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Abstract

The Personal Router is a mobile personal user agent
whose task is to dynamically model the user, update its
knowledge of a market of wireless service providers and
select providers that satisfies the user’s expected prefer-
ences. The task of seamlessly managing the procure-
ment and execution of short or long term connection
for a mobile user is further complicated because mobile
users performs multiple, concurrent and varied tasks in
different locations and are reluctant to interact and pro-
vide subjective preference information to the agent. In
this paper we present a detailed description and a formal
model of the problem. We then show how the user mod-
eling problem can be represented as a Markov Decision
Process and suggest reinforcement learning and collab-
orative filtering as two candidate solution mechanisms
for the information problem in the user modeling.

Introduction

The Personal Router (PR) project is a multi-disciplinary re-
search effort whose overall goal is to analyze the technol-
ogy and policy interactions that can occur in future wire-
less protocol and simultaneously assist in designing equi-
table multi stake-holder policies (Clark & Wroclawski 2000;
Internet & Telecoms Convergence 2002). A crucial part of
this goal is the technological infrastructure that supports mo-
bile access to wireless services. Such an infrastructure poses
a number of challenges along various dimensions including:

e network support for mobility and fast hand-off

e service description and advertisement mechanisms
e pricing policies

e determination of quality of service

e network traffic monitoring

e user modeling

The last problem is the main focus of this paper. We are
interested in developing agents that model their user’s re-
quirements in order to select, or negotiate with, wireless ser-
vice providers. In this paper we present a general description
of the user modeling problem in a wireless access domain,
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concentrating on an in-depth problem description together
with some preliminary single and multi-agent solutions. In
particular, the underlying problem addressed in this paper
is the problem of decision making with uncertain and in-
complete information. The sources of scarcity and incom-
pleteness of information in the wireless domain are due to:
a) changing user preferences given different service and re-
quirement contexts; b) the spareness of user preference data
given the combinatorially large elicitation space and c) the
variability inherent in the network itself resulting in uncer-
tainties by both the buyers and the sellers of a service as to
the guarantees that can be made over the quality of a ser-
vice (QoS). One net result of such sources of complexities is
our inability to use classical utility analysis techniques, such
as conjoint analysis, to elicit user preferences (Keeney &
Raiffa 1976; 1980). Furthermore, classical decision analysis
techniques have a number of limitations such as “clamping”
the decision environment to include a set of manageable and
well behaved features (Doyle & Thomason 1999) .

The contributions of this paper are mechanisms to rep-
resent and assist agent’s decision making in light of such
classes of uncertainties. To achieve this we present a formal
description of the wireless service selection problem that
is implementable as a Markov decision process. We then
present some initial contributions on how to integrate learn-
ing and social mechanisms within the MDP framework that
model PR’s incremental updating of individual user prefer-
ences given information uncertainty and incompleteness.

The paper is organized as follows. An example scenario
is briefly described in the first section followed by its fea-
ture. We then present a formal model of the service selection
problem that gives us a language for describing the problem
in an unambiguous manner. We then show how this prob-
lem description can be computationally represented within
a Markov Decision Model followed by how an agent might
use the combination of decision mechanism of an MDP and
other information mechanisms to develop a model of the
user. In the penultimate section we informally touch on
the possibility of modeling the interactions in the entire sys-
tem, consisting of the user and the agent, as interactions in a
Markov game. Finally, we presents our conclusions together
with the directions of future research.



An Example Scenario

Consider a user who is going to meet a friend for lunch at
a restaurant. However, the user does not know how to get
to the restaurant, so on his way out of the office he uses his
web browser on his PDA to find the location of the restau-
rant. The PDA notifies a device, which we will call the
Personal Router (PR), that its current activity is PDA web
browsing and requests network service. The PR is the inter-
face between user devices and the Internet that, for wireless
services at least, is currently organized in hierarchical layers
consisting of base stations that provide wireless services to
individual users who in turn receive services from upstream
ISPs. Assume that the PR knows about three different avail-
able service profiles,! description of services provided by
access providers: the wireless service provided by the user’s
company, Verizon’s basic wireless service, and Verizon’s
premium service. Based on the user’s past behavior, the PR
knows that he prefers his company’s service if it’s available.
The PR connects to his company’s access point and authen-
ticates itself. All of this happens in a fraction of a second.
The user then uses his web browser to get directions to the
restaurant. When he is done the web browser tells the PR
that it no longer needs Internet service. The PR disconnects
from the company access point.

