
Maximum Entropy and Variable Strength DefaultsRachel A. Bourne and Simon ParsonsDepartment of Electronic EngineeringQueen Mary & West�eld CollegeUniversity of LondonLondon E1 4NS, UKr.a.bourne,s.d.parsons@elec.qmw.ac.ukAbstractA new algorithm for computing the maximumentropy ranking over models is presented. Thealgorithm handles arbitrary sets of proposi-tional defaults with associated strength assign-ments and succeeds whenever the set satis�esa robustness condition. Failure of this condi-tion implies the problem may not be su�cientlyspeci�ed for a unique solution to exist. Thiswork extends the applicability of the maximumentropy approach detailed in [Goldszmidt et al.,1993], and clari�es the assumptions on whichthe method is based.1 IntroductionThere have been several suggestions of what might con-stitute the best consequence relation to be associatedwith a set of propositional defaults. The weakest, andmost widely accepted, is System P [Adams, 1975], [Krauset al., 1990]. Of those which handle the more complexdefault interactions, such as exceptional inheritance, cor-rectly, the maximum entropy approach (me) has, ar-guably, the clearest objective justi�cation being derivedfrom a well understood principle of indi�erence. In thispaper, the me-approach of [Goldszmidt et al., 1993] isextended so that the me-ranking for an arbitrary setof variable strength defaults can be found. A new al-gorithm is presented along with a su�cient conditionfor its successful computation. As well as handling theusual examples from the literature in a satisfactory way,this extended framework provides a exible method forhandling default knowledge through its use of variablestrength defaults which sheds some light on previouslyambiguous examples. Indeed, the results suggest thatsome examples are inherently ambiguous. However, theclear underlying principle of the me-approach clari�eswhy this ambiguity arises, and suggests how it might beresolved.2 Deriving the me-rankingConsider a set of defaults, � = fri : ai ) big wherea, b, c, are formul� of a �nite propositional language,

L, with the usual connectives ^, _, :, !. The symbol,), denotes a default connective. The models of L arecontained in the set M. A model, m 2 M, is said toverify a default, a) b, ifm j= a^b. Conversely, a model,m, is said to falsify a default, a) b, if m j= a ^ :b.The semantics of defaults is given in terms of condi-tional probabilities. Each default a ) b is supposed toconstrain a set of probability distributions. For exam-ple, if it were assumed that P (:bja) = 0:05, then the setfa) bg would de�ne all those probability distributionswhich satis�ed the constraint imposed by the default.However, in this context no actual conditional probabil-ities are speci�ed only the (�xed) relationships betweenthe defaults in a given set.The entropy of a probability distribution over a set ofmodels M is given byH [P ] = � Xm2MP (m) logP (m) (1)The problem is to select that probability distributionwhich maximises (1) subject to constraints imposed bythe defaults. The main supposition underlying this for-malism is that specifying relative orders of magnitudefor the conditional probabilities corresponding to eachdefault implies a similar order of magnitude descriptionof the probabilities of each model. This is achieved byparameterising the conditional probabilities and examin-ing the behaviour as the parameter tends to zero. Intu-itively, this can be thought of as taking a set of assump-tions to the extreme in order to ascertain what otherinformation is implied. The intuitive interpretation ofthe relative orders of magnitude between defaults is thatone is required to specify their relative strengths; thatis, numerically higher strength defaults can be thoughtof as holding more strongly than, or as having priorityover, those of lower strength. Note that the symbol �will be used to denote asymptotic equality since, for thepurposes of this analysis, it is only the asymptotic be-haviour of the probabilities that is important not theiractual values, nor indeed the actual value of entropy.Goldszmidt et al. [1993] originally chose to use in-equalities for the default constraints but were unable toobtain results except for a small class of default sets,termed minimal core sets, which were guaranteed to sat-



