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ABSTRACT

Qualitative methods for reasoning under uncer-
tainty may be helpful in situations where quan-
tification of uncertainty is not appropriate. We
demonstrate another use for qualitative models.
The qualitative analysis of a quantitative model
of uncertainty will reveal the qualitative be-
haviour of that model when new evidence is ob-
tained. This qualitative behaviour can be com-
pared with the specifications to identify those sit-
uations in which the model does not behave as
expected. We report the result of two experiments
performed on a small fragment of a real test-bed
by using a probability model, and a model based
on the Dempster-Shafer theory of evidence.

1. Introduction

Recently, there has been considerable interest in
the qualitative representation of reasoning under
uncertainty in networks, including qualitative
probabilistic networks [2,13] as well as qualita-
tive possibilistic and evidential networks [3,4].
Such work has been aimed at determining the
impact of new evidence in situations in which full
numerical results may not be obtained due to in-
complete or imprecise knowledge. In this paper
we suggest a different use for qualitative meth-
ods. Since the qualitative behaviour of a system
may be established from quantitative knowledge,
we can qualitatively analyse any quantitative
model. This analysis may then be used as a sim-
ple means of verifying that a system behaves as
intended by the knowledge engineer that built it.
It also provides a means for guiding the correc-
tion of any faults that may be found.

The basic method of our analysis is as fol-
lows. When we find new evidence about the state
of a variable we update our prior values to take
account of the evidence. When using the model,
we are interested in the new value obtained after
updating. When verifying the behaviour of the
model, however, we are interested in checking
that this updating corresponds to that described
by the domain expert whose knowledge is cap-

tured in the model. Since the expert’s knowledge
is often expressed in the form “If we observe e
then it is more likely that h  is the case”, we may
be more interested in knowing the way in which
the values change than in the values themselves.
Given the equations that relate two uncertainty
values val1 and val2, expressed in some formal-
ism, we can establish an expression, in terms of
numerical uncertainty values, for the derivative
∂val1

∂val2
 that relates the two quantities. This expres-

sion allows us to determine the qualitative value

of the derivative, written as [ ]∂val1

∂val2
, that is

whether the derivative is positive, written as [+],
negative, [–], or zero, [0]. The sign of the deriva-
tive indicates the direction of change of val1

when val2  increases. As ∆x = ∆y 
∂x

∂y
 + ∆z

∂x

∂z
, we

can get the effect of several successive pieces of
evidence by combining the effect of each alone.

To validate a given model, we compute

[ ]∂val(h)

∂val(e)
 for every interesting hypothesis h and

piece of evidence e, and then compare these val-
ues with the knowledge expressed by the expert.
In the rest of this paper we demonstrate our quali-
tative analysis technique for a probabilistic and a
Dempster-Shafer model on a small example ex-
tracted from a real application. A longer report
[5] includes all the computations, extends the
analysis to possibilistic models, and describes a
debugging procedure.

2. Problem description

The problem under study is a simplified version
of fault diagnosis in electricity networks. This
problem was originally used by Saffiotti and
Umkehrer [8] to investigate the use of different
formalisms to model uncertainty. We consider the
fragment of an electricity network shown in
Figure 1. This fragment comprises four substa-
tions, linked by three lines L1, L2 and L3. The
substation in the middle includes S1, a big con-
ductive bar, known as a busbar, used for connect-
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Figure 1. A fragment of an electricity distribution network.
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Figure 2. The valuation system for the distribution network

ing more lines together. The Dis are circuit
breakers, that is devices which watch the part of
the network on their “hot” side, marked by a dot
in the picture, for overloads, and isolate two lines
if an overload is detected. If an overload occurs, a
circuit breaker generates an alarm and transmits it
to the control room. The alarm may be either an
instantaneous alarm or a delayed alarm. Talking
to domain experts revealed what the qualitative
behaviour of the modelled fragment should be
(no matter what formalism is used to model the
uncertainty):

1) an instantaneous alarm from an outer circuit
breaker should increase belief in the occurrence
of a fault in the line that the breaker is on;

2) a delayed alarm from an outer breaker should
increase belief in the occurrence of a fault in ei-
ther the line the breaker is on, or in the busbar;

3) an alarm (of any kind) from an inner breaker
should only increase our belief in the occurrence
of a fault in the line the breaker is on.

The experts were also able to provide rough
quantitative estimates of the uncertainty: e.g., in
roughly 10% of the cases alarms are generated
without faults or faults occur without alarms.

We have modelled our problem in both prob-
ability and Dempster-Shafer theory by using
Shenoy and Shafer’s valuation system formalism

[10,11]. The tool we have used for our experi-
ment, Pulcinella [7,8] is an implementation of
valuation systems in which many uncertainty
handling formalisms can be embedded. As ac-
cording to the valuation system formalism, we
model our problem through a set of variables, and
a set of valuations linking sets of related vari-
ables. Below is a graphical representation of the
model, where circles stand for variables, and
rectangles for valuations.

