation must be defeasible.In using the Agora framework to represent un
er-tainty, attention will fo
us on the truth valuation fun
-tion over the long-run.3 The sequen
e (vt (�) j t =1; 2; : : :) may or may not 
onverge as t ! 1. Sup-pose that it does 
onverge to a �nite limit, and denoteits limit value by v1(�). What will the value of a snap-shot taken at time t tell us about this in�nite limitvalue? Of 
ourse, any �nite snapshot risks being over-taken by subsequent events, su
h as new and relevantinformation being be
oming known to the parti
ipants,or new arguments being presented. Thus, we 
annot in-fer with 
omplete a

ura
y from the �nite snapshot to3Stri
tly, we are assuming throughout that time in theAgora is dis
rete, and 
an be represented by a set isomorphi
to the positive integers.



the in�nite value. However, we have shown that, under
ertain 
onditions, we 
an pla
e a bound on the like-lihood that su
h an inferen
e is in error (M
Burney &Parsons 2001a). The 
onditions essentially require that:(a) the snapshot is taken at a time after 
ommen
ementsuÆ
ient for all the arguments using the initial infor-mation to be presented, and (b) there is a bound onthe probability that new information arises followingthe snapshot. This result is proved as Proposition 7of (M
Burney & Parsons 2001a), whi
h we reprodu
ehere.First, some notation. We write LE� for the state-ment: \The fun
tion vt (�) 
onverges to a �nite limitas t ! 1." Also, we write Xt;� for the statement:\New information relevant to � be
omes known to anAgora parti
ipant after time t." In general, at any times , we do not know whether new eviden
e will be
omeavailable to Agora parti
ipants at a later time t or not.Consequently, the variables Xt;�, for t not in the past,represent un
ertain events. Also un
ertain for the samereason are statements 
on
erning the future values ofvt (�) for any �. Be
ause these events are un
ertain,we assume the existen
e of a probability fun
tion overthem, i.e. a real-valued measure fun
tion mapping to[0; 1℄ whi
h satis�es the axioms of probability. We thuswrite Pr for a probability fun
tion de�ned over state-ments of the form Xt;� and statements 
on
erning thevalues of vt (�), for any given formula �.Proposition 1: (Proposition 7 of (M
Burney & Par-sons 2001a)) Let � be a w� and suppose that all argu-ments pertaining to � and using the information avail-able at 
ommen
ement are arti
ulated by parti
ipantsby some time s > 0. Suppose further that vtm (�) = 1for some tm � s. Also, assume that Pr(Xtm ;�) � �, forsome � 2 [0; 1℄. Then the following inequalities hold:(a) Pr(LE� and v1(�) = 1 j vtm (�) = 1) � 1�� and(b) Pr(LE� and v1(�) = 0 j vtm (�) = 1) � �: 2As with the standard pro
edures for statisti
al hy-pothesis testing, this proposition provides us with some
on�den
e in our use of �nite snapshots to make infer-en
es about the long-run truth-valuation fun
tion for adebate. While su
h inferen
e is not dedu
tively valid,at least its likelihood of error may be bounded. We next
onsider the notion of a S
enario.S
enariosThe framework we have just outlined provides a meansto represent the diverse arguments that may arise froma given set of assumptions, and using a given set of in-feren
e rules (dedu
tive or otherwise). If we were tostart with a di�erent set of assumptions, and/or permitthe use of a di�erent set of inferen
e rules, the argu-ments presented in the Agora may well be di�erent.As a result, the un
ertainty labels and truth values as-signed to formulae may well also be di�erent, both whentaken at �nite snapshots and in the limit. In (M
Bur-ney & Parsons 2001b), we de�ned ea
h 
ombination ofassumptions and inferen
e rules as a s
enario:

