
Comparing normative argumentation to other probabilistic systemsSimon ParsonsDepartment of Electronic EngineeringQueen Mary and West�eld CollegeMile End RoadLondon E1 4NSS.Parsons@qmw.ac.ukAbstractThis paper discusses a system of argu-mentation with a probabilistic semanticsand compares it to two other probabilisticsystems|Wellman's qualitative probabilis-tic networks and Neufeld's probabilistic de-fault reasoning.1 INTRODUCTIONIn the last few years there have been a number of at-tempts to build systems for reasoning under uncer-tainty that are of a qualitative nature|that is theyuse qualitative rather than numerical values, dealingwith concepts such as increases in belief and the rel-ative magnitude of values. In particular, two typesof qualitative system have become well established|qualitative probabilistic networks (QPNs) [2, 12], andsystems of argumentation [5, 6]. While the formerare built as an abstraction of probabilistic networkswhere the links between nodes are only modelled interms of the qualitative inuence of the parents onthe children, and therefore have an underlying prob-abilistic semantics, some of the latter lack such asound foundation. This lack of a probabilistic se-mantics for argumentation prompted work [8, 9] toprovide such a semantics for systems of argumenta-tion of the kind introduced by Krause et al. [5] usingonly qualitative or semi-qualitative information1. Ofcourse this extension might not always be desired, butmay be useful at times to ensure that a given sys-tem reasons within probabilistic norms. This paperfurther extends this work by comparing the most well-developed of these normative systems of argumenta-tion with two similar systems|qualitative probabilis-tic networks and Neufeld's probabilistic commonsensereasoning [7]. The paper begins with a recap of thesystems of argumentation upon which the normativesystem is built.1If there is no commitment to qualitative information,it is possible to give argumentation a semantics in terms ofnumerical probabilities [5].

2 INTRODUCING SYSTEMS OFARGUMENTATIONIn classical logic, an argument is a sequence of infer-ences leading to a conclusion. If the argument is cor-rect, then the conclusion is true. Consider the simpledatabase �1 which expresses some very familiar in-formation in a Prolog-like notation in which variablesare capitalised and ground terms and predicate namesstart with small letters.f1 : human(socrates): �1r1 : human(X)! mortal(X):The argument �1 ` mortal(socrates) is correct be-cause mortal(socrates) follows from �1 given theusual logical axioms and rules of inference. Thus a cor-rect argument simply yields a conclusion which in thiscase could be paraphrased `mortal(socrates) is truein the context of f1 and r1'. In the system of argu-mentation proposed by Krause et al. this traditionalform of reasoning is extended to allow arguments toindicate support and doubt in propositions, as well asproving them, by assigning labels to arguments whichdenote the con�dence that the arguments warrant intheir conclusions. This form of argumentation may besummarised by the following schema:database `ACR (Sentence;Grounds; Sign)where `ACR is a suitable consequence relation. In-formally, Grounds (G) are the facts and rules used toinfer Sentence (St), and Sign (Sg) is a number or asymbol drawn from a dictionary of possible numbersor symbols which indicate the con�dence warranted inthe conclusion.To formalise this kind of reasoning we start with alanguage, and we will take L, a set of propositions,including ?, the contradiction. We also have a set ofconnectives f!;:g2, and the following set of rules forbuilding the well formed formulae of the language:2Note that both the set of connectives and the rulesfor building w�s are more restrictive than for other similarsystems of argumentation [5], but these restrictions maybe lifted [9].



