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Abstract

This paper discusses a system of argu-
mentation with a probabilistic semantics
and compares it to two other probabilistic
systems—Wellman’s qualitative probabilis-
tic networks and Neufeld’s probabilistic de-
fault reasoning.

1 INTRODUCTION

In the last few years there have been a number of at-
tempts to build systems for reasoning under uncer-
tainty that are of a qualitative nature—that is they
use qualitative rather than numerical values, dealing
with concepts such as increases in belief and the rel-
ative magnitude of values. In particular, two types
of qualitative system have become well established—
qualitative probabilistic networks (QPNs) [2, 12], and
systems of argumentation [5, 6]. While the former
are built as an abstraction of probabilistic networks
where the links between nodes are only modelled in
terms of the qualitative influence of the parents on
the children, and therefore have an underlying prob-
abilistic semantics, some of the latter lack such a
sound foundation. This lack of a probabilistic se-
mantics for argumentation prompted work [8, 9] to
provide such a semantics for systems of argumenta-
tion of the kind introduced by Krause et al. [5] using
only qualitative or semi-qualitative information'. Of
course this extension might not always be desired, but
may be useful at times to ensure that a given sys-
tem reasons within probabilistic norms. This paper
further extends this work by comparing the most well-
developed of these normative systems of argumenta-
tion with two similar systems—qualitative probabilis-
tic networks and Neufeld’s probabilistic commonsense
reasoning [7]. The paper begins with a recap of the
systems of argumentation upon which the normative
system is built.

'If there is no commitment to qualitative information,
it is possible to give argumentation a semantics in terms of
numerical probabilities [5].

2 INTRODUCING SYSTEMS OF
ARGUMENTATION

In classical logic, an argument is a sequence of infer-
ences leading to a conclusion. If the argument is cor-
rect, then the conclusion is true. Consider the simple
database Aj; which expresses some very familiar in-
formation in a Prolog-like notation in which variables
are capitalised and ground terms and predicate names
start with small letters.

f1: human(socrates). A
rl: human(X) — mortal(X).

The argument A; F mortal(socrates) is correct be-
cause mortal(socrates) follows from A; given the
usual logical axioms and rules of inference. Thus a cor-
rect argument simply yields a conclusion which in this
case could be paraphrased ‘mortal(socrates) is true
in the context of f1 and r1’. In the system of argu-
mentation proposed by Krause et al. this traditional
form of reasoning is extended to allow arguments to
indicate support and doubt in propositions, as well as
proving them, by assigning labels to arguments which
denote the confidence that the arguments warrant in
their conclusions. This form of argumentation may be
summarised by the following schema:

database Facg (Sentence, Grounds, Sign)

where F4cp 1s a suitable consequence relation. In-
formally, Grounds (G) are the facts and rules used to
infer Sentence (St), and Sign (Sg) is a number or a
symbol drawn from a dictionary of possible numbers
or symbols which indicate the confidence warranted in
the conclusion.

To formalise this kind of reasoning we start with a
language, and we will take £, a set of propositions,
including L the contradiction. We also have a set of
connectives {—, —}2 and the following set of rules for
building the well formed formulae of the language:

“Note that both the set of connectives and the rules
for building wffs are more restrictive than for other similar
systems of argumentation [5], but these restrictions may

be lifted [9].
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Figure 1: Argumentation Consequence Relation

o If [ € £ then [ is a well formed formula (wff).
Ifl € £ then =l is a wff.

IflmeLthenl! —m, | — —=m, =l — m and
=l — —m are wffs.

e Nothing else is a wff.

The members of W, the set of all wffs that may be de-
fined using £, may then be used to build up a database
A where every item d € A'is a triple (¢ : [ : s) in which
i is a token uniquely identifying the database item (for
convenience we will use the letter ‘4’ as an anonymous
identifier), [ is a wff;, and s is a sign. With this formal
system, we can take a database and use the argument
consequence relation given in Figure 1, to build ar-
guments for propositions in £ that we are interested
in.