De�nition 1: A S
enario for a given domain 
onsistsof a set of assumptions and a set of inferen
e rules, withwhi
h parti
ipants are equipped at the 
ommen
ementof an Agora debate over formulae in that domain. Wedenote s
enarios for a given domain by S1;S2; : : :, et
.For ea
h s
enario, Si , an Agora debate undertaken withthe assumptions and inferen
e rules of that s
enario, issaid to be the asso
iated Agora, denoted Ai . We as-sume only one Agora debate is 
ondu
ted in asso
iationwith any s
enario.In this paper, we will be assuming that all s
enar-ios, and all the resulting Agora debates, relate to thesame planning domain. For this domain, suppose weare interested in a parti
ular proposition �. We imag-ine we have a number of s
enarios in parallel, ea
h witha di�erent set of starting assumptions and possibly alsodi�erent inferen
e me
hanisms. We now allow the as-so
iated Agora debates to pro
eed up to a 
ertain timet , when we take a �nite snapshot of ea
h debate. Itwould be expe
ted that the truth status of � would bedi�erent under di�erent s
enarios. Not only are the as-sumptions and inferen
e me
hanisms di�erent, but notall arguments may have been presented to ea
h Agoradebate at the time of the snapshot. We are thus fa
edwith the question: Given these di�erent truth assign-ments under di�erent s
enarios, what overall truth-labelshould be assigned to �? Our problem is thus one ofaggregation a
ross multiple s
enarios, and we present amethod for doing this below. We permit s
enarios to beweighted di�erentially, for example, a

ording to theirrelative importan
e, their likelihood, or their feasibility,et
. However, to aggregate results arising from multiples
enarios, we need to ensure that ea
h distin
t s
enariois only 
ounted on
e, i.e. that no \double-
ounting" ofs
enarios takes pla
e. In other words, we need a meansto de
ide whether two s
enarios are the same or not.In (M
Burney & Parsons 2001b), we proposed a de
i-sion rule for determining whether two s
enarios weredistin
t or not. We do not repeat the rule here, butsimply assume that su
h a rule exists; 
onsequently, weassume that any two s
enarios may be assessed to bedistin
t or non-distin
t.De�nition 2: An Ensemble S is a �nite 
olle
tion ofdistin
t S
enarios fS1; : : : ;Smg relating to a 
ommondomain.We have adopted this terminology following its usein statisti
al me
hani
s by Gibbs (Gibbs 1902), whoformalized Boltzmann's (Boltzmann 1872) notion ofa possibly-in�nite 
olle
tion of hypotheti
al systemsvarying in their initial states; Gibbs' term is now stan-dard in statisti
al me
hani
s (Gallavotti 1999).Aggregating a
ross S
enariosDiale
ti
al status and measures of supportAssuming we are only dealing with distin
t s
enarios,in this se
tion we present a formalism for 
onsidering
laims a
ross multiple s
enarios. We assume we have anensemble S = fS1;S2; : : : ;Smg of m distin
t s
enarios,



ea
h Si with an asso
iated Agora debate Ai . As be-fore, we are interested in the diale
ti
al-argumentationstatus of a formula � in the domain, but a
ross all mdebates of the ensemble, not simply in one debate. Weassume that at ea
h time t , asso
iated with ea
h s
e-nario Si is a real-number, ait 2 [0; 1℄, 
alled its s
e-nario weight. We 
all ~at = (a1t ; a2t ; : : : ; amt ) the en-semble weights ve
tor at time t . We assume that thesum of the weights is 
onstant for all t . If the weightsare probabilities, this 
onstant sum will be unity. Notethat although we have allowed the weights to vary withtime, we assume that their assignment to s
enarios atany time t is independent of the diale
ti
al status ofpropositions in the 
orresponding debates at t ; in otherwords, the weights are assigned without knowledge ofthe arguments presented for and against 
laims in thedebates.What interpretation we give this measure dependsupon the meanings applied to the logi
al language, tothe ensemble, its s
enarios and their weights, and to ar-guments for 
laims in the 
orresponding Agora debates.Several interpretations are possible, e.g.:� The assumptions and 
laims may represent obje
ts inthe physi
al world, and the inferen
e rules physi
almanipulations of these obje
ts, su
h as a
tual 
on-stru
tion of new obje
ts from existing ones. S
enarios
an thus be interpreted as di�erent sets of resour
ingassumptions, with 
laims being well-defended in anAgora debate when the obje
ts they represent areable to be 
onstru
ted with the assumed resour
es.In this interpretation, the ensemble weights may bethe relative 
osts or bene�ts of di�erent resour
es, ortheir likelihoods of o