Ax � `ACR (St; fig; Sg) (i : St : Sg) 2 �!-E � `ACR (St;G; Sg) � `ACR (St! St0; G0; Sg0)� `ACR (St0; G[G0; comb(Sg; Sg0))Figure 1: Argumentation Consequence Relation� If l 2 L then l is a well formed formula (w�).� If l 2 L then :l is a w�.� If l;m 2 L then l ! m, l ! :m, :l ! m and:l! :m are w�s.� Nothing else is a w�.The members ofW, the set of all w�s that may be de-�ned using L, may then be used to build up a database� where every item d 2 � is a triple (i : l : s) in whichi is a token uniquely identifying the database item (forconvenience we will use the letter `i' as an anonymousidenti�er), l is a w�, and s is a sign. With this formalsystem, we can take a database and use the argumentconsequence relation given in Figure 1, to build ar-guments for propositions in L that we are interestedin.Typically we will be able to build several argumentsfor a given proposition, and so, to �nd out somethingabout the overall validity of the proposition, we willatten the di�erent arguments to get a single sign.Together L, the rules for building the formulae, theconnectives, and `ACR de�ne a formal system of ar-gumentation, which we will call SA0 since it is a cut-down version of the system SA introduced in [8]. Infact, SA0 is really the basis of a family of systems ofargumentation, because one can de�ne a number ofvariants of SA0 by using di�erent dictionaries of signs.Each dictionary will have its own combination func-tion comb, and its own means of attening arguments,and the meanings of the signs, the attening function,and the combination function delineate the semanticsof the system of argumentation.3 A NORMATIVE SYSTEMOne commonly used system of argumentation withinthe framework of SA0 is one in which the dictionaryincludes three symbols, +, � and 0, which representthe notion of an increase, a decrease and no changein belief respectively. When a proposition is labelledwith +, it is taken to represent the fact that there isan increase in belief in the proposition, while labellingthe rule: human(x)! mortal(x)with a + is taken to represent the fact that showingthat there is an increase in the belief of something be-ing human causes an increase in belief that it is mortal.

Now, the use of + and � to represent changes in beliefsuggests a link between this system of argumentationand QPNs [12] since the latter make use of a similarnotion. Indeed, it turns out that we can modify thenotion of a probabilistic inuence in a QPN to give ourdatabase facts and rules a probabilistic interpretation.In particular we take triples (i : l : +), where l 2 Wand l does not include the connective !, to denote thefact that p(l) is known to increase, and similar triples(i : l : �), to denote the fact that p(l) is known todecrease. Triples (i : l : 0), clearly denote the fact thatp(l) is known to neither increase nor decrease. Withthis interpretation facts correspond to the nodes in aQPN, and as in QPNs we deal with changes in theirprobability.Database rules can similarly be given a probabilisticinterpretation by making the triple (i : n ! m : +),where m and n are members ofW which do not includethe connective !, denote the fact that:Pr(m jn;X) � Pr(m j:n;X)for any X 2 fx;:xg for which there is a triple (i : x!m : s) or (i : :x! m : s) (where s is any sign), whilethe triple (i : n! m : �) denotes the fact that:Pr(m jn;X) � Pr(m j:n;X)again for any X for which there is a triple (i : x !m : s) or (i : :x ! m : s). We do not make useof triples such as (i : n ! m : 0) since such ruleshave no useful e�ect. As a result a rule (i : n ! m :+) means that there is a probability distribution overthe propositions m and n such that an increase in theprobability of n makes m more likely to be true, and arule (i : n! m : �) means that there is a probabilitydistribution over the propositions m and n such thatan increase in the probability of n makes m less likelyto be true. With this interpretation, rules correspondto qualitative inuences in QPNs.It should be noted that the e�ect of declaring thatthere is a rule (i : n! m : +) is to create considerableconstraints on the probability distribution over m andn to the extent that the e�ect of other rules relating mand n are determined absolutely. That is, a necessaryconsequence of (i : n ! m : +) is that we have otherrules (i : n ! :m : �), (i : :n ! m : �) and (i ::n ! :m : +), and similar restrictions are imposedby rules like (i : n! m : �).Now, in some applications [3], it is necessary to repre-sent information of the form \X is known to be true",and \If X is true then Y is true"|information that we