isfy the constraints as equalities. As they pointed out,for minimal core sets, their algorithm is easily adapted tocater for variable strength defaults. For arbitrary sets,however, the algorithm is unsound and an analysis ofthe behaviour of the me-approach applied to variablestrength defaults was not provided.In this revised analysis, the maximum entropy ap-proach is extended by insisting on working with strictequality constraints, at least up to asymptotic equiva-lence. Specifying relative strengths for all defaults lim-its the region of possible probability distributions fromwhich the maximum entropy distribution is taken. Al-though this requires a �rmer commitment, that is, moreinformation, from the knowledge engineer, it leads tome-solutions in a much larger number of cases.Each default is assigned an associated strength, or or-der of magnitude, relative to the other defaults. Asymp-totically, the coe�cients of conditional probabilities canbe ignored and so only the relative orders of magnitudebetween models will be relevant. The strength of eachdefault is therefore expressed as some power of a param-eter " which has no signi�cance other than linking alldefaults together. Thus a default a ) b will be said tohave relative strength s i� P (:bja) � "s for some in-teger s > 0. Letting " ! 0, the term "s ! 0 and soP (bja)! 1, and the default becomes arbitrarily certain.In specifying a default, it is assumed that the knowl-edge engineer is encoding information which he takesto be almost certain. Similarly, the probability of eachmodelm will be assumed to be asymptotically equivalentto some non-negative integer power �(m) of ", so thatP (m) � "�(m) for �(m) � 0. The constraints imposedon P by the defaults frig can be written as:Xmj=ai^:bi P (m) � "si1� "si Xmj=ai^bi P (m) (2)Using these constraints and the Lagrange multipliertechnique to �nd the point of maximum entropy, Gold-szmidt et al. [1993] derived the following elegant andsimple approximation for the probability of each model: P (m) � Yrimj=ai^:bi �i (3)where the �i are related to the Lagrange multipliers foreach rule. Making a further assumption that the �i canalso be approximated by a relative order of magnitude,thus writing �i � "�(ri), the probability expressions (3)are substituted back into the constraints (2) yielding j�jsimultaneous equations with j�j unknowns, the �(ri).In the limit as " ! 0 those models with the lowestpowers of " will dominate, and the constraints reduceto: �(ri) + minmj=ai^:bi Xrj ;j 6=imj=aj^:bj �(rj) =si + minmj=ai^bi Xrj ;j 6=imj=aj^:bj �(rj) (4)

Given this ranking, �(ri), over defaults, the me-rankingover models, �(m), can be found using equation (3). Theme-rank of each model is given by the sum of the me-ranks of those defaults it falsi�es:�(m) = Xrimj=ai^:bi �(ri) (5)This completes the derivation of the maximum entropyranking with �(m) de�ning the me-consequence relation.The following section looks at conditions under which theassumptions used to �nd equations (4) and (5) are valid.3 Robustness of rankingsIn the above analysis, it was assumed that it was onlynecessary to consider the asymptotic behaviour of thedefaults, and that �xing the relative strength of defaultsin this way uniquely determined the me-ranking. It turnsout that while this is not true in general, it is true for auseful class of problems which this section characterises.As an example of a case in which the assumptions are nottrue, consider the following where the probabilities (3)are used to consider what may happen when all defaultshave the same strength but their coe�cients are allowedto vary.Example 3.1� = fr1 : a) b; r2 : a) c; r3 : a ^ b) cgThe table shows whether a model falsi�es or veri�es eachdefault and gives its (unnormalised) probability usingequation (3):m