
Learning to Avoid Collisions

Elizabeth Sklar1,4, Simon Parsons1,4, Susan L. Epstein2,4, A. Tuna Özgelen4,
J. Pablo Muñoz4, Farah Abbasi3, Eric Schneider2 and Michael Costantino3

1Brooklyn College, 2Hunter College, 3College of Staten Island, 4The Graduate Center
The City University of New York

New York, NY USA
contact author: sklar@sci.brooklyn.cuny.edu

Abstract

Members of a multi-robot team that operates within close
quarters must avoid collisions. The typical, simple collision
avoidance method has the robot compute its distance to other
robots and stop, even move away, when this distance falls
below a fixed threshold. While this approach may skirt dis-
aster, it may also reduce the team’s efficiency, when robots
halt at length for others to pass by, or travel further to move
around one another. This paper reports on experiments where
a human trainer, through a graphical user interface, watches
robots perform an exploration task. The trainer can direct
the robots to halt before they collide, and then to resume
once their paths are clear. Experiment logs record the robots’
states, and a classifier is learned to identify the states in which
“halt” and “resume” commands are issued. Preliminary re-
sults indicate that it is possible to learn a classifier that mod-
els trainers well, and that different trainers consider different
factors when making their decisions.

Introduction
We are interested in the use of human-robot teams to solve
problems that are dangerous for all-human teams, but be-
yond the capabilities of all-robot teams. Examples of such
tasks include urban search and rescue (Jacoff, Messina, and
Evans 2000; Murphy, Casper, and Micire 2001) and humani-
tarian de-mining (Habib 2007; Santana, Barata, and Correia
2007). In urban search and rescue, robots explore an en-
closed space, such as a collapsed building, and seek to locate
human victims. In humanitarian de-mining, robots explore
an open space, such as a field in a war zone, to search for
anti-personnel mines that may be concealed. The goal is to
locate mines so that they can be disarmed and the region
rendered safe.

In both cases, teams of robots are deployed to locate tar-
gets of interest in terrain that is potentially unsafe for people,
and in both cases the robots will typically need a person to
help with parts of the task that they cannot easily handle on
their own. In urban search and rescue, this might be identi-
fying a human victim, and in de-mining, determining what
kind of device the robot team has located.

Our work (Sklar et al. 2011; 2012), focuses on inexpen-
sive, limited-function robots. We believe that teams of such

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

robots are more practical for wider deployment on our tar-
geted tasks than teams of fewer, more expensive and more
capable robots. Although individual robots may require hu-
man assistance, large teams of robots present considerable
challenges for human-robot interaction. There are, however,
several ways that robots can profitably learn from a human
trainer, and perhaps lessen the needs for human assistance in
some circumstances. It is also necessary to consider the sim-
ilarities and differences among human trainers’ strategies,
to support the eventual construction and incorporation of a
high-performing collision avoidance mechanism that mod-
els human decision making.

This paper reports on a feasibility study of one such in-
stance, where a person intervenes to avert collisions. Our
preliminary investigation collected data from 5 human sub-
jects and assessed the ability to learn something useful from
it. The results, detailed here are promising and warrant fur-
ther investigation.

Related Work
The idea that an interactive system can improve its behavior
through observation of human users’ key strokes and mouse
clicks (data mining the clickstream) is not new. In the 1960’s
and 1970’s, Teitelman developed an automatic error correc-
tion facility that grew into DWIM (Do What I Mean) (Teit-
elman 1979). In the early 1990’s, Cypher created Eager, an
agent that learned to recognize repetitive tasks in an email
application and take them over from the user (Cypher 1991).
Maes used machine learning techniques to train agents to
help with email, filter news messages, and recommend en-
tertainment. These agents gradually gained confidence in
their understanding of users’ preferences (Maes 1994).