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�might term categorical. To do this we �rst extend thedictionary of signs to be f++;+;�;��g where ++and �� are labels for categorical information. It thenturns out that we can give ++ and �� a probabilisticsemantics, giving a system of argumentation which in-cludes triples such as (i : l : ++) and (i : l : ��) andrules such as (i : n! m : ++) and (i : n! m : ��).The meaning of (i : l : ++), where l is a w� which doesnot contain !, is that the probability of l becomes1, and (i : l : ��) means that the probability of ldecreases to 0, and to make this clear, we write (i : l :") for (i : l : ++), and (i : l : #) for (i : l : ��). Themeaning of the rules is slightly more complicated. Wewant a rule (i : n ! m : ++), where neither m or ncontain !, to denote a constraint on the probabilitydistribution across m and n such that if Pr(n) becomes1, so does Pr(m). This requires that:Pr(m jn;X) = 1for all X 2 fx;:xg such that the database contains(i : x ! m : s) or (i : :x ! m : s). [9]. Similarly, aprobabilistic interpretation of a rule (i : n! m : ��)requires that: Pr(m jn;X) = 0for all X 2 fx;:xg such that the database contains(i : x ! m : s) or (i : :x ! m : s). Considering theconstraints on the conditional probabilities imposed by++ and �� rules, a further pair of rules are suggested.These are a rule (i : n! m : �+) which requires that:Pr(m j:n;X) = 1for all X 2 fx;:xg such that the database contains(i : x ! m : s) or (i : :x! m : s) (s now being ableto take any value in the set f++;+�;+;�;�+;��g),and a rule (i : n! m : +�) which requires that:Pr(m j:n;X) = 0for all X 2 fx;:xg such that the database contains(i : x ! m : s) or (i : :x ! m : s). Once again,the introduction of such rules imposes restrictions onother rules involving the same propositions so that (i :n ! m : ++) implies that there must be restrictionsequivalent to the rules (i : :n ! m : ��), (i : n !:m : ��) and (i : :n ! :m : ++), and similarrestrictions are imposed by the other rules.Having introduced new qualitative values and ensuredthat they have a probabilistic meaning, we have to give

�� " + 0 � # ?" " " " " U "+ " + + ? # ?0 " + 0 � # ?� " ? � � # ?# U # # # # #? " ? ? ? # ?Table 2: The function ��a suitably probabilistic means of combining them if wewant the whole system to be normative. It is reason-ably clear that a suitable comb will be the function 
�given in Table 1. Note the asymmetry in the table,and the addition of the sign `?' to indicate a change inprobability whose value is not known.The correct way to atten normative arguments, someof which are categorical, is a little complex. Theproblem is that the very strong constraint that a rule(i : n ! m : ++) puts on the distribution over mand n greatly restricts the values of other rules whoseconsequent is m. In fact, if we have (i : n ! m : s),s 2 f++;�+g then for any other (i : x ! m : s0),s0 2 f++;+;�;�+g and if we have (i : n ! m : s),s 2 f+�;��g then for any other (i : x ! m : s0),s0 2 f+�;+;�;��g [9]. This means that we have aattening operator �� as given in Table 2 where thesymbol U indicates that the result is not de�ned. Umay also be taken to indicate that if this is the resultof attening, then the database on which its deductionis based violates the laws of probability.We will call the system of argumentation which usesthis dictionary and pair of functions along with theargument building capabilities of SA0 as NA03 since itbears the same relation to NA3 [8] as SA0 does to SA.As an example of the kind of reasoning that can be per-formed inNA03, consider the following simple database�2 of propositional