
Normative argumentation and qualitativeprobabilitySimon ParsonsDepartment of Electronic Engineering, Queen Mary and West�eld College,Mile End Road, London E1 4NS, United Kingdom.S.D.Parsons@qmw.ac.ukAbstract. In recent years there has been a spate of papers describingsystems for plausible reasoning which do not use numerical measuresof uncertainty. Some of the most successful of these have been systemsfor argumentation, and there are advantages in considering the condi-tions under which such systems are normative. This paper discusses anextension to previous work on normative argumentation, exploring theproperties of a particular normative approach to argumentation and sug-gesting some uses of it.1 IntroductionIn the last few years there have been a number of attempts to build systems forreasoning under uncertainty that are of a qualitative nature|that is they usequalitative rather than numerical values, dealing with concepts such as increasesin belief and the relative magnitude of values. Between them, these systemsaddress the problem of reasoning in situations in which knowledge is uncertain,but in which there is a limited amount of numerical information quantifyingthe degree of uncertainty. Three main classes of system can be distinguished|systems of abstraction, in�nitesimal systems, and systems of argumentation.In systems of abstraction, [5, 14, 19, 22], the focus is often, though not always[3], on modelling how the probability of hypotheses changes when evidence isobtained and never commits to exact probability values. They thus provide anabstract version of probability theory which ignores the actual values of individ-ual probabilities but which is nevertheless su�cient for planning and design [13]tasks. In�nitesimal systems [10, 23] deal with beliefs that are very nearly 1 or 0,providing formalisms that handle order of magnitude probabilities. In�nitesimalsystems may be used for diagnosis [4] as well as providing a general model ofdefault reasoning. Systems of argumentation [1, 2, 6, 11, 12, 21] are based on theidea of constructing logical arguments for and against propositions, establishingthe overall validity of such propositions by assessing the persuasiveness of theindividual arguments.However, unlike other qualitative systems, systems of argumentation do notalways have a clear semantics. In particular, it is not always clear what it meansto have an argument for or against something. As a result, in a previous paper



[17] I made the suggestion that it might be bene�cial to investigate whethersystems of argumentation might be made normative in a probabilistic sense,thus combining the expressiveness of argumentation with the clear semanticsof probability. This paper takes that work further, building a more expressivesystem, exploring its properties, providing soundness and completeness resultsand suggesting ways in which the system might be used.2 Introducing systems of argumentationIn classical logic, an argument is a sequence of inferences leading to a conclusion.If the argument is correct, then the conclusion is true. In the system of argu-mentation proposed by Fox, Krause and colleagues [11] this traditional formof reasoning is extended to allow arguments to indicate support and doubt inpropositions, as well as proving them. This is done by assigning two labels toevery sentence that is deduced. One label, the grounds, identi�es the argumentfor that sentence by indicating the formulae used in the deduction. The otherlabel, the sign, indicates the force of the argument. The force can be taken to bethe change in belief in the proposition warranted by the argument. This form ofargumentation may be summarised by the following schema:Database `ACR (Sentence;Grounds; Sign)where `ACR is a suitable consequence relation. This approach to argumentationis one of many, but it is the one which will be adopted in this paper. Havingchosen to work with this form of argumentation, we then choose a particular for-malisation of this form of argumentation to work with, creating a system whichwe will call SA00. Again there are many possibilities of which this formalisation isjust one, particularly convenient, one. Others are explored in [8, 9, 11, 16]. Sincethis formalisation is expressed in very general terms, SA00 can actually be re�nedto produce a number of di�erent systems depending upon the precise interpre-tation one puts on the signs. Eventually a particular interpretation is selected,generating a system NA00, and the bulk of the paper investigates the propertiesand uses of this system.We start the de�nition of SA00 with a set of atomic propositions L. We alsohave a set of connectives f!;^;:g, and the following set of rules for buildingthe well-formed formulae (w� s) of the language.