Assume now that the user gets to the restaurant a little
early, so he turns on his MP3 player and listens to some
music. He likes what he hears and asks his MP3 player to
download more songs by the current artist. The MP3 player
requests that the PR select the best service for the current ac-
tivity, bulk file transfer. While the user was walking, the PR
was collecting service profile announcements from access
points broadcasting their available services. The PR knows
of three different service profiles in this area: the restaurant’s
wireless service and Verizon’s basic and premium services.
Assume that the user has never been to this location before,
but other PR users have. The PR consults a mechanism that
maintains and updates group preferences and selects from
this information source Verizon’s basic service. However,
the user is dissatisfied by the current service, noticing that
the music is downloading slowly, so he presses a button on
the PR to indicate that he is dissatisfied with the service qual-
ity. Again the PR refers to the group preference database and
determines that the restaurant’s service is higher quality than
Verizon’s basic service. The PR switches to the restaurant’s
wireless service. However, the user is still dissatisfied with
the performance and asks for a higher quality profile once
again. The PR selects the premium service.

In general, the goal of the PR is to deliver services to the
user that perfectly satisfy his/her requirements and minimize
their interactions with the system. However, in the absence
of perfect information about the user the PR is likely to se-
lect inappropriate services that causes the user to experiment
with the attributes or features of a PR selected service by
continually interacting with the system. The features of a
service we consider important in our applications are both
the perceived quality and the price of a service. Users are

!'This knowledge is not embedded into the PR but is dynami-
cally updated by the PR.

given an interface to manipulate these features as free vari-
ables via a better and cheaper buttons on the PR respec-
tively. The assumption we make is that user will choose
better or cheaper services if the current selected service is ei-
ther of poor quality or high price respectively. This process
of interaction with the PR may continue until the PR learns
to select a service that satisfies the user’s current tasks and
goals.

Features of the Scenario

We identify a number of important problem features in the
above scenario that form the basis of the system require-
ments and constrain the space of possible system design.
The problem feature are:

e multi buyer seller marketplace for J finite number of
wireless services, where M different service providers
(ISPs and/or individuals) sell service profiles with differ-
entiated price and quality features to /N number of buyers.
Furthermore, the trading mechanism can either be nego-
tiation or take-it-or-leave it, and can occur over both a
spot market (short term) and a contract (long term). How-
ever, although a user may have a long term contract for
a service s/he can also select/negotiate a service from the
current short term market.

e repeated encounters between buyers and sellers.
Whereas sellers are likely to be stationary, buyers on the
other hand may visit locations repeatedly. One implica-
tion of this feature is that complicated incentive mecha-
nisms may not be needed in this market to prevent gaming
of the system by either a seller or a buyer. In turn, cooper-
ation may become self enforcing through some reputation
mechanism given encounters between buyers and sellers
are repeated.

e uncertainty associated to not only the buyers and sellers
decisions and actions, but also the agent’s model of the
user. Buyers may not be sure of their preferences for a
service. For example, a buyer may not be sure whether
she likes a service until she tries it. Conversely, due to
the complexities of network model a seller may not be
able to guarantee the quality of service that they advertise.
Finally, users are unwilling and/or unable to extensively
interact and communicate their preferences to the PR.

e complex service profiles advertised by service providers.
ISPs may offer services with elaborate descriptions of
quality and price. Quality may be described objectively
in terms of bandwidth and latency, or with a subjective la-
bel such as “Gold Service”. Service pricing is likely to be
some complicated function of a number of factors. For ex-
ample, cost may be given as a simple price per unit time,
or it may depend upon factors such as time of day, amount
of usage, and previously signed contracts. The PR must
be able to understand these types of service profiles using
some network and user models.

o context of a user, defined by the following state variables:

— goals (or activities) of the user (e.g. arranging a meet-
ing, downloading music). Users may have multiple
concurrent goals/activities.



— the class of application the user is currently running
in order to achieve her goals (e.g. reading and send-
ing emails, file transfer). Furthermore, different ap-
plications have different bandwidth requirements and
can tolerate service degradation differentially (Shenker
1995).