uren
e.� The s
enarios may represent alternative sets of rulesof pro
edure for intera
tion between a group of par-ti
ipants, for example in a legal domain or in auto-mated negotiation. Here the rules of inferen
e repre-sent di�erent allowable modes of reasoning, su
h asreasoning by analogy or from authority. The ensem-ble weights may represent the extent of 
omplian
ewith some set of prin
iples of rational dis
ourse, e.g.(Hit
h
o
k 1991), or with some normative e
onomi
theory.� The s
enarios 
ould represent di�erent des
riptionsof some un
ertain domain, for example di�erent s
i-enti�
 theories, with propositions being statementsabout the domain, and the inferen
e rules repre-senting di�erent 
ausal me
hanisms. The ensembleweights 
ould be relative likelihoods of o

urren
e,or valuations of relative 
onsequen
e or utility.Ea
h of these interpretations may be appropriate forparti
ular planning domains. For example, the �rst in-terpretation may be appropriate for roboti
 planningwhen the robots are un
ertain of their own resour
esand 
apabilities. In this 
ase, if the s
enarios are mu-tually ex
lusive and 
omprehensive of the possible out-
omes of the domain, then it would be reasonable to

assume that the ensemble weights, whether they be rel-ative 
osts or relative likelihoods of o

urren
e, to sumto unity a
ross the m s
enarios.Arguments presented for and against a 
laim � in anAgora debate Ai are presented at dis
rete time-points.Therefore, at any one time-point, t , various situationsare possible regarding the arguments for �. We 
an 
on-sider four su
h situations, whi
h together are mutually-ex
lusive and exhaustive: (a) At time t , no argumentshave been arti
ulated for �; (b) At time t , argumentshave been arti
ulated for �, but no rebuttals or under-
uts have yet been presented; (
) At time t , argumentshave been arti
ulated for �, and these have been rebut-ted or under
ut; (d) At time t , arguments have beenarti
ulated for �, for whi
h rebuttals or under
uts havebeen presented, but these have themselves fa
ed rebut-tals or under
uts, i.e. � is well-defended.In any one s
enario debate, of 
ourse, arguments maybe presented for both � and for :�, and, indeed, it ispossible for both to be well-defended simultaneously.In assessing the strength of our belief in an un
ertainproposition �, we usually take into a

ount argumentsfor and against the proposition, along with argumentsfor and against its negation. In our formalism, there-fore, we have 
ombined the four possible diale
ti
al ar-gumentation situations for � with the equivalent foursituations for :� in all possible 
ombinations; this givessixteen mutually-ex
lusive and exhaustive diale
ti
alstates. We now list these in in
reasing order of sup-port for �, with ea
h group of four states 
orrespond-ing to one of the situations just listed, and the statusof :� 
y
ling through the same list of four situationswithin ea
h group. For subsequent referen
e, we labelthe states 1; : : : ; 16, and for reasons of spa
e we presentonly some of these:1: At time t , no arguments have been arti
ulated for�, and :� is well-defended.2: At time t , no arguments have been arti
ulated for�, and arguments have been arti
ulated for :� whi
hhave also been rebutted or under
ut.3: At time t , no arguments have been arti
ulated for�, and arguments have been arti
ulated for :� whi
hhave not yet been rebutted or under
ut.4: At time t , no arguments have been arti
ulated for �,and no arguments have yet been arti
ulated for :�.5: At time t , arguments have been arti
ulated for �,but these have not yet been rebutted or under
ut,and :� is well-defended.6: At time t , arguments have been arti
ulated for �,but these have not yet been rebutted or under
ut,and arguments have been arti
ulated for :� whi
hhave also been rebutted or under
ut....16: At time t , � is well-defended, and no argumentshave yet been arti
ulated for :�.