a b c r1 r2 r3 P (m)m1 0 0 0 - - - 1m2 0 0 1 - - - 1m3 0 1 0 - - - 1m4 0 1 1 - - - 1m5 1 0 0 f f - �1�2m6 1 0 1 f v - �1m7 1 1 0 v f f �2�3m8 1 1 1 v v v 1Using the substitution u = "1�" , with all defaults havingequal strength of 1, and letting their coe�cients be c1,c2, c3, respectively, the constraint equations (2) give riseto three simultaneous equations:�1�2 + �1 = c1u(1 + �2�3)�1�2 + �2�3 = c2u(1 + �1)�2�3 = c3uSolving these for the �i in terms of u gives:�1 = u(c1 + c1c3u� c2 + c3)1 + c2u�2 = c1c2u+ c1c2c3u2 + c2 � c3c1 + c1c2u� c2 + c3�3 = c3u(c1 + c1c2u� c2 + c3)c1c2u+ c1c2c3u2 + c2 � c3



Now consider what happens asymptotically for variousvalues of the coe�cients.Case 1: Let c1 = 2(c2 � c3) (for c2 > c3). This givesa solution of �1 � u, �2 � 1, �3 � u and leads to anme-ranking over defaults of (1,0,1). The correspondingme-ranking over models is given in the table below.Case 2: Let c2 = c3. This gives a solution of �1 � u,�2 � u, �3 � 1, and an me-ranking over defaults of(1,1,0). The corresponding me-ranking is given in thetable below.Case 3: Let c1 + c3 = c2. This gives a solution of�1 � u2, �2 � 1u , �3 � u2 and an me-ranking overdefaults of (2,-1,2). The corresponding me-ranking isgiven in the table below.m a b c (1; 0; 1) (1; 1; 0) (2;�1; 2)m1 0 0 0 0 0 0m2 0 0 1 0 0 0m3 0 1 0 0 0 0m4 0 1 1 0 0 0m5 1 0 0 1 2 1m6 1 0 1 1 1 2m7 1 1 0 1 1 1m8 1 1 1 0 0 0Di�erent choices for the coe�cients clearly lead to com-pletely di�erent me-rankings over the defaults and, moreimportantly, over the models. This is because there aremultiple solutions to the non-linear simultaneous equa-tions given by (4). In addition to having many solu-tions, these equations may have no solution at all if thestrength assignments represent inconsistent probabilisticconstraints. However, for maximum entropy entailmentto be well-de�ned, it is desirable to be able to determinewhen a unique solution to these equations can be found.This is guaranteed whenever the me-ranking is robust.De�nition 3.2 An integer ranking, �, over models issaid to be robust 1 with respect to a set of defaults, frig,with associated strengths, fsig, if no two defaults sharea common minimal falsifying model in �.In the sequel, vr (respectively, fr) represent minimal ver-ifying (respectively, falsifying) models of r in �. Simi-larly, v0r0 (respectively, f 0r0) represent minimal verifying(respectively, falsifying) models of r0 in �0, and so on.De�nition 3.3 An integer ranking, �, over a set of de-faults, frig, with associated strengths, fsig, is said to beme-valid with respect to that set if it satis�es (5) and forall r �(vr) + sr = �(fr) (6)De�nition 3.4 Two me-valid rankings, � and �0, aresaid to be distinct i� �(r) 6= �0(r) for some default r.Such a default is said to be distinctly ranked.The following lemma shows that any distinctly rankeddefault, r, which has minimal �(fr) among distinctlyranked defaults, also has minimal �0(f 0r) among dis-tinctly ranked defaults.1Adopting the use of \robustness" to indicate existence ofa unique solution from [Bacchus et al., 1996].

Lemma 3.5 Given two distinct me-valid rankings, �and �0, if r is such that �(r) 6= �0(r) and for all r0 with�(r0) 6= �0(r0), �(fr0) � �(fr), then �0(f 0r0) � �0(f 0r).Proof. Suppose otherwise, that is, there exists r0 6= r,such that �(r0) 6= �0(r0) with �(fr0) � �(fr) but �0(f 0r) >�0(f 0r0). Without loss of generality, suppose that r0 hasminimal �0(f 0r0) among distinctly ranked defaults. Now,because � is me-valid, �(vr) + sr = �(fr), and vr canonly falsify defaults, s, for which �(s) = �0(s), so that�(vr) = �0(vr). It follows that�(fr) = �(vr) + sr = �0(vr) + sr ��0(v0r) + sr = �0(f 0r) > �0(f 0r0) (7)Similarly, since r0 was chosen to have minimal �0(f 0r0)among distinctly ranked defaults, �0(v0r0)+ sr0 = �0(f 0r0),and v0r0 can only falsify defaults, s, for which �0(s) =�(s), and �0(v0r0) = �(v0r0). It follows that�0(f 0r0) = �0(v0r0) + sr0 = �(v0r0) + sr0 ��(vr0) + sr0 = �(fr0) � �(fr) (8)Putting (7) and (8) together, �(fr) � �0(f 0r) >�0(f 