— the urgency of the user request (e.g. urgent, flexible,
intermediate)

— the location of the user. We distinguish two possible
user location states: nomadic and stationary. In no-
madic state a user moves through locations speedily
(e.g in a taxi). Therefore overhead costs should be min-
imized during service provisioning given users require
the services instantaneously. Therefore, PR needs to
be reactive. Conversely, in a stationary state a user
is in one location (e.g in a coffee shop). Therefore
communication costs can be trade-off against negoti-
ation/selection of better services. PR can therefore pro-
vision more resources in the course of service selection
process. In either state the PR needs to be pro-active in
updating its knowledge of service profiles.

o rapidly changing context of a user. The rate at which the
PR switches between service profiles and the speed with
which the user changes goals and applications makes it
difficult to learn user preferences. The problem is further
complicated because the different user activities and ap-
plications have several different temporal profiles. The
PR needs to learn how much a user likes a service, but the
user evaluates services based on the performance of the
network over the last several seconds or minutes.

continuous service switching by a user because of a
combination of mobility and changing user goals. There
also exists some switching costs associated with both
dropping a profile and handover to another provider.

minimal user interface between the user and the PR. The
user interacts with the agent via an extremely simple user
interface (UI) that consists of only three buttons: better,
cheaper, and undo. These buttons provide feedback to the
personal router about the current service and also request
that the PR switch to a different service. The user does not
express preferences explicitly; instead, the PR must learn
as much as possible about user preferences from the way
the user interacts with the UL The PR in turn may provide
feedback information to the user in terms of prices and
possibly quality of a service, although feedback on the
quality of a service is more likely to be based on the user’s
perception of how well the applications are running.

user tolerance to suboptimal decisions in service selec-
tion. Because the operating costs of a single service for
the seller is almost zero and the period of access demand
for a buyer can be short, compared to non-wireless con-
tract services, then prices for spot market wireless ser-
vices are likely to be relatively smaller compared to prices
for other types of commodity goods. Therefore users
maybe more tolerant of suboptimal services (or noise in
the service selection process) because the cost of deci-
sion errors are low. Another secondary implication of low

prices is that coordination costs may be higher than ser-
vices prices thereby creating a barrier to coalition among
the buyers to drive down prices.

e distributed group preference and network models
learned by the PR in order to improve the accuracy of
service selection. The PR uses group preferences to infer
user preferences. It also uses information about the net-
work gathered by nearby PRs to improve its knowledge
about which network services are available. The proto-
cols used for learning the group and network models must
be efficient and be able to deal with imperfect informa-
tion and inaccessible PRs in the network. The limited re-
sources of the PR makes it important that we identify the
most useful data to retrieve and retain.

Service Selection Problem

Figure 1 shows the functional architecture for the service
selection component of the PR. The functional components
and their interactions that make up the PR are shown inside
the dashed box. The aim of this work is to define represen-
tation and algorithms for the problems of service selection
given individual and group models. The inputs to this selec-
tion function are:

Personal
Router
L Individual Group
Applicatior Model Model
I
Serviceg Service
Profile Selection
1
Service Network Traffic
Provide Model Monitor
\ J

Reputation
Model

Figure 1: PR Architecture

e set of service profiles, derived from the network model.
For current purposes we will assume the selection pro-
cess has access to some well defined set of service pro-
files P derived from a set of mechanisms for modeling
the network. However, due to the short range nature of the
wireless communication the composition of the set in any
instance of time can change because the location of the
user changes. Furthermore, the complexity of a service
description can vary according to a number of variables.
One possible description scheme is in terms of the price
and bandwidth of the service profile, where bandwidth it-
self can be described in a canonically in terms of other



network level service features such as peak rate, average
burst, etc. The important point is that different users are
likely to experience different subjective quality associated
with the bandwidth.

e a model of the individual user and their preferences over
the set of profiles available in the market. This input is
described in detail below.

e a model of the group preferences

e application requirements. The selection of a wireless ser-
vice is not only dependent on what the user requires but
also the requirements of the application. However, since
the behaviour of the application is under the control of the
application designer its behaviour is therefore assumed
to be more predictable than the user and can be gener-
ally modeled by an application’s elasticity profile to band-
width levels (Shenker 1995). For instance, text based ap-
plications such as email, ftp or telnet are called elastic ap-
plications because they can tolerate degradation of service
quality but still operate, and their response profile exhibit
decreasing marginal rates of improvement with increas-
ing bandwidth. Conversely, inelastic applications, such
as video conferencing, can only operate within a strict re-
gions of bandwidth levels. We will concentrate on the
user requirement problem in this paper.