Typically we will be able to build several arguments
for a given proposition, and so, to find out something
about the overall validity of the proposition, we will
flatten the different arguments to get a single sign.

Together £, the rules for building the formulae, the
connectives, and F4cgr define a formal system of ar-
gumentation, which we will call SA’ since it is a cut-
down version of the system SA introduced in [8]. In
fact, SA’ is really the basis of a family of systems of
argumentation, because one can define a number of
variants of SA’ by using different dictionaries of signs.
Each dictionary will have 1ts own combination func-
tion comb, and its own means of flattening arguments,
and the meanings of the signs, the flattening function,
and the combination function delineate the semantics
of the system of argumentation.

3 A NORMATIVE SYSTEM

One commonly used system of argumentation within
the framework of S.A’ is one in which the dictionary
includes three symbols, +, — and 0, which represent
the notion of an increase, a decrease and no change
in belief respectively. When a proposition is labelled
with 4+, 1t is taken to represent the fact that there is
an increase in belief in the proposition, while labelling
the rule:

human(z) — mortal(x)
with a + is taken to represent the fact that showing

that there 1s an increase in the belief of something be-
ing human causes an increase in belief that it is mortal.

Now, the use of + and — to represent changes in belief
suggests a link between this system of argumentation
and QPNs [12] since the latter make use of a similar
notion. Indeed, it turns out that we can modify the
notion of a probabilistic influence in a QPN to give our
database facts and rules a probabilistic interpretation.
In particular we take triples (¢ : { : +), where { € W
and [ does not include the connective —, to denote the
fact that p(l) is known to increase, and similar triples
(¢ : 1 : =), to denote the fact that p(l) is known to
decrease. Triples (i :{ : 0), clearly denote the fact that
p(l) is known to neither increase nor decrease. With
this interpretation facts correspond to the nodes in a
QPN and as in QPNs we deal with changes in their
probability.

Database rules can similarly be given a probabilistic
interpretation by making the triple (¢ : n — m : +),
where m and n are members of W which do not include
the connective —, denote the fact that:

Pr(m|n,X) > Pr(m|—-n, X)

for any X € {x, —~a} for which there is a triple (¢ : # —
m:s)or (i:—x — m:s) (where s is any sign), while
the triple (¢ : n — m : —) denotes the fact that:

Pr(m|n, X) < Pr(m|-n, X)

again for any X for which there is a triple (¢ :
m :s)or (i:-x — m:s). We do not make use
of triples such as (i : n — m : 0) since such rules
have no useful effect. As a result a rule (i : n — m:
+) means that there is a probability distribution over
the propositions m and n such that an increase in the
probability of n makes m more likely to be true, and a
rule (i : n — m : —) means that there is a probability
distribution over the propositions m and n such that
an increase in the probability of n makes m less likely
to be true. With this interpretation, rules correspond
to qualitative influences in QPNs.

It should be noted that the effect of declaring that
there is a rule (i : n — m : 4) is to create considerable
constraints on the probability distribution over m and
n to the extent that the effect of other rules relating m
and n are determined absolutely. That is, a necessary
consequence of (i : n — m : 4) is that we have other
rules (i :n — —-m : =), ({:—n — m: —) and (¢ :
-n — —m : +), and similar restrictions are imposed
by rules like (i : n — m : —).

xr —

Now, in some applications [3], it is necessary to repre-
sent information of the form “X is known to be true”,
and “If X is true then Y is true” —information that we



@ | ++ 4= + 0 - —+ = 7
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Table 1: The function ®.

might term categorical. To do this we first extend the

dictionary of signs to be {++,+,—, ——} where ++
and —— are labels for categorical information. It then
turns out that we can give +4+ and —— a probabilistic

semantics, giving a system of argumentation which in-
cludes triples such as (i : {: ++) and (¢ : [ : ——) and
rules such as (i :n —m:++)and (i :n —m:——).