0r0) � �(fr0) � �(fr), which contradiction impliesthat �0(f 0r0) � �0(f 0r), as required. �Theorem 3.6 Given a �nite set of defaults, frig, withassociated strengths, fsig, if a robust me-valid ranking,�, exists then it is unique.Proof. Let � and �0 be distinct me-valid rankings and rbe a distinctly ranked default with minimal �(fr) amongdistinctly ranked defaults and, by Lemma 3.5, mini-mal �0(f 0r). Suppose that � is robust. Then fr fal-si�es only r and other defaults, s, with �(s) = �0(s);also �(vr) = �0(v0r) since they only falsify non-distinctlyranked defaults, and, since both � and �0 are me-valid,it follows that �(fr) = �0(f 0r) with �(r) 6= �0(r).Consider �0(fr) for which �0(fr) � �0(f 0r). But�0(f 0r) = �(fr) and fr falsi�es only non-distinctly rankeddefaults and r itself, for which �(r) 6= �0(r). Therefore�0(fr) > �0(f 0r) and hence �0(r) > �(r).Now, if f 0r falsi�ed no other distinctly ranked default,�(f 0r) < �0(f 0r) = �(fr), which contradicts fr beingminimal in �. This implies that f 0r must falsify someother distinctly ranked defaults and hence �0 is not ro-bust. Let these be r1; r2; : : : ; rn; since all these ri arealso minimal distinctly ranked defaults in �0, by Lemma3.5, they are also minimal in � and there must existfr1 ; fr2 ; : : : ; frn , minimally ranked falsifying models in �such that �(fr) = �(fri) for all ri. Further, because �is robust, none of the fri can falsify any other distinctlyranked defaults.But, by the same argument as above, this implies thatfor all ri, �(ri) < �0(ri). However, this in turn impliesthat f 0r which falsi�es r, all the ri, and non-distinctlyranked defaults, must have a lower rank than fr in �,i.e., �(f 0r) < �0(f 0r) = �(fr), which contradicts fr beingthe minimal falsifying model of r in �. Hence, � cannotbe robust either. It follows that, if two distinct me-rankings exist, neither can be robust, and any robustme-valid ranking is unique. �



Note that given two distinct rankings, � and �0, it maystill be the case that �(m) = �0(m) for all m, i.e., theranking over models may be unique despite there beingmultiple solutions for the �(ri) to the constraint equa-tions (5) and (6). For example, the set fr1 : a ) b; r2 ::b) :ag, produces the two equations�(r1) + �(r2) = s1�(r1) + �(r2) = s2which have no solution unless s1 = s2 in which casethere are an in�nite number of solutions. However, allsolutions lead to the same unique ranking over models.Re�ning the robustness condition and understanding itssigni�cance in such cases is the subject of ongoing re-search.4 Computing the me-rankingUsing the robustness condition and equation (4), it ispossible to determine the me-ranking over defaults oneby one. Robustness guarantees that for at least one de-fault the currently computed minimal ranks of modelsare indeed their genuine ranks in the me-ranking.Let the function MINV(r) (respectively, MINF(r)) bede�ned so that it returns the rank of the current min-imal verifying model of r (respectively, the rank of thecurrent minimal falsifying model of r excluding its owncontribution) using equation (5). Then equation (6) canbe re-written as�(r) = sr + �(vr)� (�(fr)� �(r)) (9)which in the algorithm is used to assign the rank of adefault using�(r) := sr +MINV(r) �MINF(r) (10)Algorithm to compute me-rankingInput: a set of defaults, frig, and associatedstrength assignments, fsig.Output: the me-ranking, �, or an exception if theset is p-inconsistent, or if the robustnesscondition is violated.[1] Initialise all �(ri) =1.[2] From all ri with �(ri) =1, find the minimalvalue of si + MINV(ri) and select any ri for whichthis holds, say r.[3] If MINV(r) =1 then the input set isp-inconsistent. Output an exception.[4] Find MINF(r).[5] If MINF(r) =1 the robustness conditionis violated. Output an exception.[6] Let �(r) := sr + MINV(r)� MINF(r).[7] If any �(ri) =1 goto step 2.[8] Assign ranks to models using equation (5).[9] Validate the ranking by ensuring both that theconstraints (4) and that the robustnesscondition are satisfied. Output either theme-ranking or an exception.