A Formal Model of the Service Selection Problem

A formal model of the problem above is developed in this
section. The goal of this model is not to commit to or spec-
ify domain level details but instead provide a language for
specifying implicit and explicit objects that exist and rela-
tions that hold in the problem description above. By implicit
objects we mean objects whose true values are inaccessible
to the agent. For example, the agent may not know the goal
or time deadlines of the user but as designers of agents we
can develop agents that have probabilistic representations of
and the ability to reason over such objects.

We condition each service selection process instance on
the current context of the user. As mentioned above a user
context includes the current running application set, the time
deadline and the location of a user for current goal. We let
C represent the set of all possible contexts and C9 C C be
the set of contexts that are partitioned by the user goal g.
An element ¢ € C' is composed of the tuple ¢ = {8,, ),
where (3, and § represent the set of running applications,
user deadlines and locations respectively. Then, a particular
user context ¢d € (Y, partitioned by the goal g, is defined
by the tuple ¢? = {39,~9,40), where 39,7 and § represent
the set of running applications compatible with current goal
g, the user deadline for current goal g and the concrete lo-
cation of the user respectively. The location of a user at any
instance of time is represented by both the physical location
as well as the temporal location.

Next we let P represent the set of all possible service pro-
files, where each element of this set P € P is composed
of n features f;, P = (f1,-..,fn). Because service pro-
files available at any time change due to both user roam-
ing (given a nomadic user) and changes in service offerings

(given service providers’ uncertainty in the state of the net-
work) then we assume the (physical and temporal) location
4 of a user partitions the set of possible service profiles avail-
able. Therefore we let P® € P represent the subset of pos-
sible service profiles available to the user in location 4.

Let R represent the set of all requirements for all applica-
tions (elastic, inelastic or adaptive). Further let the set of all
requirements of a given application, R € R, be given by the
set of m service profile features or R = (f1,..., fm). We
then let R®” C R represent the subset of all requirements of
all applications R that are being currently used by the user
in context ¢ for goal g.

Next let the set of all user preferences be given by U. We
then let each element of this set, U € U represent a unique
orderings over all the possible pairs of service profiles P, or
U= (P, > Pj,...,P_1 = P)?* for all combination of
profiles. Similarly, the current user context and goal parti-
tion the set of all possible preference orderings, or U¢* C U.

The ordering generated by U can then be captured by a
utility function u such that:

U(PZ) > U(P]) iff P; > Pj 1)

One possible utility function is the simple weighted linear
additive model:

u’ (P) = Z wE;U(PU) ?2)
=1

where u¢’ (P;) is the utility for profile i in context ¢ given
user goal g. wfj in turn is the weight that the user attaches
to feature j of profile ¢ in context ¢ and user goal g. Finally,
v(P;;) is a function that computes the value (or goodness)
of a feature j of profile 3.

Finally, we can also model the utility of switching to a
new service profile as:

u”’ (P, = Py) = Bu® (Py) — (u" (Py) + cost(P; = P;))  (3)

where Euffj is the expected utility of switching to a new

profile j and cost(P; — P;) is the (switching and monetary)
cost of switching from profile ¢ to profile j.

Representing the Problem as a Markov
Decision Process

The aim of this section is to show how the above for-
mal model of the PR problem can be described within
the Markov Decision Process (MDP) modeling framework
(Kaelbling, Littman, & Moore 1996; Boutilier, Dean, &
Hanks 1999). An MDP is a directed acyclic graph com-
posed of a set of nodes and links that represent the system
states S and the probabilistic transitions L, amongst them re-
spectively. Each system state S € S is specified by a set of

*The operator > is a binary preference relation that gives an
ordering. For example, A > B iff A is preferred to B.



variables that completely describe the states of the problem.
The value of each state variable is either discrete or contin-
uous but with the constraint that each state’s variable values
be unique. In our problem each system state S € S is fully
described by the combination of:

o the user context (¢? = {89,~9,§)) for goal g

e the set of profiles available in the current location (P?)
and

o the user interaction with the PR, which we will represent
by the variable 1.

Therefore, a complete description of a system state at time
tis:

St = (B9,~49,t,loc?, P, I) 4

where 89,9, t,loc? represent the context of the user for
goal g. Note that for reasons to be given below we disaggre-
gate 4, the user location and time, to two state variables ¢ and
loc?, the location of the user in temporal and physical space
respectively. We can also specify user goals g in a similar
manner by a subset of system states SY C S.