A valuation over a set of variables expresses
information about the values taken by the vari-
ables in that set, in a form that depends on the
uncertainty formalism; relations among variables
are expressed by valuations. Here, the Di’s are
variables representing circuit breaker states, with
possible values ok (no alarm), del (delayed
alarm), and inst (instantaneous alarm); Li’s and
S1 represent line states, with frame {ok, fault};
and the alarm-i’s relate generation of alarms by
breakers with states of neighbour lines. New in-
formation can be propagated through the alarm-i’
relations to produce updated estimates of the
states of the elements of the network.

In order to build the “alarm-i” valuations so
that they behave as described above, we first split
them into two groups: those referring to outer cir-
cuit breakers (alarm-1, alarm-2, alarm-3), and
those referring to inner circuit breakers (alarm-
11, alarm-12, alarm-13). The following tables
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Figure 3. Mass assignments for the “alarm” relations

show the values for the two classes of valuations
when probability values are used—valuations in
this case are joint probability distributions.

Inner breaker P (•) Outer breaker
D11 D1

ok del inst L1, S1 ok del inst

0.45 0.05 0.05 ok, ok 0.9 0.1 0.05

0.45 0.05 0.05 ok, fault 0.05 0.6 0.05

0.05 0.89 0.89 fault, ok 0.05 0.2 0.89

0.05 0.01 0.01 fault, fault 0.001 0.1 0.01

To build a Dempster-Shafer model for our
problem [9,12], we represent the bits of our in-
formation by the basic mass assignments shown
in Fig. 3, that are then combined by Pulcinella
into one mass assignment using Dempster’s rule1.

A more detailed analysis of this example is
given in [8]. In the rest of this paper we will in-
vestigate whether these models of uncertainty
correctly encode the behaviour described above.

3. Qualitative analysis of the problem

It is helpful to reformulate the problem using a
causal network representation. We use a network
representation, similar to that of Pearl [6], where
two nodes are joined by a directed arc if and only
if the variable represented by the node at the end
of the arc is directly dependent upon the variable
represented by the node at the beginning of the
arc. Thus the problem information of Section 2
may be represented by the network of Fig. 4.

Due to the rules of differential calculus, we
need only consider changes in sub-networks of
the following form, with y = 1, 2, 3.

1   The combined assignments are fairly intricate, and are
reported in the full paper [5]. That report also deals with the
case where possibility theory is used.

c = inst. alarm
d = del. alarm
e = no alarm

∈

  Dy

S1 Lx ∈

∈ {c, d, e}

{s, t} {l, m}

s = fault
t = ok 

S1

Dy

Lx

l = fault
m = ok 

D1y

  D1y ∈ {c, d, e}

The change at S1 is the sum of all the changes
due to all the Dy, and that at Lx the sum of the
changes due to the two relevant Dy. In the quali-
tative analysis we look at changes in value of S1
and Lx given changes in value of a single Dy. If
we wanted to assess the impact of several alarms
we could sum the impact of the individual alarms
using qualitative arithmetic [1].

We first analyze our problem in the proba-
bilistic case. Every circuit breaker has three
modes of operation, namely “send an instanta-
neous alarm”, “send a delayed alarm”, and “send
no alarm”. We can write down the probability of
failure of a given fault as:

p(l) =ΣS ∈ {s, t}, D ∈ {c, d, e} p(l, S|D) p(D).

for any Dy or D1y. This reduces to

p(l) =  p(l|c) p(c) + p(l|d) p(d) + p(l|e) p(e)

since p(l|c) = p(s&l|c) + p(t&l|c) as c, d and e are
mutually exclusive and exhaustive. To find out
how the probability of a line fault changes when
we have an instantaneous alarm we write:

(1)
∂p(l)
∂p(c)

  =  p(l|c) + 
∂p(d)
∂p(c)

 p(l|d) + 
∂p(e)
∂p(c)

 p(l|e)

which, since p(c) + p(d) + p(e) = 1, gives

(2)
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  = [ ]p(l|c)ּ-ּp(l|d)ּ-ּp(l|e)
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Figure 4. The causal network representation of the electricity distribution problem.

similarly for the delayed and no alarm conditions.

Probability theory strongly relates the proba-
bilities of an event and of its complement:

(3) p(ok) + p(fault) = 1

for any line (and busbar). Hence, if [ ]∂p(l)

∂p(x)
 = [+]

then [ ]∂p(m)

∂p(x)
 = [–] for any x ∈ {c,d,e}. Thus

when we know how p(l) changes we can tell how
p(m) changes. These results are true for both in-
ner and outer circuit breakers, and furthermore
are true for any numerical values we put into the
model. Similar calculations will give us the prob-
abilities of a busbar failure.

