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Abstract. In recent years there has been a spate of papers describing
systems for plausible reasoning which do not use numerical measures
of uncertainty. Some of the most successful of these have been systems
for argumentation, and there are advantages in considering the condi-
tions under which such systems are normative. This paper discusses an
extension to previous work on normative argumentation, exploring the
properties of a particular normative approach to argumentation and sug-
gesting some uses of it.

1 Introduction

In the last few years there have been a number of attempts to build systems for
reasoning under uncertainty that are of a qualitative nature—that is they use
qualitative rather than numerical values, dealing with concepts such as increases
in belief and the relative magnitude of values. Between them, these systems
address the problem of reasoning in situations in which knowledge is uncertain,
but in which there is a limited amount of numerical information quantifying
the degree of uncertainty. Three main classes of system can be distinguished—
systems of abstraction, infinitesimal systems, and systems of argumentation.

In systems of abstraction, [5, 14,19, 22], the focus is often, though not always
[3], on modelling how the probability of hypotheses changes when evidence is
obtained and never commits to exact probability values. They thus provide an
abstract version of probability theory which ignores the actual values of individ-
ual probabilities but which is nevertheless sufficient for planning and design [13]
tasks. Infinitesimal systems [10, 23] deal with beliefs that are very nearly 1 or 0,
providing formalisms that handle order of magnitude probabilities. Infinitesimal
systems may be used for diagnosis [4] as well as providing a general model of
default reasoning. Systems of argumentation [1,2,6,11,12,21] are based on the
idea of constructing logical arguments for and against propositions, establishing
the overall validity of such propositions by assessing the persuasiveness of the
individual arguments.

However, unlike other qualitative systems, systems of argumentation do not
always have a clear semantics. In particular, it is not always clear what it means
to have an argument for or against something. As a result, in a previous paper



[17] T made the suggestion that it might be beneficial to investigate whether
systems of argumentation might be made normative in a probabilistic sense,
thus combining the expressiveness of argumentation with the clear semantics
of probability. This paper takes that work further, building a more expressive
system, exploring its properties, providing soundness and completeness results
and suggesting ways in which the system might be used.

2 Introducing systems of argumentation

In classical logic, an argument is a sequence of inferences leading to a conclusion.
If the argument is correct, then the conclusion is true. In the system of argu-
mentation proposed by Fox, Krause and colleagues [11] this traditional form
of reasoning is extended to allow arguments to indicate support and doubt in
propositions, as well as proving them. This is done by assigning two labels to
every sentence that is deduced. One label, the grounds, identifies the argument
for that sentence by indicating the formulae used in the deduction. The other
label, the sign, indicates the force of the argument. The force can be taken to be
the change in belief in the proposition warranted by the argument. This form of
argumentation may be summarised by the following schema:

Database Facr (Sentence, Grounds, Sign)

where F4c g is a suitable consequence relation. This approach to argumentation
is one of many, but it is the one which will be adopted in this paper. Having
chosen to work with this form of argumentation, we then choose a particular for-
malisation of this form of argumentation to work with, creating a system which
we will call SA”. Again there are many possibilities of which this formalisation is
just one, particularly convenient, one. Others are explored in [8,9, 11, 16]. Since
this formalisation is expressed in very general terms, S.A" can actually be refined
to produce a number of different systems depending upon the precise interpre-
tation one puts on the signs. Eventually a particular interpretation is selected,
generating a system N A", and the bulk of the paper investigates the properties
and uses of this system.

We start the definition of SA" with a set of atomic propositions £. We also
have a set of connectives {—, A, —}, and the following set of rules for building
the well-formed formulae (wffs) of the language.

— If I € £ then [ is a simple well-formed formula (swff).

— If I is an swff, then —l is an swff.

If I and m are swff's then | A m is an swff.

If I and m are swffs then | — m is an implicational well-formed formula
(iwff).

— The set of all wffs is the union of the set of swffs and the set of jwffs.

The reason for distinguishing the swffs and the swffs is that whilst = and A
have their usual logical meaning, — does not represent material implication but
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Fig. 1. Argumentation Consequence Relation

a connection between the signs of antecedent and consequent. Thus there is a
fundamental difference between the swffs and the swffs which will become clear
later in the paper. The set of all wffs that may be defined using £, may then
be used to build up a database A where every item d € A is a triple (i : [ : s)
in which 7 is a token uniquely identifying the database item (for convenience we
will use the letter ‘i’ as an anonymous identifier), | is a wff, and s is a statement
about belief in [. With this formal system, we can take a database and use the
argumentation consequence relation - 4o g defined in Figure 1 to build arguments
for propositions that we are interested in!.