rules and facts. What these rulessay is that there are three events that may inuencemy losing my job|I embezzle funds, I am ill, I am anillegal alien. All of these events have a positive inu-ence on my losing my job, so that if any single one ofthem on their own becomes more believable, it is morebelievable that I will lose my job, and, conversely, ifthey become less believable, it is less believable that Iwill lose my job.f1 : embezzle funds : �: �2f2 : ill : +:f3 : illegal alien : �:r1 : embezzle funds! lose job : +:r2 : ill ! lose job : +:r3 : illegal alien! lose job : +:The database facts say that there is reason to increasebelief in that fact that I am ill, and that there arereasons to decrease belief in that fact that I have em-



bezzled funds, and am an illegal alien. From �2 wecan build the arguments:�2 `ACR (lose job; (f1; r1); (�)):�2 `ACR (lose job; (f2; r2); (+)):�2 `ACR (lose job; (f3; r3); (�)):and these will be attened to conclude that the over-all change in belief in the proposition `lose job' was?, indicating that it cannot be accurately identi�ed.To see how the system incorporates categorical knowl-edge, consider the following variation on our example:f1 : embezzle funds : ": �3f2 : ill : #:r1 : embezzle funds! lose job : + + :r2 : ill ! lose job : +:From this using NA03 we can build the arguments:�3 `ACR (lose job; (f1; r1); (")):�3 `ACR (lose job; (f2; r2); (�)):which will atten to tell us that I will de�nitely lose myjob since the categorical negative e�ect of embezzlingoutweighs the positive e�ect of not being ill.In the kind of minimal logic which forms the base lan-guage for NA03 any negated formula :l is taken asshorthand for l ! ? so all triples (i : :l : s) shouldbe replaced with (i : l ! ? : s), and any formula(i : :l ! m : s) with (i : (l ! ?) ! m : s)before constructing any arguments. However, since(i : :l : +) � (i : l : �), (i : :l : ") � (i : l : #),and (i : :l ! m : +) � (i : l ! m : �)we can avoid introducing the contradiction by usingthe appropriate substitution. Categorical rules aresimilarly handled using, for instance, the equivalen-cies (i : l ! :m : ++) � (i : l ! m : ��),(i : :l ! m : ++) � (i : l ! m : �+) and(i : :l! :m : ++) � (i : l ! m : +�) [9].4 COMPARISON WITH OTHERSYSTEMSNow, NA03 clearly bears some relation to other prob-abilistic systems for dealing with changes in proba-bility, most notably qualitative probabilistic networks(QPNs) [12], from which it borrows the notion of whatconsititutes a probabilistic connection between vari-ables, and Neufeld's probabilistic commonsense rea-soner [7]. This section aims to establish the form ofthis relation.4.1 QUALITATIVE PROBABILISTICNETWORKSFormally, a QPN is a pair G = (V;Q), where V is aset of variables or nodes in a graph, denoted by capitalletters, and Q is a set of qualitative relations amongthe variables. There are two types of qualitative rela-tions in Q, \inuences" and \synergies". Qualitative

� � � � � � � � �� � � � � �* H H H H H Hj -�1 �2�3A B CFigure 2: A qualitative probabilistic networkinuences de�ne the sign of the direct inuence be-tween variables and correspond to arcs in a probabilis-tic network and are de�ned as follows. We say that\A positively inuences C", written S+(A;C), i� forall values a1 > a2, c0, and X, which is the set of all ofC's predecessors other than A:Pr(c � c0 ja1; X) � Pr(c � c0 ja2; X)where ai and cj are the possible values of A and C.This de�nition expresses the fact that increasing thevalue of A makes higher values of C more probable.Negative qualitative inuence, S�, and zero qualita-tive inuence, S0, are de�ned analogously by substi-tuting � and =, respectively, for �. For binary valuedvariables, A positively inuences C ifPr(c ja;X) � Pr(c j:a;X)which means that S+(A;C) in a QPN has exactly thesame meaning as (i : a! c : +) in an NA03 database.Thus it is possible to represent any given binary valuedQPN as a set of facts and rules in NA03|nodes inthe QPN are propositions, and inuences are rules.Given this, the question that it seems reasonable toask is \can the same conclusions be drawn from a QPNand its representation in NA03?" Well, Wellman [12],paraphrasing slightly, speci�es that in the situation inFigure 2 the conclusions to be drawn about the changein probability of c, given a change in probability of �4in the probability of a is:((�1 