We refer to the numeri
 labels as diale
ti
al status labels.Note that the order in whi
h these states are listed,although in
reasing in the degree of support for �, isnot de
reasing in support for :�. We now de�ne aset of sixteen diale
ti
al status fun
tions v id;t (:) whi
htogether 
hara
terize the status of the arguments for �in Agora debate i at time t , as follows:De�nition 3: Given an ensemble S = fSi ji =1; : : : ;mg, a time t and a 
laim �, the d -th diale
ti-
al status valuation v id;t (�) takes the value 1 pre
iselywhen � is assigned the status label d at time t in Agoradebate i, and zero otherwise, for d = 1; 2; : : : ; 16 andi = 1; 2; : : : ;m.Given this fun
tion, an obvious question is to whatextent does a 
laim have d -level support a
ross all thes
enarios in the ensemble. Be
ause we have weightedthe s
enarios by the ensemble weights ve
tor ~a , it makessense to weight the answer to this question also.De�nition 4: At a given time t and for diale
ti
alstatus label d = 1; 2; : : : ; 16, the d -Support Fun
tionEd;t (:) on the spa
e of formulae is de�ned as:Ed;t (�) = Pmi=1 ait v id;t (�)Pmi=1 ait :We say that Ed;t (�) represents the (weighted) d -level support for � at t , and we 
all ~Et (�) =(E1;t (�);E2;t (�); : : : ;E16;t (�)) the S-Support Ve
tor for� at time t . We next dis
uss the properties of thesesupport fun
tions.Properties of support fun
tionsThe S-Support Ve
tor shows the weighted diale
ti
alstatus of � at time t , a
ross the m debates 
ondu
tedunder the s
enarios in the ensemble S. We have thefollowing properties:Proposition 2: Given an ensemble S, for any timet and 
laim �, and for all diale
ti
al status labels d =1; 2; : : : ; 16, the d-Support Fun
tions satisfy:1. 0 � Ed;t (�) � 12. P16d=1 Ed;t (�) = 13. Ed;t (�) = Ek ;t (:�), where k = 20 � 4d + 15[d�14 ℄,with [x ℄ the integer part of x .Proof. The �rst two properties follow immediatelyfrom the de�nition of the d -Support Fun
tions. Thethird property follows from the fa
t the diale
ti
alstatus labels, although listed in order of in
reasingstrength for �, 
ould be readily re-arranged in in-
reasing order of strength for :�. This would resultin the sixteen 
ategories being pla
ed in the order:16; 12; 8; 4; 15; 11; 7; 3; 14; 10; 6; 2; 13; 9; 5; 1. The re-quired re-arrangement sends the d -th 
ategory to thek -th 
ategory, where k = 20 � 4d + 15[d�14 ℄, with [x ℄the integer part of x . 2

Note that these properties hold even when the ensem-ble weights are not probabilities, e.g. even if the weightsdo not sum to unity. Property 3 arises from the man-ner in whi
h we have de�ned the 16 diale
ti
al status
ategories for �, de�nitions whi
h in
lude statements ofthe status of both � and :�. As a 
onsequen
e, it is notne
essarily the 
ase that Ed;t (�)+Ed;t (:�) = 1. For, byproperty 3, the left-hand side of this equation is equalto: Ed;t (�) + Ek ;t (:�), where k = 20 � 4d + 15[d�14 ℄.If this sum is equal to 1 for some d , then, by Property2, we must have El;t (�) = 0 for all l 6= d ; k . This willonly o

ur if there are either no s
enarios in whi
h �is l -supported, or when the weights assigned to su
hs
enarios are ea
h zero.The ve
tor ~Et (�) = (E1;t (�); : : : ;E16;t(�)) des
ribesthe diale
ti
al status of a 
laim � at time t a
ross the ms
enarios in the ensemble S. If we were to plot these 16values as a histogram, with the values d = 1; 2; : : : ; 16along the horizontal axis, and the value of Ed;t (�) alongthe verti
al, we would have a fun
tion with the appear-an
e of a probability distribution over the values of dat time t . With this perspe
tive in mind, an obviousquestion is how 
an we summarize this information. Inother words, given these 16 values, what single valueprovides a summary of the diale
ti
al status of � a
rossthe m s
enario debates at time t? There are a numberof alternatives:Mode: The most 
ommon value(s), i.e. d̂mode;t =arg maxd=1(1)16 Ed;t (�).Median: The value(s) of d around whi
h the E-massis most evenly distributed, i.e.d̂median;t = arg mink=1(1)16 j k�1Xd=1Ed;t (�)� 16Xd=k+1Ed;t (�)jMean: The average value of d , i.e. d̂mean;t =P16d=1 Ed;t (�)d .As with any statisti
al estimation, whi
h of these es-timators is most appropriate will depend upon the ap-pli
ation. And like all summary statisti
s, these esti-mators potentially eliminate or obs
ure important in-formation. If there are relatively large values of Ed;t (�)for both small and large values of d , then there arehighly-weighted s
enarios in the ensemble where � hasstrong support and others where it does not. What willbe important in su
h a 
ase will be identifying the dif-feren
es between these s
enarios. In other words, thereis no reasons to believe that the ve
tor ~Et (�), 
onsid-ered as a probability distribution over the values of dat time t , will be well-behaved. Its mass may be dis-tributed unevenly (skewness), it may be multi-modal,and/or it may exhibit peakedness and large mass in thetails (kurtosis). Moreover, there is also no reason whysu
h properties should not persist as t in
reases: ingeneral, we may expe
t that di�eren
es in the s
enarioassumptions or inferen
e me
hanisms would lead to dif-ferential impa
ts in the 
orresponding Agora debates,