{ If l 2 L then l is a simple well-formed formula (sw� ).{ If l is an sw�, then :l is an sw�.{ If l and m are sw� s then l ^m is an sw�.{ If l and m are sw� s then l ! m is an implicational well-formed formula(iw� ).{ The set of all w� s is the union of the set of sw� s and the set of iw� s.The reason for distinguishing the sw� s and the iw� s is that whilst : and ^have their usual logical meaning, ! does not represent material implication but



Ax� `ACR (St; flg; Sg) (l : St : Sg) 2 �^-E1 � `ACR (St ^ St0; G; Sg)� `ACR (St;G; conjelim(Sg))^-E2 � `ACR (St ^ St0; G; Sg)� `ACR (St0; G; conjelim(Sg))^-I � `ACR (St;G; Sg) � `ACR (St0; G0; Sg0)� `ACR (St ^ St0; G [G0; combconj(Sg; Sg0))!-E � `ACR (St;G; Sg) � `ACR (St! St0; G0; Sg0)� `ACR (St0; G [G; combimp(Sg; Sg0))!-I �; (St; ;; Sg) `ACR (St0; G; Sg0)� `ACR (St! St0; G; comb�1imp(Sg; Sg0)):-E1 � `ACR (:St;G; Sg)� `ACR (St;G; negform(Sg)):-I � `ACR (St;G; Sg)� `ACR (:St;G; negform(Sg))Fig. 1. Argumentation Consequence Relationa connection between the signs of antecedent and consequent. Thus there is afundamental di�erence between the sw� s and the iw� s which will become clearlater in the paper. The set of all w� s that may be de�ned using L, may thenbe used to build up a database � where every item d 2 � is a triple (i : l : s)in which i is a token uniquely identifying the database item (for convenience wewill use the letter `i' as an anonymous identi�er), l is a w�, and s is a statementabout belief in l. With this formal system, we can take a database and use theargumentation consequence relation `ACR de�ned in Figure 1 to build argumentsfor propositions that we are interested in1.Typically we have several arguments for a given proposition, and so attenthem to get a single sign. Thus we have a function Flat(�) from a set of argumentsA for a proposition l from a particular database� to the pair of that propositionand some overall measure of validity:Flat(A) = hl; viwhere A = f(l; G; Sg) j � `ACR (l; G; Sg)g, and v is the result of a suitablecombination of the Sg that takes into account the structure of the the arguments.1 The change from the triple (Identi�er ; Sentence ; Sign) in the database to the argu-ment (Sentence ; Set of Identi�ers ; Sign) is to make a distinction between databaseitems and derived sentences.



The value of v is calculated by another function at:v = at�fhGi; Sgii j (l; Gi; Sgi) 2 Ag�Together L, the rules for building the formulae, the connectives, and `ACR de�neSA00. In fact, SA00 is really the basis of a family of systems of argumentation, be-cause one can de�ne a number of variants of SA00 by using di�erent sets of signs.Each set will have its own set of functions conjelim, combconj, combimp, comb�1impand negform, and its own means of attening arguments, at. The meanings of thesigns, attening functions, and combination functions delineate the semantics ofthe system of argumentation. The purpose of this paper is to suggest a way inwhich these functions may be given a speci�c probabilistic interpretation. Thereason for doing this is to provide a system of argumentation, NA00, which isnormative in the sense that it accords to the norms of probability theory.3 A probabilistic semanticsThe idea behind the semantics is to provide a precise characterisation of theintuitive idea that constructing an argument which supports a proposition is areason for one to increase one's belief in that proposition and that constructingan argument against a proposition is a reason for decreasing one's belief inthat proposition. Taking the position that a degree of belief may be expressedas a probability it is possible to modify the notion of a probabilistic inuencein qualitative probabilistic networks (QPNs) [22] to give the signs of NA00 aprobabilistic interpretation.3.1 The meaning of formulaeIn particular we take triples (i : l : ") to denote the fact that Pr(l) increases,and similar triples (i : l : #), to denote the fact that Pr(l) decreases. Triples(i : l : $), denote the fact that Pr(l) is known to neither increase nor decrease.It should be noted that the triple (i : l : ") indicates that the change in valueof Pr(l) either goes up, or does not change|this inclusive interpretation of thenotion of \increase" is taken from QPNs|and of course a similar proviso appliesto (i : l : #). Since we want to reason about changes in belief which equate to theusual logical notion of proof, we also consider changes in belief to 1 and decreasein belief to 0, indicating these by the use of the symbols * and +. The meaningof a proposition (i : l : *) is that the probability of l becomes 1, while (i : l : +)means that the probability of l becomes 0. We also have triples (i : l : l) whichindicate that the change in Pr(l) is unknown.Implications, by which we mean iw� s, can be given a probabilistic interpre-tation by making the triple (i : a! c : +) denote the fact that:Pr(c ja;X) � Pr(c j:a;X)



for all X 2 fx;:xg for which there is a triple (i : x! c : s) (where s is any sign)or (i : :x! c : s), while the triple (i : a! c : �) denotes the fact that:Pr(c ja;X) � Pr(c j:a;X)again for all X 2 fx;:xg for which there is a triple (i : x ! c : s) or (i : :x !c : s). As a result an implication (i : a! c : +) means that there is a probabilitydistribution over the formulae c and a such that an increase in the probabilityof a makes c more likely to be true, and an implication (i : a ! c : �) meansthat there is a probability distribution over the propositions c and a such thatan increase in the probability of a makes c less likely to be true. We do not makemuch use of triples such as (i : c ! a : 0) since they have no useful e�ect butinclude them for completeness|(i : c ! a : 0) indicates that Pr(c) does notchange when Pr(a) changes. We also have implications such as (i : a ! c : ?)which denotes the fact that the relationship between Pr(c ja;X) and Pr(c j:a;X)is not known, so that if the probability of a increases it is not possible to say howthe probability of c will change. With this interpretation, implications betweenatomic propositions correspond to qualitative inuences in QPNs. As a result ofthis link to QPNs we require that implications are causally directed, by whichwe mean that the antecedent is a cause of the consequent. This is the usualrestriction imposed in probabilistic networks [20].It should be noted that the e�ect of declaring that there is an implication(i : a! c : +) is to create considerable constraints on the probability distributionover a and c. In fact we have:Theorem 1. A consequence of the probabilistic semantics is that an implication(i : a ! c : +) places the same restrictions over the probabilities of a and c as(i : a ! :c : �), (i : :a ! c : �), (i : :a ! :c : +) and (i : c ! a : +),(i : c! :a : �), (i : :c! a : +), (i : :c! :a : +).Proof: The condition Pr(c ja;X) � Pr(c j :a;X) is exactly that for (i : :a !c : �), and implies 1 � Pr(c j a;X) � 1 � Pr(c j :a;X) so that Pr(:c j a;X) �Pr(:c j:a;X). This is the condition for (i : a ! :c : �) and (i : :a ! :c : +).This takes care of the restrictions on reasoning from a to c. For the reverse caseswe recall that Pr(c ja; x) � Pr(c j:a; x) implies Pr(a jc; y) � Pr(a j:c; y) [22]. 2Clearly analogous restrictions are imposed by implications like (i : a ! c : �).We also have categorical implications which allow propositions to be proved trueor false. In particular, an implication (i : a ! c : ++) indicates that when a isknown to be true, then so is c. Thus it denotes a constraint on the probabilitydistribution across a and c such that if Pr(a) becomes 1, so does Pr(c). Thisrequires that: Pr(c ja;X) = 1for all X 2 fx;:xg for which there is a triple (i : x ! c : s) or (i : :x !c : s) [15]. Note that this type of implication also conforms to the conditionsfor implications labelled with +, and that if Pr(c j :a; x) = 1 then Pr(c) is