This algorithm clearly terminates at step 3, if the in-put set is probabilistically inconsistent, or at step 5, orat step 9. Termination does not guarantee that a validranking has been found but this is checked for and re-ported at step 9. The following theorem proves that, pro-vided the robustness condition is satis�ed, the algorithmwill compute the unique me-ranking. That the algorithmworks given certain pre-conditions can be veri�ed if thetwo ranks in the assignment (10) can be shown to bevalid. This requires that the ranks selected for MINV(r)and MINF(r) when the assignment is made are indeedthe minimal ranks for r.Theorem 4.1 Given a �nite set of defaults, frig, withassociated strengths, fsig, the algorithm computes theunique me-ranking, �, if it is robust.Proof. The theorem is proved by induction. On the�rst pass of the loop no rules have been ranked and sothe ranks of each rule ranked (i.e. none) are correct.The inductive hypothesis assumes that at the nth passof the loop all rules ranked in the previous (n�1) passeshave been assigned their correct me-ranks. Consider thaton the nth pass of the loop, rule r, with minimal si +MINV(ri), is selected to be ranked.Let vc be a verifying model of r such that �(vc) =MINV(r). Suppose that vc is not a minimal verifyingmodel of r, so there exists vr, such that �(vr) < �(vc).Now, �(vr) < MINV(r), the computed minimal verifyingrank for r, so it must be the case that vr falsi�es somerule, r0 6= r, which has not yet been ranked, and since r0was not selected to be ranked in this pass of the loop itfollows thatsr +MINV(r) � sr0 +MINV(r0)Then, since vr falsi�es r0, �(fr0) � �(vr), in particular,using (6)sr0 + �(vr0) = �(fr0) < sr + �(vr) <sr +MINV(r) � sr0 +MINV(r0)so that �(vr0) < MINV(r0). It follows that vr0 , too, mustfalsify some rule, r00 6= r0 6= r, which has not yet beenranked. Then, since vr0 falsi�es r00, �(fr00) � �(vr0).Continuing in this way, an in�nite descending chain ofdistinct unranked rules is constructed. This contradictsthe �nite size of the original default set, and therefore vcmust be a minimal verifying model of r.Let fc be a falsifying model of r such that �(fc) =�(r) + MINF(r). Suppose that fc is not a minimal fal-sifying model of r, so there exists fr, such that �(fr) <�(fc). Now, since �(fr) � �(r) < MINF(r), the com-puted minimal falsifying rank for r, it must be the casethat fr falsi�es some rule, r0 6= r, which has not yet beenranked, and since r0 was not selected to be ranked in thispass of the loop it follows thatsr +MINV(r) � sr0 +MINV(r0)Now, fr falsi�es r0, and under the assumption that therobustness condition holds, no two defaults share a com-



mon minimal falsifying model in the me-ranking. There-fore, �(fr0) < �(fr), and the following inequality holdssr0 + �(vr0) = �(fr0) < �(fr) =sr +MINV(r) � sr0 +MINV(r0)so that �(vr0) < MINV(r0), the computed minimal ver-ifying rank for r0. It follows that vr0 , too, must falsifysome rule, r00 6= r0 6= r, which has not yet been ranked.Then, since vr0 falsi�es r00, �(fr00) � �(vr0). Continuingin this way, an in�nite descending chain of distinct un-ranked rules is constructed. This contradicts the �nitesize of the original default set and therefore fc must bea minimal falsifying model of r.Given that for the selected rule, r, the values MINV(r)and MINF(r) calculated at this pass of the loop repre-sent the me-ranks of its minimal verifying and falsifyingmodels (excluding its own contribution), respectively, itfollows that the assignment�(r) := sr +MINV(r) �MINF(r) (11)is valid and r is assigned its correct me-rank. The theo-rem follows by induction. �5 ExamplesIn the �rst example, the solution is tabulated explictlyto illustrate the method of �nding the me-ranking butlater this is omitted to save space.Example 5.1 (Exceptional inheritance)� = fr1 : b) f; r2 : p) b; r3 : p) :f; r4 : b) wgThe intended interpretation of this knowledge base isthat birds y, penguins are birds, penguins do not yand birds have wings; each ri has strength si. The ta-ble shows whether a model falsi�es or veri�es each de-fault. The column headed �(m) gives the me-rank ofeach model in terms of the �(ri) using equation (5).m b f p w r1 r2 r3 r4 �(m)m1 0 0 0 0 - - - - 0m2 0 0 0 1 - - - - 0m3 0 0 1 0 - f v - �(r2)m4 0 0 1 1 - f v - �(r2)m5 0 1 0 0 - - - - 0m6 0 1 0 1 - - - - 0m7 0 1 1 0 - f f - �(r2) + �(r3)m8 0 1 1 1 - f f - �(r2) + �(r3)m9 1 0 0 0 f - - f �(r1) + �(r4)m10 1 0 0 1 f - - v �(r1)m11 1 0 1 0 f v v f �(r1) + �(r4)m12 1 0 1 1 f v v v �(r1)m13 1 1 0 0 v - - f �(r4)m14 1 1 0 1 v - - v 0m15 1 1 1 0 v v f f �(r3) + �(r4)m16 1 1 1 1 v v f v �(r3)Substituting the �(m) into the reduced constraint equa-tions (4) gives rise to:�(r1) = s1