The meaning of (¢ : { : +4), where { is a wff which does
not contain —, is that the probability of [ becomes
1, and (¢ : [ : ——) means that the probability of {
decreases to 0, and to make this clear, we write (7 :{:
Ty for (i :0:++),and (i :{:|)for (i :{:——). The
meaning of the rules is slightly more complicated. We
want a rule (¢ : n — m : ++), where neither m or n
contain —, to denote a constraint on the probability
distribution across m and n such that if Pr(n) becomes
1, so does Pr(m). This requires that:

Pr(m|n,X)=1

for all X € {x,—a} such that the database contains
(i:x—m:s)or (i:—x — m:s). [9]. Similarly, a
probabilistic interpretation of a rule (i : n — m : ——)
requires that:
Pr(m|n,X)=0

for all X € {x,—a} such that the database contains
(i:x—m:s)or (i:—-x — m:s). Considering the
constraints on the conditional probabilities imposed by
4+ and —— rules, a further pair of rules are suggested.
These are a rule (i : n — m : —+) which requires that:

Pr(m|-n,X)=1

for all X € {x,—a} such that the database contains
(i:x—m:s)or (i:—w— m:s) (s now being able
to take any value in the set {++,+—,+,— —+,——1}),
and a rule (¢ : n — m : +—) which requires that:

Pr(m|-n,X)=0

for all X € {x,—a} such that the database contains
({:2 —m:s)or (i :-x — m:s). Once again,
the introduction of such rules imposes restrictions on
other rules involving the same propositions so that (¢ :
n — m : ++) implies that there must be restrictions
equivalent to the rules (¢ : =n — m : —=), (i :
-m : ——) and (¢ : =n — —-m : ++4), and similar
restrictions are imposed by the other rules.

n —

Having introduced new qualitative values and ensured
that they have a probabilistic meaning, we have to give
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Table 2: The function @,

a suitably probabilistic means of combining them if we
want the whole system to be normative. It is reason-
ably clear that a suitable comb will be the function ®.
given in Table 1. Note the asymmetry in the table,
and the addition of the sign ‘?” to indicate a change in
probability whose value is not known.

The correct way to flatten normative arguments, some
of which are categorical, is a little complex. The
problem is that the very strong constraint that a rule
({ : n — m : ++4) puts on the distribution over m
and n greatly restricts the values of other rules whose
consequent is m. In fact, if we have (i : n — m : s),
s € {++,—+} then for any other (i :  — m : §'),
s € {++,4+,—,—+} and if we have (i : n — m : 3),
s € {+—,——1} then for any other (i : # — m : §'),
s e {+—,4+,—,——1} [9]. This means that we have a
flattening operator @, as given in Table 2 where the
symbol U indicates that the result is not defined. U
may also be taken to indicate that if this 1s the result
of flattening, then the database on which its deduction
1s based violates the laws of probability.

We will call the system of argumentation which uses
this dictionary and pair of functions along with the
argument building capabilities of SA" as N Aj since it
bears the same relation to A" A3 [8] as SA’ does to SA.

As an example of the kind of reasoning that can be per-
formed in NV A}, consider the following simple database
Ay of propositional rules and facts. What these rules
say 1s that there are three events that may influence
my losing my job—I embezzle funds, I am ill, T am an
illegal alien. All of these events have a positive influ-
ence on my losing my job, so that if any single one of
them on their own becomes more believable, it is more
believable that I will lose my job, and, conversely, if
they become less believable, it is less believable that 1
will lose my job.

fl:embezzle_funds . —. A,
f2 4l +.

f3 ilegal_alien : —.
rl:embezzle_funds — lose_job : +.

r2 il — lose_job : +.

r3 :illegal_alien — lose_job : 4.