always equal to Pr(a). Similarly, a probabilistic interpretation of an implication(i : a! c : ��) which denotes the fact that if a is true, c is false requires that:Pr(c ja;X) = 0for all X 2 fx;:xg for which there is a triple (i : x ! c : s) or (i : :x ! c : s).There are two more types of categorical implication which are symmetric tothose already introduced. The �rst is of the form (i : a! c : �+) which denotesthe constraint: Pr(c j:a;X) = 1for all X 2 fx;:xg for which there is a triple (i : x ! c : s) or (i : :x ! c : s).The second is of the form (i : a! c : +�) which denotes the constraint:Pr(c j:a;X) = 0for all X 2 fx;:xg for which there is a triple (i : x ! c : s) or (i : :x ! c : s).Unsurprisingly, the introduction of categorical implications imposes restrictionson other implications involving the same formulae.Theorem 2. A consequence of the probabilistic semantics is that an implication(i : a ! c : ++) places the same restrictions over the probabilities of a and cas (i : a ! :c : ��), (i : :a ! c : �+) and (i : :a ! :c : +�), and impliesthat for all other implications (i : x ! c : s) where x 6= a, it is the case thats 2 f++;+;�;�+g.Proof: The implication (i : a ! c : ++) requires Pr(c j a;X) = 1 which isexactly the constraint imposed by (i : a ! :c : �+). Pr(c j a;X) = 1 impliesPr(:c j a;X) = 0 which is the condition imposed by (i : a ! :c : ��) and(i : :a! :c : +�). The restriction on implications such as (i : x! c : s) followsdirectly from the mutual incompatibility of the constraints on the conditionalprobabilities imposed by the categorical implications [15]. 2This property is exactly what we should expect. If Pr(a) is related to Pr(c) thenit is also related to Pr(:c), and its negation is related to both Pr(c) and Pr(:c).Furthermore, if the occurrence of a proves c to be true, then no other evidencecan change this conclusion so implications labelled +� or �� may not have c astheir consequent. Similar results hold for other types of categorical implication.Theorem 3. A consequence of the probabilistic semantics is that an implication(i : a ! c : ++) or (i : a ! c : �+) places the same restrictions over theprobabilities of a and c as (i : c! a : +), (i : c! :a : �), (i : :c! a : �) and(i : :c! :a : +).Proof: An categorical implication (i : a ! c : ++) or (i : a ! c : �+) is justa more extreme version of (i : a! c : +), and while it won't necessarily reverseto give a categorical implication, it will reverse just like (i : a ! c : +) so theresult follows from Theorem 1. 2Again, analogous results hold for the other kinds of categorical implications.
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++ +� + 0 � �+ �� ?* * " " $ # + # l" " " " $ # # # l$ $ $ $ $ $ $ $ $# # # # $ " " " l+ # + # $ " " * ll l l l $ l l l l(a) (b)Table 1. Conjunction introduction combconj (a) and implication elimination combimp(b)3.2 The proof rulesWe now turn to providing a probabilistic interpretation for the functions used tobuild arguments starting with conjunction introduction and elimination. Whenintroducing conjunction we have:De�nition 4. The function combconj : Sg 2 f*; ";$; #;+; lg � Sg0 2 f*; ";$; #;+; lg 7! Sg00 2 f*; ";$; #;+; lg is speci�ed by Table 1(a) where, as withall combinator tables in this paper, the �rst argument is taken from the �rstcolumn and the second argument is taken from the �rst row.When eliminating a conjunction with sign Sg we assign both conjuncts the signconjelim(Sg).De�nition 5. The function conjelim : Sg 2 f*; ";$; #;+; lg 7! Sg0 2 f*; ";$;#;+; lg is as follows: conjelim(Sg) = � * if Sg = *l otherwiseWhat this means is that most of the time it is not possible to determine howthe probability of the individual conjuncts change. This is an unfortunate butunavoidable property of probability theory.To deal with implication we need two further functions, combimp to establishthe sign of a formula generated by the rule of inference !-E, and comb�1imp toestablish the sign of an implication generated by !-I. This means that themain use of combimp is to combine the change in probability of a formula a, say,with the constraint that the probability of a imposes upon the probability ofanother formula c. Since this constraint is expressed in exactly the same wayas qualitative inuences are in QPNs, combimp performs the same function as 
[22], and is merely an extension of it.De�nition 6. The function combimp : Sg 2 f*; ";$; #;+; lg� Sg0 2 f++;+�;+; 0;�;�+;��; ?g 7! Sg00 2 f*; ";$; #;+; lg is speci�ed by Table 1(b).Note the asymmetry in the table which stems from the de�nition of the categor-ical implications. If the asymmetry did not exist, categorical implications would