The other element of a MDP is the set of possible actions
A. Actions by either the user, the PR or both will then re-
sults in a state transition, that change the values of the state
variables (see tuple 4), to another state in the set of all possi-
ble states S. In an MDP these transitions are represented by
links L between nodes that represent the transition of a sys-
tem state from one configuration to another after performing
some action. Additionally, each link has an associated value
that represents the cost of the action.

In our problem the set of actions A available to the user u
are defined by the set A% = {Alo¢ AP AT ¢} represent-
ing changes in the user location, set of running applications,
service quality and/or price demand and no action respec-
tively.> The consequences of user actions are changes in
values of state variables 89,9, t,loc9, P, I; that is, changes
in either:

o the user context (changes in running applications, the time
deadlines for connections, the current time, the user loca-
tion and/or price/quality demands, observed by interac-
tion with the PR via better and cheaper responses) or

o the set of currently available profiles or
e the combination of the state variables.

Conversely, the set of actions A available to the PR are
defined by the set APE = {AFPi=Fi ¢} representing PR
dropping service profile ¢ and selecting j and no action re-
spectively. The consequence of a PR action is a change in
the likelihood of future user interaction I, where decreasing
likelihoods of user interactions is more preferred.

3Note, that since time is an element of the state description then
the system state always changes in-spite of no action by either the
user or the PR or both. Furthermore, the granuality of time is likely
to be some non-linear function of user satisfaction, where for ex-
ample time is finely grained when users are not satisfied with the
service and crudely grained when they are satisfied. However, the
granuality of time is left unspecified in our model.

Additionally, in an MDP the transitions between states
are probabilistic. Therefore there exists a probability dis-
tribution Pr,; (Sk|S;) over each action a; reaching a state
k from state .

Finally, we can compute the utility of a service profile
i in context ¢ for goal g (or u®’ (P;)—see equation 2) as
the utility of being in a unique state whose state variables
(89,7v9,t,loc?, P, I) have values that correspond to service
i in context ¢ = {39,49,t,loc?}. The utility of this corre-
sponding state, say state m, is then referred to as U(Sy,).
However, since in the formal model above a goal partitioned
the set of all possible contexts, that in turn partitioned the
ordering of profiles, so likewise the utility of a state m is
computed by the function U (P}, ¢?), the conjunction of both
the the utility of a context given a user goal, U(c?) and the
current profile given the context (U (P;|c?)). That is:

U(Sm) = U(Bi|C?) ANU(C?) )
where A is the combining operator (Shoham 1997).

Example MDP of PR Service Selection Problem

A subset of the state space (nodes) and transition paths (ver-
tices) is shown in figure 2 below. Bold and normal links
represent the action performed by the user and the PR re-
spectively. Assume the current state of the system at time £ is
given by the node S;, representing a unique context, profile
set and user demand S; = (89,~9,t,loc?, P, I). At the next
time step ¢ + 1 the PR may decide to select another service
profile P’ for goal g because the utility of state S, = 0.8
is greater than S; = 0.2. However, consequences of actions
are in-deterministic in an MDP. Therefore assume that the
PR’s action APE = AP=P results in the state transition
Si — Sk, corresponding to Sy, = (89,49,t,loc?, P, I),
with probability 0.95 (or Pr , ,_ » (Sk[Si) = 0.95). How-
ever, due to noise in the selection process there is still a 5%
chance that action AP=¥ results in another state S; that

corresponds to some other profile P’ being used. Therefore
the expected utility of state Sx, EU(Sk), is computed as
EU(Sk) = Pr,pe (Sk|S:)U(Sk) = 0.95 x 0.8 = 0.76.
Next assume the user takes an action at the next time step

Figure 2: An Example of a Portion of a State Space

t+2 from either S'+2 = S (PR selected P") or §+2 = S,
(PR selected P ). The user may at any moment in time take



many simultaneous actions represented by the compound ac-
tion A* = {Al°¢ x AP x A}, Therefore for explana-
tory purposes we only consider the user price quality de-
mand action, AZ. Further assume that states [ to o represent
changes in only quality demand profile (observed as “bet-
ter” request). Then, the value of the links from Sy, represent
the belief model of the PR of what is the likelihood of the
user requesting different service quality services (here S,
and S,) given the current service profile P’ at state Sj.

The problem of estimating and updating the (link) prob-
abilities and (state) utilities of an MDP is described in the
sections below.