The database facts say that there is reason to increase
belief in that fact that I am ill, and that there are
reasons to decrease belief in that fact that I have em-



bezzled funds, and am an illegal alien. From A, we
can build the arguments:

Ay Facr (lose_job, (f1,r1),(—)).
Ay Facr (lose_job,(f2,7r2),(+)).
Ay Facr (lose_job, (f3,73),(—)).

and these will be flattened to conclude that the over-
all change in belief in the proposition ‘lose_job’ was
7, indicating that it cannot be accurately identified.
To see how the system incorporates categorical knowl-
edge, consider the following variation on our example:

fl: embezzle_funds : 1. As
f2 4l .

7l : embezzle_funds — lose_job : + + .

r2 4l — lose_job : +.

From this using A" A5 we can build the arguments:

(lose_job, (f1,71),(1)).
(lose_job, (f2,72),(—)).
which will flatten to tell us that I will definitely lose my

job since the categorical negative effect of embezzling
outweighs the positive effect of not being ill.

Az Facr
Az Facr

In the kind of minimal logic which forms the base lan-
guage for N A5 any negated formula =/ is taken as
shorthand for [ — L so all triples (¢ : = : s) should
be replaced with (i : [ — L : s), and any formula
(i:=l = m:s)wth@:({(—= 1) — m:s)
before constructing any arguments. However, since
el H)=@:l=), (@l T)y=@E:1:]),
and (i : 2l — m : 4) = ({1l — m : —)
we can avoid introducing the contradiction by using
the appropriate substitution. Categorical rules are
similarly handled using, for instance, the equivalen-
cies (1 : 1l — =m : +4) = ({ : |l — m : —=),
(f:=l = m:4+44) = (¢ : 1 = m: —4) and
(i:l—=-m:+H) =G :l—=m:4+-)[9]

4 COMPARISON WITH OTHER
SYSTEMS

Now, N AL clearly bears some relation to other prob-
abilistic systems for dealing with changes in proba-
bility, most notably qualitative probabilistic networks
(QPNs) [12], from which it borrows the notion of what
consititutes a probabilistic connection between vari-
ables, and Neufeld’s probabilistic commonsense rea-
soner [7]. This section aims to establish the form of
this relation.

4.1 QUALITATIVE PROBABILISTIC
NETWORKS

Formally, a QPN is a pair G = (V,Q), where V is a
set of variables or nodes in a graph, denoted by capital
letters, and @ is a set of qualitative relations among
the variables. There are two types of qualitative rela-
tions in @, “influences” and “synergies”. Qualitative

61 62

Y,

A C

b3

Figure 2: A qualitative probabilistic network

influences define the sign of the direct influence be-
tween variables and correspond to arcs in a probabilis-
tic network and are defined as follows. We say that
“A positively influences C”, written ST (A, C), iff for
all values a1 > as, ¢g, and X, which is the set of all of
(s predecessors other than A:

Pr(c > eglar, X) > Pr(e > ¢olaz, X)

where a; and ¢; are the possible values of A and C.
This definition expresses the fact that increasing the
value of A makes higher values of C' more probable.
Negative qualitative influence, S™, and zero qualita-
tive influence, S°, are defined analogously by substi-
tuting < and =, respectively, for >. For binary valued
variables, A positively influences C' if

Pr(c|a, X) > Pr(c|—a, X)

which means that ST (A4, C) in a QPN has exactly the
same meaning as (i : @ — ¢ : +) in an N A} database.
Thus it is possible to represent any given binary valued
QPN as a set of facts and rules in AN A5—nodes in
the QPN are propositions, and influences are rules.
Given this, the question that it seems reasonable to
ask is “can the same conclusions be drawn from a QPN
and its representation in N.A57” Well, Wellman [12],
paraphrasing slightly, specifies that in the situation in
Figure 2 the conclusions to be drawn about the change
in probability of ¢, given a change in probability of 84
in the probability of a 1s:

((61 R 62) S 63) R 64

where 61, 82 and é3 are the signs of the influences be-
tween A and B, B and (', and A and C respectively,
since the combination functions given by Wellman are
exactly those used by N A5, except that they only deal
with 4, 0, — and 7. If this same QPN were represented
in VA%, we would have:

fl:a:é,. Ay
rl:a—b:6.
r2:b—c:b.
r3:a—c:db3.

from which is possible to build two arguments for ¢
(¢, (f1,71,72), (81 @ 62 @ ba)).
(C, (fla 7”3), (63 &« 64))

Now, flattening these two arguments for ¢ tells us that
the overall change in the probability of ¢ is:

((51 Ry 09 Dy 54) D« (63 Qs 64)

Ay Facr
Ay Facr



which, since ®, and @, distribute like ordinary mul-
tiplication and addition, is the same as the change es-
tablished using QPNs. Since all possible QPNs up-
dates can be reduced to that pictured in Figure 2 [12],
it is clear that A A5 can completely capture binary
QPNs where the only relations are qualitative influ-
ences. Furthermore, it is clear that N A5 go consider-
ably further than QPNs in distinguishing categorical
influences. However, A" A5 can only deal with binary
valued variables whereas QPNs can deal with many-
valued and continuous variables, and A/ A5 cannot rep-
resent qualitative synergies. These latter are hyperre-
lations which capture the fact that, for instance, the
joint effect of variables A and B on (' is greater than
the sum of their individual effects. In binary QPNs
this is expressed by saying that A and B exhibit posi-
tive synergy with respect to C', written Y+ ({4, B}, C)
if:

Pr(c|a,b) + Pr(c|—a,—b) > Pr(c|—a,b) + Pr(c|a, b)

negative synergy Y ({4, B},C) and zero synergy
YO({A, B},C) are similarly defined. It is currently
unclear how, if at all, this kind of relation may be

captured in N Aj.

4.2 THE PROBABILISTIC
COMMONSENSE REASONER

Neufeld [7] bases his probabilistic commonsense rea-
soner on a graphical notation which distinguishes the
following kinds of relations that may hold between
variables:

b—a means 1> Pr( |6) > Pr(a)
b= a means Pr(a|b) > Pr(a)
b/ a means 1> Pr(—|a |6) > Pr(—a)
b# a means 1=Pr(-al|b)> Pr(-a)

These are clearly very similar to the rules in A" A3. The
semantics of Neufeld’s b — a are virtually the same as

that of N\ A3’s (i : b — a : +). To see this consider
that (i : b — a : —1—) means:
Pr(alb,X) > Pr(a|-bX)
> Pr(a|X)
> Pr(a)
Now

b)= > Pr(alb,z)Pr(x)

rzeX
so, if Pr(a|b, X) > Pr(a) for all values of X:

Pr(alb) > > Pr(a)Pr(z)
rzeX
> Pr(a) Z Pr(z)
rzeX
> Pr(a)
so (i : b — a : +) captures the same meaning as

Neufeld’s b — a in that if the restriction on the proba-
bilities of a and b implied by (i : b — a : +) is met, the

restriction implied by b — a is also met (provided, of
course, that we know that Pr(a|b, X) # Pr(a)). In a
51m11ar way, (¢ : b — —a : +) captures the meaning of
b4 a,(i:b— a:++) captures the meaning of b /- a
and (¢ : b — —a : ++) captures the meaning of b % a.
However, there are differences between the systems.

The most obvious is the use of the strict inequality
in Neufeld’s system, and this is clearly a very minor
difference. The use of the non-strict inequality in A A5
is really just for convenience, and of course it is the
reason that the condition on the probabilities imposed
by (i :b— a:—++) is stated as:

Pr(alb, X)=1
rather than:
1="Pr(alb, X) > Pr(a|-b,X)

which would make the connection with & = a clearer—
the second expression is a trivial consequence of the
first.