be close to logical bi-implication. As one might guess from its name, the functioncomb�1imp is merely the inverse of combimp:De�nition 7. The function combimp�1 : Sg 2 f*; ";$; #;+; lg�Sg0 2 f*; ";$;#;+; lg 7! Sg00 2 f++;+�;+; 0;�;�+;��; ?g is speci�ed by Table 2(a). Blankspaces represent impossible combinations.The rules for handling negation are applicable only to sw� s and permit thenegation to be either introduced or eliminated by reversing the direction ofchange of the sign, for example allowing (i : :a : ") to be rewritten as (i : a : #).This leads to the de�nition of negform:De�nition 8. The function negform : (i : :a : s); s 2 f*; ";$; #;+; lg 7! (i : a :s0); s0 2 f*; ";$; #;+; lg relates s to s0 by Table 2 (b).Note that negform is not de�ned over the values ++, +�, +, 0, �, �+, and��. Although an implication (i : a ! b : +) has a kind of inverse relationwith (i : a ! b : �), there is no such relation with (i : :(a ! b) : s)|indeed,(i : :(a! b) : s) is not even an implication, since its main connective is :|andbecause of this it is not possible to apply negform to an implication.Having de�ned the combination of formulae to build arguments, we need tospecify suitable function at to be used to assess the overall strength of severalarguments for the same formula. Now, in general, the overall strength of severalarguments will be inuenced by the interaction between steps in the arguments,and it will be necessary to take into account the grounds of each argument whenattening them in order to correctly handle any dependencies between the valuesof the formulae concerned. This is why at is de�ned over the grounds as well asthe signs of the arguments it operates on. However, in NA00, because the e�ectof each implication is de�ned to occur whatever other arguments are formed(this is a result of the constraint imposed on the conditional probabilities bythe implications), all combinations are completely local, and the structure of thearguments may be disregarded when attening (for exactly the same reason as itis in QPNs [5]). As a result, at is simply the iterated application of the function* " $ # + l* ++ + 0 � �� ?" + 0 � ?$ 0# � 0 + ?+ �+ � 0 + +� ?l 0 ? s * " $ # + ls0 + # $ " * l * " $ # + l* * * * * *" * " " l + l$ * " $ # + l# * l # # + l+ + + + + +l * l l l + l(a) (b) (c)Table 2. Implication introduction comb�1imp (a), negation of sw� s negform (b), and at-tening at (c).



�|an extended version of the qualitative addition function used by QPNs:at�fhGi; Sgiig� =Mi Sgiwhere the correct way to combine the changes in probability using� is as follows:De�nition 9. The function � : Sg 2 f*; ";$; #;+; lg � Sg0 2 f*; ";$; #;+;lg 7! Sg00 2 f*; ";$; #;+; lg is speci�ed by Table 2 (c). Blank spaces representimpossible combinations.4 ExampleFor an illustration of some of the reasoning possible in NA00, consider the fol-lowing database. This encodes the information that three events have a bearingon whether or not I lose my job|being ill makes it more likely I will lose myjob, doing good research makes it less likely I will lose my job, and embezzlingmoney makes it certain I will lose my job|while being ill makes it more likelyI will go to hospital:r1 : good research! lose job : � �1r2 : ill! lose job : +r3 : embezzle money ! lose job : ++r4 : ill! hospital : +f1 : good research : *f2 : ill : *It also becomes known that I am ill and do good research (this is a �ctionalexample). From this information we can build the arguments:�1 `ACR (hospital; ff2; r4g; ")�1 `ACR (lose job; ff1; r1g; #)�1 `ACR (lose job; ff2; r2g; ")The �rst argument means that I am increasingly likely to go to hospital. Thesecond two arguments will atten to give l, indicating that it is impossible tosay how the probability of losing my job will change. These are exactly theconclusions that would be drawn by the equivalent QPN illustrating the factthat NA00 is capable of representing binary QPNs (as discussed in [16]) and canbe regarded as a mechanism for the construction of binary QPNs. If we now addthe fact that I am known to embezzle money from my employer:(f4 : embezzle money : *)to the database, we can build a new argument:�3 `ACR (lose job; ff4; r3g; *)meaning that the arguments about my loss of job will now atten to give *,so that my loss of job is assured. Thus NA00 is capable of a form of defeasiblereasoning in which certain information can outweigh previously known uncertaininformation.