In robotics, the idea that robots can learn from humans
has been explored as learning by demonstration (Argall et al.
2009), also known as programming by demonstration (Her-
sch et al. 2008). This is commonly viewed as a form of re-
inforcement learning, which learns a policy from a sequence
of state/action pairs (Argall et al. 2009). Other approaches
to robots learning from people include (Katagami and Ya-
mada 2000), where human teachers provide examples that
seed evolutionary learning; (Lockerd and Breazeal 2004),
where the robot tries to identify a human’s goal and make its
own plan to achieve it; and (Nicolescu and Matarić 2001),
where the robot observes as the human execites actions in



Figure 1: The robots’ physical environment.

its domain, and learns the outcomes of its own actions from
these observations. Little of this work is concerned with
multiple robots, however. There is a long history of multi-
robot learning, for example (Matarić 1997; Parker 2000;
Bowling and Veloso 2003; Pugh and Martinoli 2006), but
it involves learning from trial and error, not learning from a
human teacher.

In earlier related work, we collected moves during the
play of video and educational games, and used the data
to train neural networks that then served as controllers for
opponents in the same games (Sklar 2000; Sklar, Blair,
and Pollack 2001). The aim was not to produce the best
player, but rather to derive a population of players that rep-
resented different characteristics of play. This technique
was later extended beyond games to generate populations of
agents that emulated students performing at different skill
levels on an educational assessment (Sklar et al. 2007;
Sklar and Icke 2009). Here, once again, we apply this
method to capture and then represent characteristic behav-
iors of different people as they interact with a large human-
robot team performing a complex task.

Our Approach
The work reported here involved a single human trainer who
interacted with a team of three robots. This section de-
scribes the physical environment in which the experiments
were conducted and the experimental design.

Physical setup
Our experimental testbed models the interior of a building,
with a large space of six rooms and a hallway, which the
robots explore, as described below. The physical testbed
is shown in Figure 1. The full space is approximately 400
square feet .

The robots used for these experiments are Surveyor SRV-
1 Blackfins. The Blackfin1 is a small tracked platform
equipped with a webcam and 802.11 wireless. The Blackfin

1http://www.surveyor.com/SRV_info.html

(a) unmodified (b) with hat

Figure 2: The Surveyor SRV-1 Blackfin.

is pictured in Figure 2(a). Localization is provided by a net-
work of overhead cameras (Sklar et al. 2011).To help these
cameras distinguish among otherwise identical robots, each
robot is provided with a unique “hat.” A Blackfin wearing a
hat is shown in Figure 2(b). (Each has has a letter from the
Braille alphabet, one without rotational symmetry so that the
hat provides orientation as well as position.)

Because the Blackfin has limited on-board processing, the
controller for these robots runs off-board, and communicates
with the robot over a wireless network, which naturally re-
sults in some lag. The controller for all the robots on the
team, plus software to allocate tasks to robots, and the soft-
ware that extracts robot positions from the overhead cam-
eras, runs on a group of machines that make up the control
station for the experiments, located next to the arena. The
control station is pictured in Figure 3.

Motivation
As explained above, we want our human/robot team to ex-
plore the physical space. Here we continue experiments
where robots are allocated particular interest points that they
must visit. As described in (Sklar et al. 2012), a market-
based component allocates these points to the robots on a
team. The robot controllers then plot a path that covers

Figure 3: The control station.



Figure 4: Paths traced by three robots exploring the arena.
The robots start in the lower left “room,” at the points
marked with black �’s. Each robot visits an assigned subset
pf the 8 “interest points” indicated by red ×’s.

all the points that their robots have been allocated, with no
knowledge of what other robots are planning to do. Then the
robots simultaneously maneuver to their assigned points, in
accordance with their plans.

Several experimental factors place the robots in each
other’s way. First, they are in a restricted space, Second, in
some experimental configurations they all begin in the same
part of the space, to model a situation where they all enter the
space from the same point. Finally, each robot has no knowl-
edge of what the other robots are planning to do, This mutual
interference is clear in Figure 4, which shows the motion of
three robots during one experimental run. Because of this
interference, the robot controller is programmed to prevent
collisions, and it does so very conservatively — it halts any
robots that get too close to one another. The robot that is
closest to its target interest point is then given right-of-way,
while the other(s) wait until it is no longer in their vicinity;
then they are given right-of-way to move again. The amount
of time the robots wait is recorded as delay time, which can
accrue rapidly if many robots are trying to maneuver in the
same small space.