� �2)�� �3)
� �4where �1, �2 and �3 are the signs of the inuences be-tween A and B, B and C, and A and C respectively,since the combination functions given by Wellman areexactly those used by NA03, except that they only dealwith +, 0, � and ?. If this same QPN were representedin NA03, we would have:f1 : a : �4: �4r1 : a! b : �1:r2 : b! c : �2:r3 : a! c : �3:from which is possible to build two arguments for c�4 `ACR (c; (f1; r1; r2); (�1 
� �2 
� �4)):�4 `ACR (c; (f1; r3); (�3 
� �4)):Now, attening these two arguments for c tells us thatthe overall change in the probability of c is:(�1 
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� �4)�� (�3 
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which, since 
� and �� distribute like ordinary mul-tiplication and addition, is the same as the change es-tablished using QPNs. Since all possible QPNs up-dates can be reduced to that pictured in Figure 2 [12],it is clear that NA03 can completely capture binaryQPNs where the only relations are qualitative inu-ences. Furthermore, it is clear that NA03 go consider-ably further than QPNs in distinguishing categoricalinuences. However, NA03 can only deal with binaryvalued variables whereas QPNs can deal with many-valued and continuous variables, and NA03 cannot rep-resent qualitative synergies. These latter are hyperre-lations which capture the fact that, for instance, thejoint e�ect of variables A and B on C is greater thanthe sum of their individual e�ects. In binary QPNsthis is expressed by saying that A and B exhibit posi-tive synergy with respect to C, written Y +(fA;Bg; C)if:Pr(c ja; b)+ Pr(c j:a;:b)� Pr(c j:a; b)+ Pr(c ja;:b)negative synergy Y �(fA;Bg; C) and zero synergyY 0(fA;Bg; C) are similarly de�ned. It is currentlyunclear how, if at all, this kind of relation may becaptured in NA03.4.2 THE PROBABILISTICCOMMONSENSE REASONERNeufeld [7] bases his probabilistic commonsense rea-soner on a graphical notation which distinguishes thefollowing kinds of relations that may hold betweenvariables:b! a means 1 > Pr(a jb) > Pr(a)b) a means 1 = Pr(a jb) > Pr(a)b 6! a means 1 > Pr(:a jb) > Pr(:a)b 6) a means 1 = Pr(:a jb) > Pr(:a)These are clearly very similar to the rules inNA3. Thesemantics of Neufeld's b! a are virtually the same asthat of NA03's (i : b ! a : +). To see this considerthat (i : b! a : +) means:Pr(a jb;X) � Pr(a j:b;X)� Pr(a jX)� Pr(a)Now, Pr(a jb) =Xx2X Pr(a jb; x) Pr(x)so, if Pr(a jb;X) � Pr(a) for all values of X:Pr(a jb) � Xx2X Pr(a) Pr(x)� Pr(a)Xx2X Pr(x)� Pr(a)so (i : b ! a : +) captures the same meaning asNeufeld's b! a in that if the restriction on the proba-bilities of a and b implied by (i : b! a : +) is met, the

restriction implied by b ! a is also met (provided, ofcourse, that we know that Pr(a j b;X) 6= Pr(a)). In asimilar way, (i : b ! :a : +) captures the meaning ofb 6! a, (i : b! a : ++) captures the meaning of b 6! aand (i : b! :a : ++) captures the meaning of b 6) a.However, there are di�erences between the systems.The most obvious is the use of the strict inequalityin Neufeld's system, and this is clearly a very minordi�erence. The use of the non-strict inequality inNA03is really just for convenience, and of course it is thereason that the condition on the probabilities imposedby (i : b! a : ++) is stated as:Pr(a jb;X) = 1rather than:1 = Pr(a jb;X) � Pr(a j:b;X)which would make the connection with b) a clearer|the second expression is a trivial consequence of the�rst.The major di�erence between the two systems, asNeufeld [7] points out (with reference to QPNs), isthat he does not force the condition to hold for all thepossible events that might inuence a other than b. Inother words, in NA03, if we have (i : b ! a : +) and(i : c! a : +), then:Pr(a jb; c) � Pr(a)so that a becomes more probable when a and b areknown to be true. Within the framework of normativeargumentation