We now turn to considering the belief func-
tion case. Once again we start the qualitative
analysis with an equation relating L to C, this
time expressed in terms of belief functions:

bel(l)  =  Σx⊆{c, d, e} bel(l|x) m(x)

Now, recall that [9]

m(x)  =  Σy⊆x –1|x-y|bel(y)

which tells us how m(x) varies with bel(c) so we

have 
∂m(c)

∂bel(c)
=ּּ1, 

∂m(d)

∂bel(c)
=ּּ0, 

∂m(e)

∂bel(c)
ּ=ּ0, as well as

∂m(c∪d)

∂bel(c)
ּ=ּ–1,  

∂m(c∪e)

∂bel(c)
ּ=ּ–1,  

∂m(d∪e)

∂bel(c)
ּ=ּ0,  and

∂m(c∪d∪e)

∂bel(c)
ּ=ּ1. This in turn gives us (4):

[ ]∂bel(l)

∂bel(c)
 = [ ]bel(l|c)+bel(l|c∪d∪e)–bel(l|c∪d)–bel(l|c∪e)

and again we can establish similar results for the
delayed and no alarm conditions. The analysis
goes in a similar way for bel(m) and bel(s).

4. Validating the models

Having analysed the way in which qualitative un-
certainty values are propagated through the net-
work structure of our test case, we can use the
numerical information in Section 2 to examine
the qualitative behaviour of the models we have
proposed for our test-bed. Our predictions will be
compared with the actual behaviour of the mod-
els, as determined by running Pulcinella, in order
to check the qualitative analysis.

The information that a particular alarm has
arrived from a breaker is typically introduced in
the model by increasing the value for the associ-
ated state, at the expense of the values of the al-
ternative states: for example, a report of an in-

stantaneous alarm is encoded by forcing ∆val(c)

= [+], ∆val(d) = [–], and ∆val(e) = [–]. These
changes are related to the change in the uncer-
tainty value of a particular fault hypothesis, say a
line fault, by:

(9) ∆val(l) = 
 


 


 


 
∂val(l)

∂val(c)
⊗∆val(l)  ⊕

 


 


 


 
∂val(l)

∂val(d)
⊗∆val(d)  ⊕ 

 


 


 


 
∂val(l)

∂val(e)
⊗∆val(e)

where ⊗ and ⊕ denote qualitative multiplication
and addition, respectively [1,5]. From the quanti-
tative knowledge of Section 2 we can establish
the qualitative derivatives using the results of
Section 3. These can then be used along with (9)
to establish the qualitative behaviour of the vari-
ous models.

In the case of probability theory, we have, for
the outer circuit breakers:

p(l&s|c) = 0.01 p(l&t|c) = 0.89
p(l&s|d) = 0.1 p(l&t|d) = 0.2
p(l&s|e) = 0.001 p(l&t|e) = 0.05

so that:

p(l|c)  =  0.90, p(l|d)  =  0.30, p(l|e)  =  0.051.
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Figure 5. Conditional belief funtions corresponding to the masses in Fig. 3

Using these values in (2), we find the qualitative
values of the derivatives that link the probability
of a line fault to that of an alarm for the outer
breakers:

[ ]∂p(l)

∂p(c)
 = [+], [ ]∂p(l)

∂p(d)
ּ  = [–], [ ]∂p(l)

∂p(e)
ּ  = [–].

Using these values in (5), we can predict how
the probability of a line fault, p(l), changes quali-
tatively after different alarm reports:

Report none inst delayed no alarm

[∆p(l)] [0] [+] [?] [?]

where the [?] value indicates that it is not possi-
ble, based on purely qualitative information, to
predict the direction of change. However, we can
refine this prediction for a particular model by
exploiting some order of magnitude information.
For instance, we know that

[ ]∂p(l)

∂p(e)
  >  [ ]∂p(l)

∂p(c)
  ≈  [ ]∂p(l)

∂p(d)

and, from the probabilities in our model, we have
|∆p(e)| ≈ |∆p(d)| >> |∆p(c)| when a delayed alarm is
reported. Thus, when evaluating (5) to establish
the change in the probability of a line fault given
a delayed alarm, the third term dominates and
[ ]∆p(l)  = [+]. Similar reasoning tells us that [ ]∆p(l)

= [–] for no alarm. We can obtain the same re-
sults for the inner breakers.