�(r2) = s2 +min(�(r1); �(r3))�(r3) = s3 +min(�(r1); �(r2))�(r4) = s4Clearly, the only solution to these equations is �(r1) =s1, �(r2) = s1 + s2, �(r3) = s1 + s3, and �(r4) = s4.To determine default consequences it is necessary tocompare the ranks of a default's minimum verifyingand falsifying models. Since the solution holds for anystrength assignment (s1; s2; s3; s4), it follows that somedefault conclusions may hold in general. In particular,it can be seen that the default p^ b) :f is me-entailedsince �(p ^ b ^ :f) < �(p ^ b ^ f)s1 < s1 + s3This result is unsurprising since p ^ b ) :f is a pref-erential consequence of �. A more interesting generalconclusion is p) w, which follows since�(p ^ w) = s1 < �(p ^ :w) = s1 +min(s2; s4) (12)Again this result holds regardless of the strength assign-ments and illustrates that, for this example, the inheri-tance of w to p via b is uncontroversial. �Example 5.2 (Nixon diamond)� = fr1 : q ) p; r2 : r ) :pgThe intended interpretation is that quakers are paci-�cists whereas republicans are not paci�sts. Givena strength assignment of (s1; s2) is easily shown that�(r1) = s1 and �(r2) = s2. The classical problem associ-ated with this knowledge base is to ask whether Nixon,being a quaker and a republican, is paci�st or not. Thisis represented by the default r^q ) p. The two relevantmodels to compare are r ^ q ^ p and r ^ q ^ :p whoseme-ranks in the general me-solution are�(r ^ q ^ p) = s2 and �(r ^ q ^ :p) = s1 (13)Clearly either r^q ) p or r^q ) :p, or neither, may beme-entailed depending on the comparative strengths s1and s2. This result is in accordance with the \intuitive"solution that no conclusion should be drawn regardingNixon's paci�st status unless there is reason to supposethat one default holds more strongly than the other. Inthe case of one default being stronger, the conclusionfavoured by the stronger would prevail. �Example 5.3 (Royal elephants/marine chaplains)� = fr1 : a) b; r2 : c) b; r3 : b) d; r4 : a) :dgThere are two interpretations of this knowledge base. Inthe �rst, the propositions a, b, c, and d, stand for royal,elephant, african and grey, respectively; in the second,the propositions stand for chaplain, man, marine andbeer drinker, respectively. The constraint equations (4)give rise to:�(r1) = s1 +min(�(r3); �(r4))�(r2) = s2�(r3) = s3�(r4) = s4 +min(�(r1); �(r3))



which have the unique solution �(r1) = s1 + s3, �(r2) =s2, �(r3) = s3, and �(r4) = s3 + s4.The key question relating to this knowledge base is\Are elephants which are both royal and african, notgrey?", or alternatively, \Don't marine chaplains drinkbeer?" This translates into the default a^c) :d whichis me-entailed in general as can be seen from:�(a ^ c ^ :d) < �(a ^ c ^ d)s3 < s3 +min(s4; s1 + s2 + s3)The result in this example is unambiguous, that is, itholds for all strength assignments2. However, [Touretzkyet al., 1987] were not entirely happy about the conclusionthat marine-chaplains do not drink beer. They arguedthat if the rate of beer drinking amongst marines wassigni�cantly higher than normal, then this might alterthe behaviour associated with marine-chaplains.Now, the default r5 : c ) d (marines drink beer) isin fact me-entailed by �, but adding it to the databasewith all defaults having equal strength violates the ro-bustness condition. If, however, r5 were added with ahigher strength, so that it represented a new constraintfor the purposes of maximising entropy, a robust solutionwould result and the status of the default a ^ c ) :dwould depend on