
Possibility theory and the generalised Noisy OR modelSimon Parsons and John BighamDepartment of Electronic Engineering,Queen Mary and West�eld College,Mile End Road, London E1 4NS,United KingdomS.Parsons@qmw.ac.uk, J.Bigham@qmw.ac.ukAbstractThe probabilistic Noisy OR model has beenwidely used as a means of reducing theamount of probabilistic information that isneeded to specify the interaction betweengroups of variables. Motivated by our workon the diagnosis of faults in satellite sub-systems, which required a similar synthesisof partial possibilistic information on interac-tions, we consider a number of ways of gener-alising the probabilistic Noisy OR model topossibility theory.1 INTRODUCTIONOne of the major problems in building a probabilisticnetwork model of a domain is that of providing a fullset of conditional probabilities Pr(x ju) relating eachpossible value x of each variable X to every set of pos-sible values u of the set of variables U which havebeen identi�ed as the direct causes of X. Thus fora variable D, with possible values fd1; d2; d3g, whichhas direct causes A, B, and C, which have possiblevalues fa1; a2; a3g, fb1; b2; b3g, and fc1; c2; c3g respec-tively, it is necessary to provide estimates of Pr(d1 ja1; b1; c1);Pr(d1 j a1; b1; c2); . . .Pr(d3 j a3; b3; c3). Thisis no inconsiderable task, and, as Pearl [9] points out,it is complicated by the fact that the various causes of-ten point to disparate frames of knowledge whose onlyconnection is that they have a common consequence.As a result it is useful to study canonical models ofinteraction between multiple causes which provide ameans of computing the necessary set of conditionalprobabilities from those in terms of a single cause.In other words these models provide a means of es-timating Pr(d1 j a1; b1; c1);Pr(d1 j a1; b1; c2); . . .Pr(d3 ja3; b3; c3) from the more easily accessible sets of valuesPr(d1 ja1);Pr(d1 ja2); . . .Pr(d3 ja3), Pr(d1 j b1);Pr(d1 jb2); . . .Pr(d3 j b3), and Pr(d1 j c1);Pr(d1 j c2); . . .Pr(d3 jc3).The �rst such model to be suggested was the NoisyOR model (or Noisy OR-gate to give it the title �rst

conveyed upon it) [9] which took as its basis a formof disjunctive interaction in which any member of aset of causes makes a particular event likely to occur,and in which this likelihood is not diminished by theoccurrence of several causes simultaneously. A suit-able example of this kind of interaction is if the eventin question is that of a patient su�ering from a fever,and the set of causes is a set of fever-inducing diseases.If the patient su�ers from one of the diseases then sheis likely to have a fever, and if she is su�ering fromseveral diseases at the same time then she is yet morelikely to have a fever. Pearl shows that with two sim-ple assumptions (that the event does not occur unlessthere is a cause, and the mechanisms that prevent acause making the event occur are independent) dis-junctive interactions can be modelled quite elegantly.The simple model he provided, which only allows forbinary valued causes and e�ect, has subsequently beenadapted and generalised by a number of authors.Henrion [7] extended the model to cover the case inwhich the event in question may occur even when allthe direct causes identi�ed by the model are absentby including a \leak" probability, showing how thismodel was useful in building Bayesian networks thatsolve real world problems. In addition, Heckerman[4] showed that models built using the leaky OR-gatecould be solved tractably. In particular, he developedan algorithm that could solve such models and whichhad a time complexity that was exponential in thenumber of causes that actually occurred. In collab-oration with Shwe [6], the same author has providedempirical justi�cation for the validity of the Noisy ORmodel by comparing its performance with that of othercanonical models of causal interaction.There have also been further generalisations of theNoisy OR model beyond that of Henrion. D��ez [1]generalises the model to take account of events whichhave more than two values, while Heckerman [3] dis-cusses the use of a Noisy Adder|a model in whichthe possible values of the event variable are the sumsof the possible (integer) values of the variables identi-�ed as its direct cause. Finally, Srinivas [10] completesthe generalisation of the probabilistic Noisy OR, byallowing multi-valued causes, and permitting the com-
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H H H H H Hj �������?Large power drop Temperature increasein KU areaPayload sheddingFigure 1: A fragment of network for diagnosing satellite faultsbination of the e�ect of the causes to be calculated byany discrete function, and Heckerman and Breese [5]go beyond the Noisy OR model altogether by suggest-ing a new, temporal, model for combining disparatecauses.Our recent work on diagnosing faults in satellite equip-ment has borne out Pearl's predictions about the di�-culty of assessing the joint e�ect of a set of causes. Forinstance, in the illustrative fragment of the knowledgebase in Figure 1, the satellite engineers would assessthe e�ects of \Exceptional power request" and \Over-voltage transistor failure" on \Large power drop", byconsidering each of the causes independently, leavingthe problem of combining their estimates of the e�ectsin a suitable way. Thus it was clear that we needed touse some form of canonical model, and the Noisy ORmodel was an obvious candidate.However, the engineers also preferred to express theirfeelings about the strength of the in
uences betweencause and e�ect using possibility measures since theyfelt that the behaviour of possibility measures best �t-ted their understanding of how they themselves solvedthe diagnostic problem. As a result we considered anumber of ways in which the Noisy OR model could beextended into the framework of possibility theory, andour conclusions are the subject of this paper. It is, ofcourse, possible to extend the other generalisations ofthe Noisy OR mentioned above into possibility theory,and this is done in [8]