This fixed-threshold method is a simplistic way to prevent
collisions. It is reasonable to ask if a person could provide
a good model of how avoid collisions in a way that reduces
overall delay time. The next section describes our initial
iattempt to learn such behaviors from people.

Experimental setup
The robot team began in the configuration of Figure 4, that
is, tin the lower-left room, and were allocated eight interest
points, as described in (Sklar et al. 2012). The robots then
started to follow the paths that they had planned.

The conservative collision avoidance mechanism de-
scribed above was disabled. Instead, collision avoidance
was in the hands of a human subject, the trainer. This per-

Figure 5: The user interface presented to the human trainer.

son sat at an “operator station” physically remote from the
control station and the arena, in a separate room in the lab
complex. The trainer could not see or hear anything from
the arena or the control station. The only information that
the trainer had about the robots appeared on a user interface,
show in Figure 5. For each robot, the interface displayed its
current position and orientation and its next interest point,
Robot position and orientation are derived by the overhead
cameras, and are therefore subject to error and lag.

The trainer could send two commands to the robots from
her computer keyboard: wait or resume movement. To send
either command to a single robot, the trainer first clicked on
the robot’s icon to select it, and then clicked on the com-
mand. To send either command to all the robots, the trainer
merely clicked on it.

Each experiment consisted of a single run of the system.
The robots were positioned, interest points were allocated,
and the robots then maneuvered to those points while the hu-
man trainer monitored for collisions. In each run, the trainer
made the robots wait when she thought it necessary to avoid
a collision, and then restarted them when she judged that the
danger of collision was past. A run ended when the robots
all reached their final interest point or when a robot collided
with another robot or a wall. Operators at the control station
set up the robots, ran the task allocation mechanism, and
detected any collisions.

Experiments and Results
The results reported here were obtained five human subjects,
each of whom was responsible for five runs, and were under-
graduate researchers working in our lab (2 female, 3 male).
All the trainers had previously participated in similar exper-
iments, and therefore required no training on the interface.
We restricted data to runs where no robot collided with a
wall; each trainer worked until she had completed five such
runs. Each run ended either with a robot-robot collision or
with successful completion of the full task.

During each run, the system logged data continually, in-
cluding the current positions of the robots and each robot’s
path to its target location (i.e., sequence of waypoints). Each
time the human trainer clicked on a robot to stop its move-



ment (presumably to avoid a collision with another robot),
a “Wait” command was logged. Similarly,whenever the
trainer clicked (again) on a robot to resume its movement,
a “Resume” command was logged. Thus, the log file for
each run can be used to reconstruct the world state for each
robot, at each point in time; and these states can be labeled
with the human trainer’s decision to perform an action or to
do nothing (i.e., let the system perform autonomously). A
subject robot’s state is represented as:

〈r1, θ1, r2, θ2, Vx, Vy, Hx, Hy〉 (1)

where r1, θ1 and r2, θ2 are the range (in cm) and angle (in
radians), respectively, from the subject robot to the other two
robots in the arena; Vx and Vy are the x and y velocities of
the subject robot, and Hx and Hy are the heading of the
subject robot (i.e., the x and y distance from its current loca-
tion to the next waypoint in its planned path). Distances are
computed as straight-line Euclidean distances, without con-
sideration of intervening walls or other robots or obstacles.

We analyze the collected data to address three questions:
(1) the ability to learn from log data, (2) the ability to dis-
tinguish between trainers, and (3) the difference between the
trainers’ methods and the fixed-threshold method for colli-
sion avoidance.

Ability to learn from log data
To address the first question, whether the log files could sup-
port learning to avoid collisions, we first coded the log data.
Table 1 describes the data for the five human trainers, listed
as H1 through H5. The first column indicates the total num-
ber of states described in the log files for each trainer. The
next four columns show the number of instances labeled in
each of four categories:

• moving-moving indicates that the robot was moving
when the message was logged

• moving-waiting indicates that the human trainer clicked
on the robot to stop its movement, so that a “Wait” com-
mand was logged

• waiting-moving indicates that the human trainer clicked
on the robot to resume its movement, so that a “Resume”
command was logged

• waiting-waiting indicates that the robot was not moving
when the message was logged.