the relative strengths s4 and s5.So, Touretzky et al. were correct to suppose that ifmarines were heavier drinkers than men in general thenit may not be clear whether marine chaplains are beerdrinkers or not. However, it seems they were expect-ing too much of a default reasoning mechanism (a path-based inheritance reasoner in their case) in assuming itcould draw such conclusions since this would involve us-ing information which it had never been told. �It is interesting to note that many of the more complexexamples from the literature (for example, see [Makin-son and Schlechta, 1991]), which have been devised de-liberately to overcome any intuitive biases, fail to satisfythe robustness condition when all defaults are assignedequal strengths. If a set is probabilistically consistent itis usually possible to restore robustness by altering thestrengths. This suggests that some sets may be too com-plex for the human intuition to disentangle because theyare ambiguous or underspeci�ed. By requiring more in-formation from the knowledge engineer, in terms of astrength assignment over defaults, some of these ambi-guities can be cleared up and the hitherto implicit biasesmade explicit.6 ConclusionsThis paper has re�ned and extended the work of Gold-szmidt et al. [1993] on applying the principle of maxi-mum entropy to probabilistic semantics for default rulesto enable it to be applied to a much wider class of defaultsets. A new algorithm was presented which �nds the2In fact all these examples have general solutions sincethey are minimal core sets as de�ned by Goldszmidt et al.[1993].

maximum entropy ranking for a set of variable strengthdefaults that satisfy a su�cient condition for a uniquesolution to exist. The output is a consequence relationbased on a total ordering of models|a rational conse-quence relation in the sense of Lehmann and Magidor[Lehmann and Magidor, 1992]. Some extreme technicalcases remain to be investigated.Using the me-approach for default reasoning providesthe same bene�ts as its use in statistical problems. AsJaynes [1979] suggests, by encoding all known relevantinformation and �nding the maximum entropy distribu-tion, any observations which di�er signi�cantly from theresult imply that other constraints, in this case defaults,exist. A closer approximation is obtained by addingmore defaults or by adjusting the strengths. Instead ofquestioning the conclusions of a default reasoning sys-tem, one should ensure that all relevant information hasbeen encoded | the maximum entropy formalism en-ables the precise and explicit representation of this asdefault knowledge. The main disadvantage of the me-approach is its intractability, however, this extension toarbitrary sets has shed some light onto the causes ofcontroversy among classical examples from the literatureand pointed to ways of resolving them.References[Adams, 1975] E. Adams. The Logic of Conditionals.Reidel, Dordrecht, Netherlands, 1975.[Bacchus et al., 1996] F. Bacchus, A. J. Grove, J. Y.Halpern, and D. Koller. From statistical knowledgebases to degrees of belief. Arti�cial Intelligence, 87:75{143, 1996.[Goldszmidt et al., 1993] M. Goldszmidt, P. Morris, andJ. Pearl. A maximum entropy approach to nonmono-tonic reasoning. IEEE Transactions on Pattern Anal-ysis and Machine Intelligence, 15:220{232, 1993.[Kraus et al., 1990]S. Kraus, D. Lehmann, and M. Magidor. Nonmono-tonic reasoning, preferential models and cumulativelogics. Arti�cial Intelligence, 44:167{207, 1990.[Lehmann and Magidor, 1992]D. Lehmann and M. Magidor. What does a condi-tional knowledge base entail? Arti�cial Intelligence,55:1{60, 1992.[Makinson and Schlechta, 1991] D. Makinsonand K. Schlechta. Floating conclusions and zombiepaths: two deep di�culties in the \directly skeptical"approach to defeasible inheritance nets. Arti�cial In-telligence, 48:199{209, 1991.[Touretzky et al., 1987] D. S. Touretzky, J. F. Horty,and R. H. Thomason. A clash of intuitions: the cur-rent state of nonmonotonic multiple inheritance sys-tems. In Proceedings of the International Joint Con-ference on Arti�cial Intelligence, pages 476{482, 1987.