Typically we have several arguments for a given proposition, and so flatten
them to get a single sign. Thus we have a function Flat(-) from a set of arguments
A for a proposition [ from a particular database A to the pair of that proposition
and some overall measure of validity:

Flat(A) = (I,v)

where A = {(I,G,Sg) | A Facr (I,G,Sg)}, and v is the result of a suitable
combination of the Sg that takes into account the structure of the the arguments.

! The change from the triple (Identifier, Sentence, Sign) in the database to the argu-
ment (Sentence, Set of Identifiers, Sign) is to make a distinction between database
items and derived sentences.



The value of v is calculated by another function flat:
v =flat({(Gi, 9 | (1, G, Sgi) € A})

Together L, the rules for building the formulae, the connectives, and 4o define
SA". In fact, SA" is really the basis of a family of systems of argumentation, be-
cause one can define a number of variants of SA" by using different sets of signs.
Each set will have its own set of functions conjejim, combgonj, combimp, combi_mlp
and negform, and its own means of flattening arguments, flat. The meanings of the
signs, flattening functions, and combination functions delineate the semantics of
the system of argumentation. The purpose of this paper is to suggest a way in
which these functions may be given a specific probabilistic interpretation. The
reason for doing this is to provide a system of argumentation, N"A", which is
normative in the sense that it accords to the norms of probability theory.

3 A probabilistic semantics

The idea behind the semantics is to provide a precise characterisation of the
intuitive idea that constructing an argument which supports a proposition is a
reason for one to increase one’s belief in that proposition and that constructing
an argument against a proposition is a reason for decreasing one’s belief in
that proposition. Taking the position that a degree of belief may be expressed
as a probability it is possible to modify the notion of a probabilistic influence
in qualitative probabilistic networks (QPNs) [22] to give the signs of N A" a
probabilistic interpretation.

3.1 The meaning of formulae

In particular we take triples (i : [ : 1) to denote the fact that Pr(l) increases,
and similar triples (7 : I : ]), to denote the fact that Pr(l) decreases. Triples
(i : 1 : ¢), denote the fact that Pr(l) is known to neither increase nor decrease.
It should be noted that the triple (7 : [ : 1) indicates that the change in value
of Pr(l) either goes up, or does not change—this inclusive interpretation of the
notion of “increase” is taken from QPNs—and of course a similar proviso applies
to (i :1: ). Since we want to reason about changes in belief which equate to the
usual logical notion of proof, we also consider changes in belief to 1 and decrease
in belief to 0, indicating these by the use of the symbols 1} and |}. The meaning
of a proposition (i : [ : {}) is that the probability of I becomes 1, while (i : 1 : {})
means that the probability of I becomes 0. We also have triples (i : I : ) which
indicate that the change in Pr(l) is unknown.

Implications, by which we mean iwffs, can be given a probabilistic interpre-
tation by making the triple (i : @ — ¢ : +) denote the fact that:

Pr(c|a, X) > Pr(c|—a, X)



for all X € {z,~x} for which there is a triple (i :  — ¢ : s) (where s is any sign)
or (i : mx — c: s), while the triple (i : @ = ¢ : —) denotes the fact that:

Pr(c|a, X) < Pr(c|—a, X)

again for all X € {z, -z} for which there is a triple (i : z = c:s) or (i : =z —
c¢:s). As aresult an implication (i : @ — ¢ : +) means that there is a probability
distribution over the formulae ¢ and a such that an increase in the probability
of a makes ¢ more likely to be true, and an implication (i : @ = ¢ : —) means
that there is a probability distribution over the propositions ¢ and a such that
an increase in the probability of @ makes c less likely to be true. We do not make
much use of triples such as (i : ¢ = a : 0) since they have no useful effect but
include them for completeness—(i : ¢ — a : 0) indicates that Pr(c) does not
change when Pr(a) changes. We also have implications such as (i : @ — ¢ : ?)
which denotes the fact that the relationship between Pr(c|a, X) and Pr(c|—a, X)
is not known, so that if the probability of a increases it is not possible to say how
the probability of ¢ will change. With this interpretation, implications between
atomic propositions correspond to qualitative influences in QPNs. As a result of
this link to QPNs we require that implications are causally directed, by which
we mean that the antecedent is a cause of the consequent. This is the usual
restriction imposed in probabilistic networks [20].