and that these Agora di�eren
es would persist, ratherthan disappear, over the long run, if the s
enarios in anensemble remain distin
t.Let us assume, then, that su
h di�erential impa
tsmay persist a
ross the m Agora debates. However,within ea
h debate, assume that the argumentsregarding some 
laim � eventually \stabilize" overthe long-run; i.e. that ea
h of the md diale
ti
alstatus values, v id;t (�), 
onverges to a �nite limit ast ! 1. Denote this limit by v id;1(�). Now, atea
h time t , we 
an 
al
ulate the S-support ve
-tor ~Et (�) = (E1;t (�); : : : ;E16;t (�)) from the valuesfv id;t (�)jd = 1; : : : ; 16 and i = 1; : : : ;mg. Will thevalues of this ve
tor also 
onverge to a �nite limit ast ! 1? We next show that this is the 
ase, providedthe ensemble weights ~at = (a1t ; : : : ; amt ) also 
onvergewith t .Proposition 3: Suppose S = fSi ji = 1; : : : ;mg isan ensemble, with weights ~at = (a1t ; : : : ; amt ). As-sume ~at 
onverges to a ve
tor of �nite limits ~a1 =(a11; : : : ; am1), as t ! 1. Assume further that, ford = 1; : : : ; 16, ea
h d-th diale
ti
al status value, v id;t (�),
onverges to a �nite limit, v id;1(�), as t ! 1. Then,ea
h d-Support Fun
tion, Ed;t (�) also 
onverges to a�nite limit as t !1, and this limit is:Ed;1(�) = Pmi=1 ai1v id;1(�)Pmi=1 ai1 :Proof. For simpli
ity of notation, we omit the argu-ment �. Suppose the sequen
e (Ed;t j t = 1; 2; : : :) doesnot 
onverge, as t ! 1. Then, there exists Æ 2 (0; 1℄su
h that 8t ; 9s > t with jEd;t � Ed;s j � Æ. Repla
ingthe support fun
tions with their de�nitions gives:jPmi=1 ait v id;tPmi=1 ait � Pmi=1 aisv id;sPmi=1 ais j > ÆRe
all that the weights sum to a 
onstant, say a, a
rossall time-values, and so:j mXi=1 ait v id;t � mXi=1 aisv id;s j > ÆaChoose � 2 (0;minfÆa; 1g). Now, both the ensembleweights aik and the diale
ti
al status values v id;k 
on-verge as k ! 1. Hen
e, we 
an 
hoose ti so thatjaiti � aik j < �m , 8k > ti . Let u1 = maxft1; : : : ; tmg.Likewise, we 
an also 
hoose si so that jv id;si �v id;k j < �,8k > si . Let u2 = maxfs1; : : : ; smg. But � < 1 and thestatus values v id;k are zero-one variables; so we musthave either v id;u2 = v id;k = 0 or v id;u2 = v id;k = 1, forea
h i . Now 
hoose t � max(u1; u2). Consequently, 9swith:Æa < j mXi=1 ait v id;t � mXi=1 aisv id;s j = j mXi=1 (ait v id;t � aisv id;s)j