The major difference between the two systems, as
Neufeld [7] points out (with reference to QPNs), is
that he does not force the condition to hold for all the
possible events that might influence a other than 4. In
other words, in N Aj, if we have (i : b — a : +) and
(i:¢—a:+), then:

Pr(a|b,c) > Pr(a)

so that a becomes more probable when a and & are
known to be true. Within the framework of normative
argumentation and QPNs this is a very useful prop-
erty since it makes it possible to carry out purely lo-
cal calculations—if we have (¢ : & — a : 4) then we
can calculate the effect of a change in Pr(b) on Pr(a)
without having to simultaneously consider the effects
of changes in the probabilities of other propositions
that influence it in order to avoid “double-counting”
the effects of evidence as we do in standard probabil-
ity theory (other influences, of course, are not ignored,
just considered locally in their turn).

In Neufeld’s system, however, this property does not
hold, so that it is perfectly possible to have b — a and
¢ — a and yet have:

Pr(alb, c) < Pr(a)

Now, within the framework of Neufeld’s system it is
this latter property which is seen as being good since
it ensures that the system does not draw any unwar-
ranted conclusions about the probability of ¢ given the
conjunction of @ and b. To see that this may be a good
thing, consider the following scenario.

Jack 1s having a party, and as far as he is concerned
the party will be a good one if his best friends come.
His two best friends are Cody and Evelyn. With this
knowledge we can build a simple model of Jack’s be-
liefs using the variables good_party, cody_comes, and
evelyn_comes. The model will contain the two 1impli-
cations (in Neufled’s sense) cody_comes — good_party



and evelyn_comes — good_party. Now, with Neufeld’s
scheme 1t is not possible to infer that:

Pr(good_party) <
Pr(good_party|cody_comes, evelyn_comes)

which 1s just as well for Jack since Cody and Eve-
lyn are divorced, and if they come to the same party
they will fight and upset him (since he wishes that
the two of them still got along). If this kind of con-
servative reasoning is required, then Neufeld’s system
has an advantage over N A} since the latter could not
be used to represent Jack’s beliefs—it could only be
used if it were the case that in Jack’s view the party
will be good as soon as either of Cody or Evelyn turn
up, regardless of who else comes. Of course, mak-
ing it possible to deal with qualitative synergies be-
tween variables in N A5 would make it possible to
model Jack’s beliefs since the effect of Cody and Eve-
lyn both coming to the party may be modelled as
Y~ ({cody_comes, evelyn_comes}, good_party).

5 DISCUSSION

This paper has discussed a normative system of ar-
gumentation A’ A3, and explored the relationship be-
tween it and two similar systems. In particular, it
has shown that AN A5 can represent binary qualita-
tive probabilistic networks [12] which do not contain
any qualitative synergies (or, equivalently, for which
all the possible synergies are zero), and can represent
the same kind of information as Neufeld’s probabilis-
tic commonsense reasoner, although there are slight
differences which mean that it can handle situations
which defeat Neufeld’s system and is defeated by some
situations which Neufeld’s system can handle.

Clearly these are not the only other systems which
N A5 ressembles. The attempt to give an essentially
logical system a probabilistic semantics prompts rec-
ollection of Goldszmidt’s work on normative systems
for defeasible reasoning [4]. In addition, our work has
strong connections with Darwiche’s [1] move “...to re-
lax the commitment to numbers while retaining the de-
sirable features of probability theory”. Furthermore,
the close relation between qualitative approaches to
probabilistic reasoning in networks and probabilistic
systems based on logic was suggested by Wellman
[11] while the idea of a database of influences which
is equivalent to a probabilistic network has been dis-
cussed by, among others, Poole [10] and Wong [13].

Finally, it should be noted that the base language of
the system of argumentation S.A is more restrictive
than that of other similar systems. This is because we
exclude formulae that include the A and V connectives,
complex formulae such as (¢ — b) — (¢ — d), and only
have a very limited set of rules of inference. The latter
problem is partly tackled in [8], while the introduction
of A and complex formulae is addressed in [9]. Other
extensions of the system are the subject of ongoing
work.
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