It should be noted that the effect of declaring that there is an implication
(i : @ = ¢ : +) is to create considerable constraints on the probability distribution
over a and c. In fact we have:

Theorem 1. A consequence of the probabilistic semantics is that an implication
(i : a — c¢: +) places the same restrictions over the probabilities of a and ¢ as
(i:a——-c:=),(i:ma—c:—=),({i:7a—>-c:4+)and (i :c— a:+),
(i:c—>-a:—),(i:mc—>a:+4+), (i:7c— —a:+).

Proof: The condition Pr(c|a, X) > Pr(c|—a, X) is exactly that for (i : ma —
¢: —), and implies 1 — Pr(c|a,X) < 1 — Pr(c|—a,X) so that Pr(-c|a,X) <
Pr(—c|—a, X). This is the condition for (i : @ = —c: —) and (i : ~a = —c: +).
This takes care of the restrictions on reasoning from a to c. For the reverse cases
we recall that Pr(c|a,z) > Pr(c|—a,z) implies Pr(a|c,y) > Pr(a|—c,y) [22]. O

Clearly analogous restrictions are imposed by implications like (i : a = ¢ : —).
We also have categorical implications which allow propositions to be proved true
or false. In particular, an implication (i : @ — ¢ : ++) indicates that when a is
known to be true, then so is c. Thus it denotes a constraint on the probability
distribution across a and ¢ such that if Pr(a) becomes 1, so does Pr(c). This
requires that:

Pr(cla,X) =1

for all X € {z,—z} for which there is a triple (i : © — ¢ : s) or (i : "z —
¢ : s) [15]. Note that this type of implication also conforms to the conditions
for implications labelled with +, and that if Pr(c | ma,z) = 1 then Pr(c) is



always equal to Pr(a). Similarly, a probabilistic interpretation of an implication
(i : @ = c¢: ——) which denotes the fact that if a is true, c is false requires that:

Pr(c|a,X) =0

for all X € {x, -z} for which there is a triple (i : @ = c:s) or (i : =z = ¢ : s).
There are two more types of categorical implication which are symmetric to
those already introduced. The first is of the form (i : @ = ¢ : —+) which denotes
the constraint:

Pr(¢|—a,X) =1

for all X € {«,—z} for which there is a triple (i : & = c:s) or (i : 7z = ¢ : s).
The second is of the form (i : @ — ¢ : +—) which denotes the constraint:

Pr(c|—a,X) =0

for all X € {x,—z} for which there is a triple (i : @ = c¢:s) or (i : =z = ¢ : s).
Unsurprisingly, the introduction of categorical implications imposes restrictions
on other implications involving the same formulae.

Theorem 2. A consequence of the probabilistic semantics is that an implication
(i : a = c¢: ++) places the same restrictions over the probabilities of a and c
as (i:a — -c:——), (i:—-a —c:—+) and (i : na = —c: +—), and implies
that for all other implications (i : * — ¢ : s) where x # a, it is the case that
se{++,+,—, —+}

Proof: The implication (i : @ — ¢ : ++) requires Pr(c|a,X) = 1 which is
exactly the constraint imposed by (i : @ = —¢ : —+). Pr(c|a,X) = 1 implies
Pr(—c | a,X) = 0 which is the condition imposed by (i : ¢ = —¢ : ——) and
(i : ma = —c: +—). The restriction on implications such as (i : ¢ — ¢ : s) follows
directly from the mutual incompatibility of the constraints on the conditional
probabilities imposed by the categorical implications [15]. O

This property is exactly what we should expect. If Pr(a) is related to Pr(c) then
it is also related to Pr(—c), and its negation is related to both Pr(c) and Pr(—c).
Furthermore, if the occurrence of a proves ¢ to be true, then no other evidence
can change this conclusion so implications labelled +— or —— may not have c as
their consequent. Similar results hold for other types of categorical implication.

Theorem 3. A consequence of the probabilistic semantics is that an implication
(i:a = c:++)or(i:a— c: —+) places the same restrictions over the
probabilities of a and c as (i:c—a:+), (i:c—-a:=), (i:7¢c—=a:—) and
(i:ﬂc—>—|a:+).