We want to learn which states, as represented in Equa-
tion 1, belong to which of the four labels. The upper por-
tion of the table, however, clearly indicates that the vast
majority of instances are moving-moving. This imbalance
has a serious negative impact on learning: most classifiers
will simply default to the moving-moving label. (Under-
standably so; the selection of the majority class will make
them correct 99.72% of the time.) A robot guided by
such a classifier would never wait. To mitigate this, we
created a balanced training set, as follows. We retained
all the non-moving-moving instances, and then extracted
equally many moving-moving instances across the data set,
at equally-spaced intervals in the chronologically-ordered

log file. Statistics on the balanced training set appear in the
lower portion of Table 1.

We tested 10 classifiers as implemented in WEKA2 (ver-
sion 3.6.7) (Witten, Frank, and Hall 2011) with their default
parameters and 10-fold cross validation: k-nearest neigh-
bors, C4.5 decision trees, a rule extractor from a decision
tree (PART), naı̈ve Bayes, Holte’s OneR rule learner, a sup-
port vector machine (SMO), logistic regression, AdaBoost,
logit boost, and decision stumps. The appendix summarizes
the Weka default values.

To learn to classify an instance, we ran each classifier on
the balanced subset data. Table 2 shows the accuracy of the
best classifier for each trainer. None is much better than
random .

H1 rule learner 54.69%
H2 support vector machine 50.00%
H3 C4.5 decision tree 59.34%
H4 logistic regression 56.16%
H5 rule learner 56.80%

Table 2: The best results on learning 4 classes from the bal-
anced subset data.

The resultant confusion matrices clearly indicated that the
moving-waiting and waiting-moving labels were not re-
liably distinguished. Table 3 shows the confusion matrix
for the best result on 4 classes, the balanced subset data
for trainer H3, (corresponding to the third row in Table 2).
Clearly moving-waiting and waiting-moving are confused
with each other more often than either is classified correctly.
Inspection of the states themselves indicated that, indeed,
the conditions under which the human trainers choose to
halt a robot’s movement because it was about to collide
with something were almost identical to the conditions un-
der which the trainer determined that it was safe for a halted
robot to begin moving again.

classified as→ moving- moving- waiting-
moving waiting moving

moving-moving 38 4 3
moving-waiting 5 13 5
waiting-moving 5 15 3

Table 3: Confusion matrix for the best result learning 4
classes from the balanced subset data for H3. This training
set did not contain any instances of waiting-waiting because
H3 never invoked that state.

This observation led us to relabel the data, this time
into two classes. The moving-moving and waiting-waiting
instances were relabeled as no-action instances, and the
moving-waiting and waiting-moving instances were rela-
beled as action instances. The last two columns of Table
1 show the number of training instances after relabeling.
Again, learning was conducted on both the complete set of
training data, and the balanced subset data. Table 4 shows

2http://www.cs.waikato.ac.nz/˜ml/weka



num. of moving- moving- waiting- waiting- no-
samples moving waiting moving waiting action action

complete set of training data
H1 20, 800 20, 768 16 16 0 20, 768 32
H2 17, 103 17, 058 23 22 0 17, 058 45
H3 22, 503 22, 457 23 23 0 22, 457 46
H4 15, 221 15, 148 35 35 3 15, 151 70
H5 17, 451 17, 389 31 31 0 17, 389 62
balanced subset of training data
H1 65 32 16 16 0 32 32
H2 91 45 23 22 0 45 45
H3 92 45 23 23 0 45 46
H4 146 72 35 35 3 70 70
H5 125 62 31 31 0 62 62

Table 1: Training data. Each Hi indicates one of the 5 human trainers.

the best results on the balanced subset data. They represent
a considerable improvement over Table 2.