Reasoning with MDPs

The MDP formulation of the service selection problem gives
us a representational framework to model the user behaviour
and preferences as the combination of state transition proba-
bilities and utilities. Reasoning with an MDP (or user mod-
eling in our problem) in turn is taken to mean both:

e solving an MDP and

e updating the transition and utility estimates over the state
space.

However, we first consider the problem of intractability in
the size of the state-space, a serious consideration in MDP
problems, before returning to the problem of how to opti-
mally reason with MDPs.

Pruning the State-Space

Theoretically each state of a system can access/transition to
any other possible state. That is, we can represent all pos-
sible states of the system (or possible worlds) through con-
struction of a graph of nodes and links of an MDP that are
fully connected.

However, in practice computing optimal policies when
there are exponentially large number of states and transi-
tions is intractable. Therefore we use domain level struc-
tural assumptions to make the solution to the MDP problem
tractable. The structural assumption we make is that natu-
ral environmental constraints limit the number of possible
states that can be reached from any other state.* Firstly,
we partition the transitions of an MDP into its temporal,
spatial, application and user demand dimensions (or parti-
tioning using elements of the context of the user). We then
make the following assumptions about the structure of the
MDP. Along the temporal dimension the MDP we consider
is non-stationary but instead “unfolds” sequentially in time.
The assumption we make about the spatial dimension of the
problem is that the user cannot be in different locations at the
same time. Therefore, states with different location but same
time values are unreachable. Similarly, running of applica-
tion/s is not instantaneous but unfolds in time. Therefore
states where an application is running and simultaneously
turned off are unreachable. Finally, users also require time

* Assumptions essentially prune the transition/links between
states and can be viewed functionally to be equivalent to infeasi-
ble regions in constrained optimization problems.

to experience the services. Therefore, there are not only no
transitions to states with different demand profiles in same
time frame sanctioned, but also there is likely to be some
increasing or decreasing likelihood of changes in demand
over time given by some probability distribution. Finally,
the transitions in the state-space can be further reduced by
assuming that, for a given granuality of time, only states
adjacent in time are directly connected and all other future
states are reachable via an indirect path (i.e. future states
cannot be reached in a single step).

Solving an MDP

On each time step solving an MDP is simply defined by find-
ing a policy 7 that selects the optimal action in any given
state. There are a number of different criteria of optimality
that can be used that vary on how the agent takes the future
into account in the decisions it makes about how to behave
now (Kaelbling, Littman, & Moore 1996). Here we consider
the finite horizon model, where at any point in time ¢ the PR
optimizes its expected reward for the next h steps:

h

E() ) 6)

t=0

where r is the reward the PR receives which in our prob-
lem domain is the utility of the user, observed as interactions
with the cheaper/better button. Therefore, the model allows
the contribution derived from future h steps to contribute to
the decisions at the current state. Furthermore, by varying
h we can build agents with different complexities, ranging
from myopic agents h = 1 to more complex agents b > 1.

Given a measure of optimality over a finite horizon of the
state-space solving an MDP (or selecting the best policy) is
then simply selecting those actions that maximize the ex-
pected utility of the user (see example in section above):

h
T = arg max E(Z Up) @)

t=0

Such a function is implemented as a greedy algorithm.

Estimating and Learning Probabilities and Utilities

The other component of reasoning with the MDP is how
to form an initial estimate and subsequently update model
parameters values (transition probabilities and utilities) that
can be used algorithmically given the MDP representation.

One single agent solution to the problem of deriving the
agent’s initial beliefs over the state space is to simply use
domain knowledge to represent the transition probabilities
along each dimension of the MDP as some distribution with
a given mean and standard deviation. For example, as a first
case approximation we can assume that the probability of
a user changing location increases with time. Likewise, an
agent can form some initial belief over the utility of each
state according to some permissible heuristic such as equal
utility to all states.