� j mXi=1 (ait � ais )j < �This 
ontradi
ts our 
hoi
e of � and so our initialassumption of non-
onvergen
e of the d -Supportfun
tions must be false. A similar argument showsthat the in�nite limit value for ea
h sequen
e(Ed;t (�)jt = 1; 2; : : :) of d -Support Fun
tions is thatexpressed in the statement of the proposition. 2Similarly, we have 
onvergen
e of the three estimatorsmentioned above:Proposition 4: Under the same assumptions as forProposition 3, the mean, median and mode estimatorsde�ned above also 
onverge to �nite limits as t !1.Proof. By reasoning similar to that for the proof ofProposition 3. 2We de�ned the diale
ti
al status valuation fun
tionsv id;t (:) and the d -Support Fun
tions Ed;t (:) in terms ofthe 16 
ategories we identi�ed for the diale
ti
al argu-mentation status of a 
laim. Our 
ategories were mo-tivated by our intuitions regarding arguments and therelationships between them, and the 
ir
umstan
es un-der whi
h di�erent diale
ti
al relationships 
onstitutegreater or lesser support for a 
laim. However, these
ategories were not essential to our subsequent de�-nitions. Indeed, any mutually-ex
lusive and exhaus-tive partition of the spa
e of possible arguments 
ouldhave been used for our valuation and support fun
tions.Thus, our framework is quite general, permitting a di-versity of instantiations a

ording to di�erent intuitionsand obje
tives. ExampleGiven spa
e limitations, our example is very simpli�ed,illustrating only the 
ore aggregation idea and not theappli
ation to 
onditional planning. We 
onsider thesituation fa
ing an intending operator of global mobilesatellite-based tele
ommuni
ations servi
es (GMSS) in1990 (M
Burney & Parsons 2001
). Demand for theseservi
es was predi
ted to depend heavily on the ex-tent to whi
h terrestrial mobile 
ommuni
ations ser-vi
es would expand, both in terms of 
ustomer numbersand the geographi
 area under 
overage. One 
ouldimagine a number of s
enarios for the future, underea
h of whi
h there would be arguments for and againstthe 
laim that demand for GMSS would be large. We
onsider the following ensemble, with arguments arti
-ulated at time t as indi
ated:S
enario 1: Terrestrial mobile servi
es expand rapidlyand 
ustomers wish to use their phone everywhere.Argument: Large numbers of terrestrial 
ustomersleads to high demand for GMSS outside terrestrial
overage.



S
enario 2: Terrestrial mobile servi
es expand rapidlyand 
ustomers are happy with the terrestrial 
over-age. Arguments: 1. Large numbers of terrestrial
ustomers leads to high demand for GMSS outsideterrestrial 
overage. 2. However, large geographi

overage for terrestrial servi
es leads to lower demandfor GMSS, as most areas have terrestrial 
overage.S
enario 3: Terrestrial mobile servi
es do not expand.Argument: Small geographi
 
overagemeans high de-mand for GMSS.Let � be the 
laim: \GMSS experien
es high de-mand." In ea
h S
enario, we have an argument for� at time t . In S
enario 2, however, we also havean argument against �, but this 
ounter-argument isnot itself 
ountered by this time. Thus, � is well-defended only in S
enarios 1 and 3 at time t , and inneither s
enario have arguments yet been presented for:� at this time. Now, re
all that s
enario weights areassigned independently of the arguments under ea
h,and assume this ensemble is assigned the weights ve
-tor (0:7; 0:7; 0:3) at time t . We 
ould therefore 
al-
ulate the 16-Support Fun
tion for � at t as follows:E16;t (�) = (0:7 + 0:3)=(0:7 + 0:7 + 0:3) = 0:59. Thisvalue is the weighted mass of the ensemble in whi
h �has the strongest position, i.e. where � is well-defendedand where no arguments have yet been arti
ulated for:�. This example has not illustrated the working ofthe argumentation apparatus within the Agora debatesunder ea
h s
enario, but has simply shown the basi
me
hanism for aggregation a
ross s
enarios.4Dis
ussionBuilding on prior work using diale
ti
al argumentationas a qualitative representation of un
ertainty, we havepresented an argumentation-based formalism for rea-soning a
ross multiple future s
enarios. Our formalismprovides a basis for the 
omparison of di�erent plans,when these are 
onditional on assumptions about the
urrent or future states of the world. The state-spa
eexplosion problem pre
ludes the 
omplete arti
ulationand 
omparison of all possible 
onditional plans in anyrealisti
 domain. Instead, a resour
e-
onstrained plan-ner may reason only about a subset of all the planspossible, by 
onsidering only some of the possible fu-tures. Our formalism enables a planner to group futurestates with 
ommon assumptions into a bundle 
alleda s
enario, and then to reason a
ross a 
olle
tion ofs
enarios in a 
oherent manner.Our previous work had arti
ulated a set of dialogue-game rules for the 
ondu
t of debates over s
ienti�
or other domains, drawing on theories of rational hu-man dis
ourse (M
Burney & Parsons 2000; 2001a). We4For the re
ord, in reality the very high growth of ter-restrial mobile servi
es witnessed worldwide over the lastde
ade did not lead to high demand for GMSS, a fa
t whi
h
ontributed to the business failures of the main intendingGMSS providers, Iridium, ICO and Globalstar.