5 Soundness and completenessArmed with the interpretation introduced in Section 3, NA00 has a probabilis-tic semantics. However, the results presented so far have a rather baroque ap-pearance, and so might seem ad hoc to the sceptical reader. However, they arenot. The proof mechanism given above is provably sound for the propagation ofchanges in probability, as shown by the following result:Theorem 10. The construction and attening of arguments in NA00 is soundwith respect to probability theory.Proof: The soundness of NA00 follows immediately from the soundness of thethe way in which changes in probabilities are propagated and attened and thusfrom the soundness of the proof rules and combination tables.(Conjunction introduction): Consider the probabilities Pr(a) and Pr(b) ofthe two propositions being conjoined. Pr(a ^ b) = Pr(a):Pr(b j a) = Pr(a jb):Pr(b). Thus if at least one of Pr(a) and Pr(b) increases and the other doesnot decrease, then Pr(a^b) will increase. If one increases and one decreases, thenthe change in Pr(a ^ b) cannot be determined. If both increase to 1, Pr(a ^ b)increases to 1. Similar reasoning completes the proof.(Conjunction elimination): There are two parts to the proof. One for thepart of the function that gives * and one for the part that gives l. For the �rst,the following su�ces|the only way in which Pr(a ^ b) can increase to 1 is ifboth Pr(a) and Pr(b) increase to 1 (since the notion of `increasing to 1' takesinto account the fact values may have been 1 all along). For the second partwe need the following argument. Giving any sign as l is always sound (since itmeans that nothing at all is being said about the relevant probability). However,it is also possible to prove that no more precise rule can be proposed. This isdone by considering what the probability of Pr(a ^ b) should be if Pr(a) = "and Pr(b) = #. The answer is that Pr(a ^ b) can either increase, decrease, ornot change depending on the relative magnitudes of the changes in Pr(a) andPr(b). Turning this around, it is clear that no �rm conclusions about changes inPr(a) and Pr(b) can be drawn from particular changes in Pr(a ^ b) other thanPr(a ^ b) = *.(Implication elimination): First consider implications labelled with +. Fromthe de�nition of such implications it is clear that combining any increase inprobability with an implication labelled + will generate a possible increase inprobability, in other words ". Similarly combining any decrease in probabilitywith an implication labelled + will generate #, combining no change in proba-bility with such an implication will generate $, and combining a change of lwith such an implication will generate l. An implication labelled � will also give$ when combined with no change in probability and l when combined with l,but otherwise will have the opposite behaviour to that of an implication labelled+. From its de�nition it is clear that an implication labelled ++ will behavelike an implication labelled + except when combined with a change * when itwill generate a change of *. The results for other implications can be obtainedanalogously.