and QPNs this is a very useful prop-erty since it makes it possible to carry out purely lo-cal calculations|if we have (i : b ! a : +) then wecan calculate the e�ect of a change in Pr(b) on Pr(a)without having to simultaneously consider the e�ectsof changes in the probabilities of other propositionsthat inuence it in order to avoid \double-counting"the e�ects of evidence as we do in standard probabil-ity theory (other inuences, of course, are not ignored,just considered locally in their turn).In Neufeld's system, however, this property does nothold, so that it is perfectly possible to have b! a andc! a and yet have:Pr(a jb; c) < Pr(a)Now, within the framework of Neufeld's system it isthis latter property which is seen as being good sinceit ensures that the system does not draw any unwar-ranted conclusions about the probability of c given theconjunction of a and b. To see that this may be a goodthing, consider the following scenario.Jack is having a party, and as far as he is concernedthe party will be a good one if his best friends come.His two best friends are Cody and Evelyn. With thisknowledge we can build a simple model of Jack's be-liefs using the variables good party, cody comes, andevelyn comes. The model will contain the two impli-cations (in Neued's sense) cody comes ! good party



and evelyn comes! good party. Now, with Neufeld'sscheme it is not possible to infer that:Pr(good party) <Pr(good party jcody comes; evelyn comes)which is just as well for Jack since Cody and Eve-lyn are divorced, and if they come to the same partythey will �ght and upset him (since he wishes thatthe two of them still got along). If this kind of con-servative reasoning is required, then Neufeld's systemhas an advantage over NA03 since the latter could notbe used to represent Jack's beliefs|it could only beused if it were the case that in Jack's view the partywill be good as soon as either of Cody or Evelyn turnup, regardless of who else comes. Of course, mak-ing it possible to deal with qualitative synergies be-tween variables in NA03 would make it possible tomodel Jack's beliefs since the e�ect of Cody and Eve-lyn both coming to the party may be modelled asY �(fcody comes; evelyn comesg; good party).5 DISCUSSIONThis paper has discussed a normative system of ar-gumentation NA03, and explored the relationship be-tween it and two similar systems. In particular, ithas shown that NA03 can represent binary qualita-tive probabilistic networks [12] which do not containany qualitative synergies (or, equivalently, for whichall the possible synergies are zero), and can representthe same kind of information as Neufeld's probabilis-tic commonsense reasoner, although there are slightdi�erences which mean that it can handle situationswhich defeat Neufeld's system and is defeated by somesituations which Neufeld's system can handle.Clearly these are not the only other systems whichNA03 ressembles. The attempt to give an essentiallylogical system a probabilistic semantics prompts rec-ollection of Goldszmidt's work on normative systemsfor defeasible reasoning [4]. In addition, our work hasstrong connections with Darwiche's [1] move \...to re-lax the commitment to numbers while retaining the de-sirable features of probability theory". Furthermore,the close relation between qualitative approaches toprobabilistic reasoning in networks and probabilisticsystems based on logic was suggested by Wellman[11] while the idea of a database of inuences whichis equivalent to a probabilistic network has been dis-cussed by, among others, Poole [10] and Wong [13].Finally, it should be noted that the base language ofthe system of argumentation SA is more restrictivethan that of other similar systems. This is because weexclude formulae that include the ^ and _ connectives,complex formulae such as (a! b)! (c! d), and onlyhave a very limited set of rules of inference. The latterproblem is partly tackled in [8], while the introductionof ^ and complex formulae is addressed in [9]. Otherextensions of the system are the subject of ongoingwork.
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