Proof: An categorical implication (i : @ — c: ++) or (i : @ = ¢ : —+) is just
a more extreme version of (i : @ — ¢ : +), and while it won’t necessarily reverse
to give a categorical implication, it will reverse just like (i : @ = ¢ : +) so the
result follows from Theorem 1. O

Again, analogous results hold for the other kinds of categorical implications.
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Table 1. Conjunction introduction combenj (2) and implication elimination combimp

(b)

3.2 The proof rules

We now turn to providing a probabilistic interpretation for the functions used to
build arguments starting with conjunction introduction and elimination. When
introducing conjunction we have:

Definition 4. The function combesn; : Sg € {1, 1, ¢, ), 4,3} x Sg' € {1,
<, L,4,3} — Sg" € {f,1,<,1),4,1} is specified by Table 1(a) where, as with
all combinator tables in this paper, the first argument is taken from the first
column and the second argument is taken from the first row.

When eliminating a conjunction with sign Sg we assign both conjuncts the sign
CoNjelim (S9).

Definition 5. The function conjeim : Sg € {1, 1, <, 1, 4,3} — Sg' € {1, 1, ¢,
1, 4,1} is as follows:
0 if Sg =1

1 otherwise

conjeiim (Sg) = {

What this means is that most of the time it is not possible to determine how
the probability of the individual conjuncts change. This is an unfortunate but
unavoidable property of probability theory.

To deal with implication we need two further functions, combiy, to establish
the sign of a formula generated by the rule of inference —-E, and combi_mlp to
establish the sign of an implication generated by —-I. This means that the
main use of combjn, is to combine the change in probability of a formula a, say,
with the constraint that the probability of a imposes upon the probability of
another formula c¢. Since this constraint is expressed in exactly the same way
as qualitative influences are in QPNs, comb;m, performs the same function as ®
[22], and is merely an extension of it.

Definition 6. The function combiy, : Sg € {1, 1, ¢, 4, 4,3} x S¢’ € {++,+—,
+,0,—, —+,——, 7} = S¢" € {1, 1,,1,{,1} is specified by Table 1(b).

Note the asymmetry in the table which stems from the definition of the categor-
ical implications. If the asymmetry did not exist, categorical implications would



be close to logical bi-implication. As one might guess from its name, the function
combi;lp is merely the inverse of combjm,:

Definition 7. The function combim, ' : Sg € {1, 1, <, 1, 1,1} x Sg' € {1, 1, ¢,
L3 = S¢" € {++,+—,+,0,—, —+, ——, 7} is specified by Table 2(a). Blank
spaces represent impossible combinations.

The rules for handling negation are applicable only to swffs and permit the
negation to be either introduced or eliminated by reversing the direction of
change of the sign, for example allowing (i : —a : 1) to be rewritten as (i : a : |).
This leads to the definition of negform:

Definition 8. The function negfom : (i : —a : s),s € {1, T, <, L, L, — (i:a:
s, s" e {1, ¢, ,1} relates s to s" by Table 2 (b).

Note that negform is not defined over the values ++, +—, +, 0, —, —+, and
——. Although an implication (i : @ — b : +) has a kind of inverse relation
with (i : @ — b : —), there is no such relation with (i : =(a — b) : s)—indeed,
(i : =(a — b) : s) is not even an implication, since its main connective is =—and
because of this it is not possible to apply negfom to an implication.

Having defined the combination of formulae to build arguments, we need to
specify suitable function flat to be used to assess the overall strength of several
arguments for the same formula. Now, in general, the overall strength of several
arguments will be influenced by the interaction between steps in the arguments,
and it will be necessary to take into account the grounds of each argument when
flattening them in order to correctly handle any dependencies between the values
of the formulae concerned. This is why flat is defined over the grounds as well as
the signs of the arguments it operates on. However, in A" A", because the effect
of each implication is defined to occur whatever other arguments are formed
(this is a result of the constraint imposed on the conditional probabilities by
the implications), all combinations are completely local, and the structure of the
arguments may be disregarded when flattening (for exactly the same reason as it
is in QPNs [5]). As a result, flat is simply the iterated application of the function
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Table 2. Implication introduction comb;ﬂi (a), negation of swffs negirm (b), and flat-
tening flat (c).