H1 k-nearest neighbor 90.63%
H2 logit boost 76.67%
H3 logit boost 87.91%
H4 AdaBoost 82.86%
H5 k-nearest neighbor 87.10%

Table 4: The best stratified 10-fold cross validation results,
learning 2 classes from the balanced subset data.

Table 5 shows the confusion matrix for the best of these,
on the balanced subset data for trainer H1. Again, this is a
substantial improvement over the results shown in Table 3.
Current work includes the investigation of other techniques
to address imbalanced data, that would allow us to use a
larger sample of the data.

classified as→ no-
action action

no-action 30 2
action 4 28

Table 5: Confusion matrix for the best result learning 2
classes from the balanced subset data (H1).

Ability to distinguish between trainers
The second question, whether the data could be used to dif-
ferentiate between trainers, is relatively simple and straight-
forward. Decision trees that model the individual trainers
clarify the differences among them. Figure 6 shows the C4.5
tree learned for the two most accurately modeled trainers.

It is interesting to note that the decision trees for different
trainers depend upon different aspects of the robot’s world
state. The decisions of H1, as captured by the decision tree,
depend on the direction that the robot of interest is heading
(headingY, its speed (velX (Vx) and velY (Vy)), and the di-
rections that the other two robots are heading (theta1 (θ1)

action

action

action

action

no-action

no-action

headingY

<= -20

velX

> -20

> 1

velY

<= 1

<= -1

theta2

> -1

> -0.391405

theta1

<= -0.391405

> 0.993357 <= 0.993357

action

action

action no-action

no-action

no-action

no-action

headingX

> 10

headingX

<= 10

<= -30

headingY

> -30

range2

<= 75.58439 > 75.58439

> -3

theta1

<= -3

> 0.531724

velX

<= 0.531724

<= 1 > 1

H1 (85.94%) H3 (86.81%)

Figure 6: Decision Trees (C4.5) for the two most accurately
modeled trainers. The percentage of correctly identified in-
stances appears in parenthesis.

and theta2 (θ2)). In contrast, the decisions of H3 depend
its distance from one of the other robots (range2 (r1)), that
robot’s heading (headingX (Hx) and headingY (Hy)), its
speed (velX (Vx)) and the direction of the third robot (theta1
(θ1)), not the same robot as the one whose distance is con-
sidered. H1 appears to focus on trajectories alone, while H3
attends first to proximity.

We also analyzed the differences in behaviors identified
by the decision stump results. Table 6 shows the rules ob-
tained using this method for the five trainers. Again, it is
clear that the decisions of different humans, as extracted
by the decision stump algorithm, are influenced by differ-
ent components of the robot’s world state.

While these observations are preliminary, and we have not
yet collected enough data from human subjects to produce
definitive models of particular individuals’ behaviors, these
results do tell us that our direction is promising. Current
work includes the collection of more data from human sub-



H1 (68.75%) act if you are heading not too far
to the south

H2 (66.67%) act if you are going quickly west

H3 (71.43%) act if you are closer than 77cm to one
of the other robots

H4 (75.00%) act if you are heading not too far to
the east

H5 (78.23%) act if you are closer than 124cm to one
of the other robots

Table 6: Decision Stump rules for all five trainers, with the
percentage of correctly classified in instances in parenthesis.

jects, programming the decision trees and decision stump
rules into the robot controllers, and evaluation of the sys-
tem’s performance under the strategies modeled on different
human subjects.

Comparison to the fixed-threshold method for
collision avoidance
The third question addressed here is how collision avoidance
decisions made by human subjects compare to the fixed-
threshold method employed by our current system. Our
intuition and initial hypothesis was that the human trainers
would allow robots to get closer to each other than the fixed-
threshold method would. As a result, the amount of time
that a robot spent waiting for others to move out of the way
would decrease. The fixed-threshold method used a distance
of 50cm, with results reported in (Sklar et al. 2012).