An alternative solution to the belief and utility estima-
tion problem is to use multi-agent mechanisms to spec-
ify missing or uncertain user information needed for the
agent decision making. For example, collaborative filter-
ing mechanisms have been used extensively to make individ-
ual recommendations based on group preferences (Resnick
et al. 1994; Breese, Heckerman, & Kadie 1998). Simi-
larly, we can use the user preference information from a
large number of users to predict state values (for example
predicting the perceived quality for a service profile based
on the preferences of users with similar quality functions)
or transition probabilities (for example likelihood of chang-
ing locations). Furthermore, such a mechanism can ei-
ther be centralized or decentralized. In the former mecha-
nism each PR send its user preference information to a cen-
tralized recommendation server (RS). Individual PRs can
then query the RS for state information (such as quality
estimates of service profiles) and The RS then attempts
to identify users with similar quality functions and gener-
ates a quality estimate. Alternatively, in a decentralized
mechanism (or gossiping/epidemic mechanisms (Pelc 1996;
Hedetniemi, Hedetniemi, & Liestman 1988)) each PR com-
municates not with a center but with a small subset of in-
dividuals in a Peer-to-Peer manner. The choice of which
mechanism is often dependent on the trade-offs involved in
the system properties (such as flexibility, robustness, etc.)
and the quality of the information content of the mechanism.

These initial beliefs over transitions and utilities, derived
from a multi-agent mechanism, can then be subsequently
updated using reinforcement learning. In classic reinforce-
ment learning this is achieved by using the reward signal r to
incrementally update the true estimate of the costs from each
state to the goal state. Then the PR maximizes the expected
reward given the beliefs. However, under the reinforcement
mechanism the agent needs to not only know the goal of the
user, but the mechanism also requires the goal context to be
repeated in time so that the PR can learn the true costs of
paths to the goal state in an incremental fashion. Unfortu-
nately, these two assumptions cannot be supported by the
service selection problem because of complexity in reason-
ing about the user goals (since user may not be able to for-
mulate and/or communicate goals) and the low likelihood of
user having same repeated goals for the PR to learn from.
However, the PR does have access to the utility information
at each state. Therefore, rather than using the value of the
goal state as the reference point in the optimization problem
we instead propose to use the value of each state explicitly.

Cooperative Extensive Games

The above model and tentative solution was framed from the
PR problem perspective—how to model the user. We believe
the system of both the user and the PR can be modeled as a
game, or more precisely as a cooperative bi-lateral, stochas-
tic extensive game between the PR and the user (Rubinstein
1982; Littman 1994). Work to date has looked at how non-
cooperative and strategic games can be implemented with
a MDP framework (Littman 1994). In these strategic mod-
els both players are non-cooperative, each making a single
move simultaneously. Furthermore, each agent chooses a

strategy from a set of possible strategies that is in (Nash)
equilibrium. However, due to errors in execution the out-
comes reached are stochastic. Our problem on the other
hand is not only regulated by a sequential protocol of user-
PR interactions (referred to as extensive games) but also the
nature of the game is not adverserial meaning that the agents
can agree to a course of action and be mutually commit-
ted to that agreement. Therefore the information set of the
agent not only reflects the true moves by the user (i.e the
user is not being strategic in its interactions with the PR) but
also increases at each step of the game. Equilibria of exten-
sive games have been modeled for non-cooperative games
(as sub-game perfect equilibrium (Rubinstein 1982). How-
ever, the equilibria of these games attempts to remove un-
likely threats that players can make at each step of inter-
action. Therefore, since the user is unlikely to be strategic
then other equilibria solutions must be sought to analyze the
steady state of the PR-user interaction.

Conclusions and Future Work

In this paper we described a user-modeling problem for
the domain of wireless services. An agent, called a Per-
sonal Router, was proposed as a solution to this problem.
We showed how the nature of the problem bounds the in-
formation set of the agent. We then presented a formal
model of the service selection problem and showed how
it can be captured in an MDP representation, defined by
(S, A, T,C,U), the set of all possible system states, user
and PR actions, transitions between states, costs of action
and utility of states. We also hypothesized on how we can
solve the information problem using multi-agent and rein-
forcement learning mechanisms.

There are a number of future directions. Firstly, we are
currently developing multi-agent and single agent mecha-
nisms for capturing initial values for the parameters of the
developed MDP. Next we aim to develop solution strategies
that can tractably solve the MDP, for making real-time de-
cisions. Strategies currently under consideration include not
only state-space pruning strategies but heuristics for solving
piecewise MDPs for time, location and applications. Once
the resulting MDP has been solved optimally on a tractable
decision space we seek to compare the efficiency of heuris-
tic algorithms that can be scaled up to larger search spaces.
Another long term goal is to assess the appropriateness of
qualitative information within the developed framework. Fi-
nally, the overall goal of this project is to develop system
prototypes and perform user-centered field trials.
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