(Implication introduction): The soundness of Table 2(a) follows directly fromthat of Table 1 (b). Where only one possible type of implication can give Sg0 therelevant sign is given by the table, where two or more can give Sg0, for instancewhen Sg = " and Sg0 = " when the sign of the implication could be ++, �+or +, the most inclusive sign is given, + in the case of our example since itsubsumes ++ and �+.(Negation elimination and introduction): Consider a proposition a. If Pr(a)increases to 1 then clearly Pr(:a) decreases to zero, and if Pr(:1) increases to1 then clearly Pr(a) decreases to zero. This takes care of the function for + and*. The other cases are handled similarly.(Flattening): Table 2(c) follows directly from qualitative addition [22] and thefact that categorical changes in probability cannot be altered by non-categoricalchanges|the latter follows from the de�nition of categorical implications [15].The spaces in the table follow from Property 2. 2The other thing that might worry the sceptical reader is the completeness ofNA00. However, since we only allow the initial database to contain implications(i : St! St0 : Sg) where St is a direct cause of St0 we have the following result:Theorem 11. The construction and attening of arguments in NA00 is com-plete with respect to probability theory for reasoning in a causal direction.Proof: Immediate from the de�nition of `ACR and the causal direction ofthe implications|all possible causally directed inferences can be made by theapplication of the appropriate proof rules. 2Causal completeness has its limitations, since from a database consisting of animplication (r1 : a ! b : +) and a fact (f1 : b : ") no arguments may be builtusing `ACR, yet using probability theory one can infer that Pr(a) increases.Extending NA00 to cope with this kind of evidential reasoning is straightforwardand is discussed in [18].6 DiscussionThe probabilistic semantics of NA00 gives us two things. Firstly, it gives us a pre-cise probabilistic notion of what it means to have an argument for something. Ifwe accept the probabilistic interpretation of w� s then given a database of causalrelations (implications) and evidence which leads to some changes in belief wecan infer what changes in belief are implied. Only those propositions supportedby sound arguments will undergo a change in belief and only those propositionsfor which an argument may be built have a change of belief warranted in them.Secondly, the semantics gives us a means of determining how changes in prob-ability are propagated. If we encode our probabilistic knowledge of the worldby writing down sw� s and then build arguments for and against propositionsusing `ACR, we can identify the changes in probability of those propositions.Either way, if after building arguments and attening we have an pair (St; Sg)



If and and thenSt = w Sg = * Pr(w)initial = p Pr(w)final = 1St = w Sg = " Pr(w)initial = p p � Pr(w)final � 1St = w Sg = $ Pr(w)initial = p Pr(w)final = pSt = w Sg = # Pr(w)initial = p p � Pr(w)final = 0St = w Sg = + Pr(w)initial = p Pr(w)final = 0St = w Sg = l Pr(w)initial = p 0 � Pr(w)final � 1If and thenSt = v ! w Sg = ++ Pr(w jv; x) = 1St = v ! w Sg = +� Pr(w j:v; x) = 0St = v ! w Sg = + Pr(w jv; x) � Pr(w j:v; x)St = v ! w Sg = 0 Pr(w jv; x) = Pr(w j:v; x)St = v ! w Sg = � Pr(w jv; x) � Pr(w j:v; x)St = v ! w Sg = �+ Pr(w j:v; x) = 1St = v ! w Sg = �� Pr(w jv; x) = 0St = v ! w Sg = ? The relationship between Pr(w jv; x)and Pr(w j:v; x) is unknown.Table 3. What a derived formula means.where St is any w� then Sg indicates the change in probability of St. If, on theother hand we have (St; Sg) where St is an iw� St0 ! St00 then Sg indicates theconstraint between Pr(St0) and Pr(St00). The full denotation of any pair (St; Sg)is given by Table 3. Since reasoning with probability is normative in the sensethat it accords to the norms of probability theory (which can be justi�ed by theusual Dutch book argument) this makes NA00 normative.Another advantage of NA00 is that it makes it possible to give a probabilisticanalysis of di�erent styles of argumentation. This section gives examples of threesuch analyses using small examples (more extensive analysis may be found in[18]). In some systems of argumentation [7], arguments are attened by countingthe number of arguments for and against a proposition and giving it the sign ofthe majority. Consider the following example:f1 : embezzle funds : # �2f2 : good tutor : #f3 : good research : "r1 : embezzle funds! lose job : +:r2 : good tutor ! lose job : �r3 : good research! lose job : �there are three arguments a�ecting the proposition \lose job"�2 `ACR (lose job; (f1; r1); #):�2 `ACR (lose job; (f2; r2); "):�2 `ACR (lose job; (f3; r3); #):