@—an extended version of the qualitative addition function used by QPNs:
flat({(G:, Sgi)}) = €D Soi
i

where the correct way to combine the changes in probability using @ is as follows:

Definition 9. The function @ : Sg € {f,1,, |, 4,3} x Sg' € {,1,<, 1,4,
I} Sqg" € {t,1,4,1, 1,1} is specified by Table 2 (c). Blank spaces represent
impossible combinations.

4 Example

For an illustration of some of the reasoning possible in N A", consider the fol-
lowing database. This encodes the information that three events have a bearing
on whether or not I lose my job—being ill makes it more likely I will lose my
job, doing good research makes it less likely I will lose my job, and embezzling
money makes it certain I will lose my job—while being ill makes it more likely
I will go to hospital:

rl : good_research — lose_job : — Aq

r2 :ill — lose_job : +

r3 : embezzle_money — lose_job : ++

r4 : ill — hospital : +

f1: good_research :

f2:0ll:qy
It also becomes known that I am ill and do good research (this is a fictional
example). From this information we can build the arguments:

Ay Facr (hospital, { 2,74}, 1)
Al l_ACR (lOSG_jOb, {f].,T'].}, J/)
Al l_ACR (lOSG_jOb, {f27 T2}7 T)

The first argument means that I am increasingly likely to go to hospital. The
second two arguments will flatten to give J, indicating that it is impossible to
say how the probability of losing my job will change. These are exactly the
conclusions that would be drawn by the equivalent QPN illustrating the fact
that /A" is capable of representing binary QPNs (as discussed in [16]) and can
be regarded as a mechanism for the construction of binary QPNs. If we now add
the fact that I am known to embezzle money from my employer:

(f4: embezzlemoney : 1)
to the database, we can build a new argument:

A3 l_ACR (lOSG_jOb, {f4,’l“3}, ﬂ)

meaning that the arguments about my loss of job will now flatten to give 1,
so that my loss of job is assured. Thus AN A" is capable of a form of defeasible
reasoning in which certain information can outweigh previously known uncertain
information.



5 Soundness and completeness

Armed with the interpretation introduced in Section 3, N'A" has a probabilis-
tic semantics. However, the results presented so far have a rather baroque ap-
pearance, and so might seem ad hoc to the sceptical reader. However, they are
not. The proof mechanism given above is provably sound for the propagation of
changes in probability, as shown by the following result:

Theorem 10. The construction and flattening of arguments in N'A" is sound
with respect to probability theory.

Proof: The soundness of N A" follows immediately from the soundness of the
the way in which changes in probabilities are propagated and flattened and thus
from the soundness of the proof rules and combination tables.

(Conjunction introduction): Consider the probabilities Pr(a) and Pr(b) of
the two propositions being conjoined. Pr(a A b) = Pr(a).Pr(b | a) = Pr(a |
b). Pr(b). Thus if at least one of Pr(a) and Pr(b) increases and the other does
not decrease, then Pr(aAb) will increase. If one increases and one decreases, then
the change in Pr(a A b) cannot be determined. If both increase to 1, Pr(a A b)
increases to 1. Similar reasoning completes the proof.

(Conjunction elimination): There are two parts to the proof. One for the
part of the function that gives f} and one for the part that gives J. For the first,
the following suffices—the only way in which Pr(a A b) can increase to 1 is if
both Pr(a) and Pr(b) increase to 1 (since the notion of ‘increasing to 1’ takes
into account the fact values may have been 1 all along). For the second part
we need the following argument. Giving any sign as J is always sound (since it
means that nothing at all is being said about the relevant probability). However,
it is also possible to prove that no more precise rule can be proposed. This is
done by considering what the probability of Pr(a A b) should be if Pr(a) = 1
and Pr(b) = |. The answer is that Pr(a A b) can either increase, decrease, or
not change depending on the relative magnitudes of the changes in Pr(a) and
Pr(b). Turning this around, it is clear that no firm conclusions about changes in
Pr(a) and Pr(b) can be drawn from particular changes in Pr(a A b) other than
Pr(a A b) = 1.