Thus for both inner and outer breakers, the
probability of the line being faulty increases with
both instantaneous and delayed alarms, and de-
creases when we known that there is no alarm,
and the model responds to the specifications in
Section 2. These predictions are borne out in
practice when we evaluate our model in
Pulcinella. The following tables show the values
of p(l) after a given report has been received by
an outer (a) or an inner (b) circuit breaker.
Report none inst delayed no alarm

(a) 0.0065 0.5 0.18 0.0064
(b) 0.0065 0.67 0.5 0.0063

A similar verification can be performed for the
probability of busbar faults given alarms from the

outer breakers, which shows that the model be-
haves according to the specifications in Section 2.
The inner breakers, however, constitute some-
thing of a surprise. We obtain:

Report none inst delayed no alarm

[∆p(s)] [0] [–] [–] [+]

which means that if we have a report of any kind
of alarm in the inner breakers then the probability
of a busbar fault decreases, while knowing for
sure that there is no alarm means that the proba-
bility of failure increases. This behaviour, which
is confirmed by the data below, computed by
Pulcinella, is rather odd, and marks a departure of
our model from the specifications.
Report none inst delayed no alarm

p(s) 0.000175 0.00008 0.00008 0.000176

We now turn to considering the belief func-
tion model. In order to validate this model, we
first need to extract the conditional beliefs from
the joint mass assignments given in Section 2. To
compute the conditional of, say, L1 and S1 given
D1 = del, i.e. bel(L1&S1|D1=del), we consider
all the second rows in the joint distributions
(those corresponding to D1 = del), and combine
them using Dempster’s rule. The full set of con-
ditional assignments over L1 and S1 is shown in
Fig. 5. From this we can establish, for instance,
that for the inner circuit breakers bel(m|e) = 0.9,
bel(l|d) = 0.9, and bel(l|c) = 0.97, while for the

outer breaker, bel(m∩ t|e) = 0.9, bel(l∪s|d) =

0.93, bel(l∪s|c) = 0.27, bel(l|c) = 0.7 and all other

conditional beliefs are zero. From bel(m∩t|e) =
0.9 we know that bel(m|e) ≥ 0.9 and bel(t|e) ≥
0.9. From (6), (7) and (8) we learn that for the in-
ner circuit breakers we have:

[ ]∂bel(l)

∂bel(c)
 = [+], [ ]∂bel(l)

∂bel(d)
ּ  = [+], [ ]∂bel(l)

∂bel(e)
ּ  = [0]

while for the outer circuit breakers

[ ]∂bel(l)

∂bel(c)
 = [+], [ ]∂bel(l)

∂bel(d)
ּ  = [0]  [ ]∂bel(l)

∂bel(e)
ּ  = [0]

showing that our model behaves as it should. This
prediction is once again verified by running



Pulcinella on some sample data ((a) = outer
breakers, (b) = inner).
Report none inst delayed no alarm

(a) 0 0.98 0.0 0.0
(b) 0.0 0.97 0.9 0.0

Similar results may be established for the other
cases.

5. Conclusions

We have shown that the qualitative analysis may
be used to validate the quantitative model since
the qualitative predictions may be compared
against the opinion of the domain expert to de-
termine whether the model has captured the ex-
pert’s knowledge. In our example, this validation
exposed an anomaly in the probabilistic model:
the corresponding valuation system, with values
as ascertained by the knowledge engineer, does
not behave quite as might be expected from the
description of its intended behaviour that is sup-
plied in Section 2. It is important to notice that in
every case the qualitative predictions were borne
out in practice by running our models on
Pulcinella, indicating that the qualitative analysis
of the uncertainty handling formalisms is accu-
rate.

The fact that the predictions are observed in
practice does not mean that the qualitative analy-
sis is redundant: quite the opposite. The qualita-
tive equations focus on one aspect of the model
— the way some values are influenced by some
observations, while abstracting away from the
numerical configurations of input-output values.
This allows us to spot those points where the be-
haviour of the model does not meet the specifica-
tions without having to go through an empirical
sequence of numerical tests. After the qualitative
analysis has spotted an unexpected behavior, nu-
merical tests can be carried out to assess the per-
formance of the system at these points, and the
quantitative impact of the discrepancy can be
evaluated. In our case, Pulcinella has shown
small quirks in the probabilistic model in the di-
rection predicted by the qualitative analysis. It is
the task of the model designer to decide whether
these quirks are important enough to require a
correction to the model. If so, the qualitative
analysis can guide us, by indicating which are the
crucial derivatives for the undesired behaviour,
and which are the quantitative values they depend
upon. Moreover, the qualitative analysis can tell
us which are the values we can freely change
without affecting other “healthy” behaviour. In
the full report [5], we describe a systematic tech-
nique for debugging the quantitative values based
on the results of the qualitative analysis.

The qualitative analysis is a way to analyse
the behaviour of a system at a high level of ab-

straction. As such, it relies on weak information
and produces results that, although correct, may
at times be too weak to be useful. We have shown
in the above how we can enrich a purely qualita-
tive analysis by introducing some informal order
of magnitude arguments.
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