Interestingly, the human trainers who made decisions
based on distances between robots (i.e., either r1 or r2) used
more than 50 cm: 77cm and 124cm in the decision stump
rules for trainers H3 and H5, respectively; and 75.59cm,
61.07cm and 74.85cm in the decision trees for H3, H4 and
H5, respectively. The other trainers, however, did not con-
sider the distance to other robots at all. Instead, they exam-
ined other factors, such as the directions in which the robots
were heading. In the decision trees, where more complex
decision rules can be coded, even those trainers who did
consider distance also considered the directions in which the
robots were heading. So our preliminary conclusion is that
the fixed-threshold method does not take into consideration
all the important factors in collision avoidance. Our current
work includes an analysis of the delay time for all the exper-
iments described here.

Summary
This paper reports preliminary results from experiments in
which a human guides a team of robots to avoid collisions.
We recorded data from human subjects instructed to help
members of a robot team to avoid collisions with one an-
other. Subjects could instruct the robots to wait or resume
moving, but could not steer them. Based on data recorded
while the human subjects were engaged in this task, we
trained a classifier to predict when the robots should change
state (toggle from moving to waiting or from waiting to

moving). The best-fitting classifier achieved 90% accuracy.
A more rigorous evaluation will use such a classifier to con-
trol the robots without a human trainer, and gauge its ability
to avoid collisions. Ideally, one would learn from the best-
performing human trainers. Our next major step is to iden-
tify such skilled people, and learn from data we collect as
they efficiently defend against robot collision.

Acknowledgments
This work was supported by the National Science Founda-
tion under grants #IIS-1117000 and #CNS-0851901.

Appendix: WEKA defaults
weka.classifiers.trees.J48 (C4.5): confidence threhold for
pruning = 0.25; minimum number of instances per leaf =
2; seed for random data shuffling = 1.
weka.classifiers.lazy.IBk (k-nn): nearest neighbour search
algorithm = weka.core.neighboursearch.LinearNNSearch;
number of nearest neighbours (k) used in classification =
1.
weka.classifiers.rules.PART: confidence threhold for prun-
ing = 0.25; minimum number of instances per leaf = 2; seed
for random data shuffling = 1.
weka.classifiers.bayes.NaiveBayes (naı̈ve Bayes without
kernel): use normal distribution for numeric attributes.
weka.classifiers.rules.OneR (OneR): minimum number of
objects in a bucket = 6.
weka.classifiers.functions.SMO (svm): kernel =
weka.classifiers.functions.supportVector.PolyKernel;
complexity constant C = 1; normalize; epsilon for round-off
error = 1.0e − 12; use training data for internal cross-
validation; random number seed = 1; size of the cache =
250007; exponent = 1.0; do not use lower-order terms.
weka.classifiers.functions.Logistic (logistic regression):
maximum number of iterations = −1 (until convergence).
weka.classifiers.meta.AdaBoostM1 (AdaBoost): percentage
of weight mass to base training on = 100; random num-
ber seed = 1; number of iterations = 10; base classifier =
weka.classifiers.trees.DecisionStump.
weka.classifiers.meta.LogitBoost (logit boost): percent-
age of weight mass to base training on = 100; num-
ber of folds for internal cross-validation = 0 (no cross-
validation); number of runs for internal cross-validation
= 1; threshold on the improvement of the likelihood =
−Double.MAX VALUE; shrinkage parameter = 1; random
number seed = 1; number of iterations = 10; base classifier
= weka.classifiers.trees.DecisionStump.

References
Argall, B.; Chernova, S.; Browning, B.; and Veloso, M.
2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Blair, A. D., and Sklar, E. I. 1999. Exploring evolutionary
learning in a simulated hockey environment. In Proceedings
of the 1999 Congress on Evolutionary Computation, 197–
203.