(Implication elimination): First consider implications labelled with +. From
the definition of such implications it is clear that combining any increase in
probability with an implication labelled + will generate a possible increase in
probability, in other words 7. Similarly combining any decrease in probability
with an implication labelled + will generate |, combining no change in proba-
bility with such an implication will generate «», and combining a change of J
with such an implication will generate §. An implication labelled — will also give
< when combined with no change in probability and § when combined with J,
but otherwise will have the opposite behaviour to that of an implication labelled
+. From its definition it is clear that an implication labelled ++ will behave
like an implication labelled + except when combined with a change {} when it
will generate a change of {I. The results for other implications can be obtained
analogously.



(Implication introduction): The soundness of Table 2(a) follows directly from
that of Table 1 (b). Where only one possible type of implication can give Sg’ the
relevant sign is given by the table, where two or more can give S¢’, for instance
when Sg = 1 and S¢g’ = 1 when the sign of the implication could be ++, —+
or +, the most inclusive sign is given, 4+ in the case of our example since it
subsumes ++ and —+.

(Negation elimination and introduction): Consider a proposition a. If Pr(a)
increases to 1 then clearly Pr(—a) decreases to zero, and if Pr(—1) increases to
1 then clearly Pr(a) decreases to zero. This takes care of the function for |} and
1. The other cases are handled similarly.

(Flattening): Table 2(c) follows directly from qualitative addition [22] and the
fact that categorical changes in probability cannot be altered by non-categorical
changes—the latter follows from the definition of categorical implications [15].
The spaces in the table follow from Property 2. O

The other thing that might worry the sceptical reader is the completeness of
N A". However, since we only allow the initial database to contain implications
(i : St = St' : Sg) where St is a direct cause of St' we have the following result:

Theorem 11. The construction and flattening of arguments in N'A" is com-
plete with respect to probability theory for reasoning in a causal direction.

Proof: Immediate from the definition of F4cr and the causal direction of
the implications—all possible causally directed inferences can be made by the
application of the appropriate proof rules. O

Causal completeness has its limitations, since from a database consisting of an
implication (r1:a — b: +) and a fact (f1:b: 1) no arguments may be built
using Facg, yet using probability theory one can infer that Pr(a) increases.
Extending N A" to cope with this kind of evidential reasoning is straightforward
and is discussed in [18].

6 Discussion

The probabilistic semantics of N A" gives us two things. Firstly, it gives us a pre-
cise probabilistic notion of what it means to have an argument for something. If
we accept the probabilistic interpretation of wff's then given a database of causal
relations (implications) and evidence which leads to some changes in belief we
can infer what changes in belief are implied. Only those propositions supported
by sound arguments will undergo a change in belief and only those propositions
for which an argument may be built have a change of belief warranted in them.
Secondly, the semantics gives us a means of determining how changes in prob-
ability are propagated. If we encode our probabilistic knowledge of the world
by writing down swffs and then build arguments for and against propositions
using F4cgr, we can identify the changes in probability of those propositions.
Either way, if after building arguments and flattening we have an pair (St, Sg)



If and and then

St=w Sg=1 Pr(w)initiat =p  Pr(w)fina =1
St=w Sg = T Pr(w)initial =p P S Pr(w)final S 1
St=w Sg=¢  Pr(Winitiaa =p Pr(w)sina =p
St=w Sg = 'l‘ Pr(w)initial =P D> Pr(w)final =0
St=w Sg=1 Pr(w)initiat =p  Pr(w)fina =0
St=w Sg=1 Pr(w)initiat =0 0 < Pr(w)fina <1

If and then

St=v—s>w Sg=++ Pr(w|v,z)=1

St=v—>w Sg=+-— Pr(w|-w,z)=0

St=v—sw Sg=+ Pr(w|v,z) > Pr(w|-w, x)

St=v—=w Sg=0 Pr(w|v,z) = Pr(w|-w, x)

St=v—>w Sg=-— Pr(w|v,z) < Pr(w|-w,x)

St=v—sw Sg=—-—+ Pr(w|-wz)=1

St=v—s>w Sg=-— Pr(w|v,z)=0

St=v—w Sg=7 The relationship between Pr(w|v,z)
and Pr(w|-w, z) is unknown.

Table 3. What a derived formula means.

where St is any wff then Sg indicates the change in probability of St. If, on the
other hand we have (St, Sg) where St is an fwff St' — St then Sg indicates the
constraint between Pr(St') and Pr(St"). The full denotation of any pair (St, Sg)
is given by Table 3. Since reasoning with probability is normative in the sense
that it accords to the norms of probability theory (which can be justified by the
usual Dutch book argument) this makes N A" normative.