had also previously de�ned s
enarios in terms of the as-sumptions and inferen
e me
hanisms available to par-ti
ipants in su
h debates, and proposed a de
ision ruleto assess whether two given s
enarios are distin
t ornot (M
Burney & Parsons 2001b). With su
h a de
i-sion rule, we are able to ensure that any pro
edure foraggregation a
ross s
enarios 
ounts only distin
t s
enar-ios. In this paper, we have proposed a ve
tor measureof the degree of support generated for a 
laim at a giventime in a �nite 
olle
tion of debates 
ondu
ted underdi�erent s
enarios. This ve
tor assesses the weightedproportion of s
enarios in whi
h the 
laim is supportedat that time, for di�erent degrees of support. We haveexplored some of the properties of this ve
tor measure,and have found suÆ
ient 
onditions for its 
onvergen
eto �nite values, as time in
reases to in�nity. These 
on-ditions in
lude the requirement that the debates underea
h s
enario individually stabilize in their degree ofsupport for the 
laim in question, even though theremay be great di�eren
es from one debate to another.It is possible to view the di�erent s
enarios as dif-ferent possible world-states, and to view the weight at-ta
hed to ea
h s
enario as the probability of its o

ur-ren
e. This is one interpretation of the Boltzmann-Gibbs notion of ensemble in statisti
al me
hani
s,whi
h is why we adopted this terminology for our 
ol-le
tions of s
enarios. Under this interpretation of ourframework, assessment of the weighted degree of ar-gumentation support for a 
laim a
ross all s
enarios isanalogous to assessment of the \probability of provabil-ity" of the 
laim (Pearl 1988). In our framework, \prov-ability" of a 
laim 
orresponds to saying the 
laim \hasa de�ned degree of argumentation support in an Agoradebate 
ondu
ted under some s
enario", and \probabil-ity" 
orresponds to \the relative weight of the s
enarios
ontained in some ensemble in whi
h this is the 
ase,"given an ensemble weighting. Similarly, our approa
hmay be seen as an argumentation analog of the Entsmodel of belief of Paris and Ven
ovsk�a (Paris & Ven-
ovsk�a 1993), in whi
h an agent's belief in a 
laim isdetermined by imagining possible worlds in whi
h the
laim is de
ided, either true or false, and then settingits belief in the 
laim equal to the proportion of possibleworlds in whi
h the 
laim is true.There are several possible extensions to the work pre-sented here. Firstly, it will be valuable to implementour framework in 
onjun
tion with a 
onditional plan-ning algorithm, su
h as CNLP (Peot & Smith 1992) orCassandra (Pryor & Collins 1996). Se
ondly, we haveassumed that s
enarios are based on di�erent sets ofassumptions 
on
erning beliefs and inferen
e rules, butwe have not dis
ussed how su
h assumptions should bemade. This issue is related to the problem of sele
tion of
ontingen
ies in 
onditional planning (Onder & Polla
k1996). Finally, our de�nition of the strength of sup-port for a 
laim assesses this status within ea
h Agoradebate and then aggregates a
ross all the debates. Al-ternatively, assessment pro
edures 
ould s
an a
ross alls
enarios initially, before aggregation. For example, a




laim may be de�ned as having the strongest supportif an argument for it is well-defended in at least onedebate, and if arguments presented for it in other de-bates where it not well-defended fa
e no atta
kers orrebuttals.A
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