Counting arguments suggests we should conclude that belief in \lose job" de-creases since there are two arguments against it and only one for it. Consideringusing NA00 here shows that concluding hlose job; #i involves the assumption:�Pr(good tutor):(Pr(lose job jgood tutor)� Pr(lose job j:good tutor))� �Pr(embezzle):(Pr(lose job jembezzle)� Pr(lose job j:embezzle))+�Pr(research):(Pr(lose job jresearch) � Pr(lose job j:research))when the size of the changes in probability propagated across each implicationare taken into account [19]. Another kind of attening is that based on directnessof argument [12]. With the database:f1 : good research : " �3r1 : good research! good tutor : �r2 : good tutor ! lose job : �r3 : lose job! no money : +r4 : good research! job in industry : +r5 : job in industry ! no money : �we get the arguments:�3 `ACR (no money; (f1; r1; r2; r3); "):�3 `ACR (no money; (f2; r4; r5); #):Flattening by directness leads us to conclude hno money; #i. since the argumentfor it is the shorter of the two. This time the probabilistic semantics of NA00expose the assumption as being:(Pr(industry jresearch)� Pr(industry j:research)):(Pr(no money j industry)� Pr(no money j:industry))� (Pr(good tutor jresearch) � Pr(good tutor j:research)):(Pr(lose job jgood tutor)� Pr(lose job j:good tutor)):(Pr(no money j lose job)� Pr(no money j:lose job))which is similar to that underlying counting arguments, but without placingconstraints on the change in the probability of the initial facts. Finally, severalauthors [11, 21] have considered the use of rebuttal and undercutting to attenarguments|a proposition is rebutted when it is directly argued against and isundercut when one of the steps in the argument for it is argued against. Considerthe following example:f1 : good tutor : # �4f2 : high research output : "r1 : good tutor ! lose job : �r2 : lose job! no money : +r3 : high research output! lose job : �



From �4 we can build the arguments:�4 `ACR (lose job; (f1; r1); "):�4 `ACR (no money; (f1; r1; r2); "):�4 `ACR (lose job; (f2; r3); #):and �nd that the third argument rebuts proposition lose job and undercuts thethe proposition no money. The usual interpretation of this is that the lose job ismore a�ected by the third argument than no money, and this is exactly what onewould conclude from NA00 since the changes associated with the third argumentwill be no smaller for Pr(lose job) than for Pr(no money).7 SummaryThis paper has discussed a means of giving a probabilistic semantics to a systemof argumentation. It is thus in some senses an extension of previous work on suchsystems of argumentation [11] as well as probabilistic systems of argumentationwhich use a more restricted base logic [17]. With a solid basis in probabilitytheory, the system can be used to combine the advantages of a sound meansof handling uncertainty with the expressiveness of a logical method of knowl-edge representation, an expressiveness that will be increased with the plannedextension to a �rst order system which includes disjunction. Amongst otherthings the system is capable of defeasible reasoning and knowledge-based modelconstruction for qualitative probabilistic networks. Furthermore, because of itsqualitative nature, the system may be used when probabilistic knowledge of adomain is incomplete and the fact that it is soundly based on probability theorymakes it a useful basis for a qualitative decision theory [8]. Finally, it shouldbe noted that NA00 has similarities with Neufeld's system for default reasoning[14]. Some of these are explored in [16].References1. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain andinconsistent knowledge bases. In Proceedings of the 9th Conference on Uncertaintyin Arti�cial Intelligence, 1993.2. A. Darwiche. Argument calculus and networks. In Proceedings of the 9th Confer-ence on Uncertainty in Arti�cial Intelligence, 1993.3. A. Darwiche and M. Ginsberg. A symbolic generalisation of probability theory. InProceedings of the 10th National Conference on Arti�cial Intelligence, 1992.4. A. Darwiche and M. Goldszmidt. On the relation between kappa calculus andprobabilistic reasoning. In Proceedings of the 10th Conference on Uncertainty inArti�cial Intelligence, 1994.5. M. J. Druzdzel. Probabilistic reasoning in Decision Support Systems: from compu-tation to common sense. PhD thesis, Carnegie Mellon University, 1993.6. P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning and logic programming. In Proceedings of the 13th Interna-tional Conference on Arti�cial Intelligence, 1993.
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