Another advantage of AN"A" is that it makes it possible to give a probabilistic
analysis of different styles of argumentation. This section gives examples of three
such analyses using small examples (more extensive analysis may be found in
[18]). In some systems of argumentation [7], arguments are flattened by counting
the number of arguments for and against a proposition and giving it the sign of
the majority. Consider the following example:

f1:embezzle_funds : | Ag
f2 : good_tutor : |

f3 : good_research : t

rl : embezzle_funds — lose_job : +.

r2 : good_tutor — lose_job : —

r3 : good_research — lose_job : —

there are three arguments affecting the proposition “lose_job”

Ay Facr (lose_job, (f1,r1), |).
Ay Facr (lose_job, (f2,r2), 1).
Ay Facr (lose_job, (f3,13), |).



Counting arguments suggests we should conclude that belief in “lose_job” de-
creases since there are two arguments against it and only one for it. Considering
using V' A" here shows that concluding (lose_job, |) involves the assumption:

APr(good_tutor).(Pr(lose_job| good_tutor) — Pr(lose_job| —~good_tutor))
< APr(embezzle).(Pr(lose_job|embezzle) — Pr(lose_job| ~embezzle))
+ APr(research).(Pr(lose_job|research) — Pr(lose_job| —research))

when the size of the changes in probability propagated across each implication
are taken into account [19]. Another kind of flattening is that based on directness
of argument [12]. With the database:

f1: good_research : t Az
rl : good_research — good_tutor : —

r2 : good_tutor — lose_job : —

r3 : lose_job — no_money : +

rd : good_research — job_in_industry : +

rd : job_in_industry — no-money : —

we get the arguments:

A3 l_ACR (no-money, (f17T17T27T3)7 T)
A3 l_ACR (no-money, (f2ar4ar5)7 *lf)

Flattening by directness leads us to conclude (no_money, |). since the argument
for it is the shorter of the two. This time the probabilistic semantics of A.A"

expose the assumption as being;:

(Pr(industry|research) — Pr(industry | —research))
.(Pr(no_money|industry) — Pr(no_money | —industry))
> (Pr(good_tutor | research) — Pr(good_tutor | ~research))
.(Pr(lose_job| good_tutor) — Pr(lose_job| —~good_tutor))

.(Pr(no_money |lose_job) — Pr(no_money|—lose_job))

which is similar to that underlying counting arguments, but without placing
constraints on the change in the probability of the initial facts. Finally, several
authors [11,21] have considered the use of rebuttal and undercutting to flatten
arguments—a proposition is rebutted when it is directly argued against and is
undercut when one of the steps in the argument for it is argued against. Consider
the following example:

f1: good_tutor : | Ay
f2 : high_research_output : T

rl : good_tutor — lose_job : —

r2 :lose_job — no_money : +

r3 : high_research_output — lose_job : —



From A, we can build the arguments:

Ay Facr (losejob, (f1,r1), 1).
A4 I_ACR (no—money7 (f17 7"]., 7"2), T)

Ay Facr (lose_job, (f2,73), 1).

and find that the third argument rebuts proposition lose_job and undercuts the
the proposition no_money. The usual interpretation of this is that the lose_job is
more affected by the third argument than no_money, and this is exactly what one
would conclude from A’ A" since the changes associated with the third argument
will be no smaller for Pr(lose_job) than for Pr(no_money).

7 Summary

This paper has discussed a means of giving a probabilistic semantics to a system
of argumentation. It is thus in some senses an extension of previous work on such
systems of argumentation [11] as well as probabilistic systems of argumentation
which use a more restricted base logic [17]. With a solid basis in probability
theory, the system can be used to combine the advantages of a sound means
of handling uncertainty with the expressiveness of a logical method of knowl-
edge representation, an expressiveness that will be increased with the planned
extension to a first order system which includes disjunction. Amongst other
things the system is capable of defeasible reasoning and knowledge-based model
construction for qualitative probabilistic networks. Furthermore, because of its
qualitative nature, the system may be used when probabilistic knowledge of a
domain is incomplete and the fact that it is soundly based on probability theory
makes it a useful basis for a qualitative decision theory [8]. Finally, it should
be noted that A A" has similarities with Neufeld’s system for default reasoning
[14]. Some of these are explored in [16].
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