Blair, A. D.; Sklar, E. I.; and Funes, P. 1998. Co-evolution,
determinism and robustness. In Simulated Evolution and
Learning, volume 1585 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag. 389–396.
Bowling, M., and Veloso, M. 2003. Simultaneous adversar-
ial multi-robot learning. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence.
Cypher, A. 1991. Eager: Programming repetitive tasks by
example. In Proceedings of the ACM Conference on Human
Factors in Computing Systems.
Funes, P.; Sklar, E. I.; Juillée, H.; and Pollack, J. B. 1988.
Animal-animat coevolution: Using the animal population as
fitness function. In Proceedings of the Fifth International
Conference on Simulation of Adaptive Behavior, 525–533.
MIT Press.
Habib, M. K. 2007. Humanitarian Demining: Reality and
the Challenge of Technology. Interational Journal of Ad-
vanced Robotic Systems 4(2):151–172.
Hersch, M.; Guenter, F.; Calinon, S.; and Billard, A. 2008.
Dynamical system modulation for robot learning via kines-
thetic demonstrations. IEEE Transactions on Robotics.
Jacoff, A.; Messina, E.; and Evans, J. 2000. A standard test
course for urban search and rescue robots. In Proceedings
of PerMIS.
Katagami, D., and Yamada, S. 2000. Interactive classifier
system for real robot learning. In IEEE International Work-
shop on Robot and Human Interaction, 258–263.
Lockerd, A., and Breazeal, C. 2004. Tutelage and socially
guided robot learning. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.
Maes, P. 1994. Agents that reduce work and information
overload. Communications of the ACM 37(7):31–40.
Matarić, M. 1997. Reinforcement learning in the multi-
robot domain. Autonomous Robots 4:73–83.
Murphy, R. R.; Casper, J.; and Micire, M. 2001. Potential
tasks and research issues for mobile robots in RoboCup Res-
cue. In Robot Soccer World Cup IV, volume 2019 of Lecture
Notes in Artificial Intelligence. Springer.
Nicolescu, M. N., and Matarić, M. J. 2001. Learning and
interacting in human-robot domains. IEEE Transactions on
Systems, Man, and Cybernetics 31(5):419–430.
Parker, L. 2000. Multi-robot learning in a cooperative obser-
vation task. In Proceedings of the Fifth International Sym-
posium on Distributed Autonomous Robotic Systems.
Pugh, J., and Martinoli, A. 2006. Multi-robot learning with
particle swarm optimization. In Proceedings of the 5th Inter-
national Conference on Autonomous Agents and Multiagent
Systems.
Santana, P. F.; Barata, J.; and Correia, L. 2007. Sustainable
Robots for Humanitarian Demining. International Journal
of Advanced Robotic Systems 4(2):207–218.
Sklar, E. I., and Icke, I. 2009. Using simulation to eval-
uate data-driven agents. In Multi-agent Based Simulation
IX, volume 5269 of Lecture Notes in Artificial Intelligence.
Springer-Verlag.

Sklar, E. I.; Salvit, J.; Camacho, C.; Liu, W.; and Andrewle-
vich, V. 2007. An agent-based methodology for analyzing
and visualizing educational assessment data. In Proceeding
of the Sixth International Conference on Autonomous Agents
and Multiagent Systems.
Sklar, E. I.; Özgelen, A. T.; Muñoz, J. P.; Gonzalez, J.; Man-
ashirov, M.; Epstein, S. L.; and Parsons, S. 2011. Designing
the HRTeam framework: Lessons learned from a rough-’n-
ready human/multi-robot team. In Proceedings of the Work-
shop on Autonomous Robots and Multirobot Systems.
Sklar, E. I.; Özgelen, A. T.; Schneider, E.; Costantino, M.;
Muñoz, J. P.; Epstein, S. L.; and Parsons, S. 2012. On trans-
fer from multiagent to multi-robot systems. In Proceedings
of the Workshop on Autonomous Robots and Multirobot Sys-
tems.
Sklar, E. I.; Blair, A. D.; and Pollack, J. B. 2001. Training
intelligent agents using human data collected on the internet.
In Agent Engineering. Singapore: World Scientific. 201–
226.
Sklar, E. I. 2000. CEL: A Framework for Enabling an Inter-
net Learning Community. Ph.D. Dissertation, Department
of Computer Science, Brandeis University.
Teitelman, W. 1979. A display oriented programmer’s assis-
tant. International Journal of Man-Machine Studies 11:157–
187.
Witten, I. H.; Frank, E.; and Hall, M. A. 2011. Data Mining,
Practical Machine Learning Tools and Techniques. Elsevier
Inc., third edition.