2 PROBABILISTIC NOISY ORBefore launching into a description of how one maybuild a Noisy OR model in possibility theory, it isworth remembering what the probabilistic Noisy ORmodel is. The basic situation is depicted in Figure 2.We have a binary variableE, whose possible values aree and :e, which is in
uenced by a number of binarycauses Ci, each of which has possible values ci and :ci.We have a series of conditional probabilities Pr(e jci),and from these we build up conditional probabilitiessuch as Pr(e jc1; c2; :::cn) as follows:Pr(e jC) = 1� Yci2c 1� Pr(e jci) (1)where C is a truth assignment to the set of all possiblecauses of E, and c is the set of all causes of E thatare known to be present. Thus, for instance, Pr(e jc1; c2;:c3; . . .:cn) = 1� (1�Pr(e jc1))(1�Pr(e jc2)).This can then be extended to take account of the factthat E may occur in the absence of any of the Ci bytaking:Pr(e jC) = 1� (1� p0) Yci2c�1� Pr(e jci)1� p0 �where p0 is Pr(e j :c1;:c2; . . .:cn) and models thefact that the gate is \leaky" and can give an outputeven when there are no inputs. This is the model aspresented by Henrion [7], and it is the extension of thisto possibility theory that is the subject of this paper.
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� �@ @ @ @ @ @R C C C C CCW ������	C1 C2 E Cn. . .Figure 2: The basic Noisy OR model3 TOWARDS A POSSIBILISTICNOISY ORWe approach the construction of a possibilistic NoisyOR in a stepwise fashion. First, within the frame-work of Zadeh's possibility theory [11], we considerhow a simple noiseless OR model could be built, andthen complicate this model by adding in �rst uncertaincauses and then uncertain in
uences. Then we takeDubois and Prade's possibilistic logic [2], and showhow this may be used, in a number of di�erent ways,to achieve much the same end.3.1 A NOISELESS ORIn Zadeh's theory, for each cause, Ci, we have a condi-tional possibility �(e j ci), and from these we need tobuild a conditional possibility �(e jc1; c2; . . .cn), whichshould behave in such a way that �(e) is 1 as soon asany �(ci) is 1. Now, for an OR model, the possibilityof e conditional on any single cause, �(e jci), must be1, while the possibility of e conditional on the nega-tion of any cause, �(e j:ci), must be zero. Therefore,a suitable complete conditional distribution may beconstructed using:�(e jc) = maxi �(e jci) (2)taking e given c to be the disjunction of e given allthe separate ci, a move which seems intuitive. Fromthese conditional possibilities �(e) may be establishedby using: �(e) = supc�Cmin��(e jc)�(c)� (3)where �(c) � minci2c�(ci) (4)since c is the conjunction of all the causes which areknown to have occurred, and C, as before, is a truthassignment to the set of all possible causes of E. Thisclearly gives the necessary result, yielding zero if thepossibility of every cause �(ci) is zero, and 1 other-wise assuming, as we do, that we are dealing with nor-malised possibility distributions so that either �(ci) or�(:ci) has value 1.

Now, as it stands, this model is not terribly helpful,since all it does is to model a simple, deterministic,disjunctive relationship using possibility values. Itsusefulness is to be found in the fact that it can beeasily extended to cover both the situation in which thecertainty of the causes is not known, and the situationin which the uncertainty in the cause/e�ect in
uenceis acknowledged.3.2 UNCERTAIN CAUSESThe �rst extension of the simple model which we con-sider is that to cover the case in which the causes areuncertain. That is, at the point at which we wish to as-sess the possibility of the event E, we do not have su�-cient information to say which of the causes have de�-nitely occurred. For those causes Cj which we know tohave occurred, because, for example, we have observedthem directly, we know that it is impossible that theytake their negative value :cj, and so the necessity ofthose values, N(:cj) must be zero. This then meansthat the possibilities of those values �(cj) are knownto be 1 by applying the identity �(x) = 1� N(:x).However, for those causes Ck which have not been di-rectly observed, the only information that we have issome general information about their disposition tooccur. This may be suitably modelled by a possibil-ity distribution across their possible values. Since eachcause has only two values, ck and :ck, this distributionis rather restricted (because it is normalised) so thatat most one of �(ck) and �(:ck) can be less than 1.Nevertheless, varying the possibility values of some ofthe ck allows us to represent what knowledge we haveof their relative possibility of occurrence, and thesevalues may be used in (4) to calculate the possibilitiesof sets of causes, and these latter values may then beused in (3).3.3 UNCERTAIN RELATIONSThe fact that a given cause, Ci may not be su�cientto ensure that E happens may simply be modelled byallowing �(e j ci) < 1. Thus, considering Ci alone,the observation of ci, an event which results in �(ci)being set to 1, makes it less than completely possiblethat e occurs. Indeed, the possibility of e only risesto a value that re
ects the degree to which the occur-rence of the cause makes the e�ect possible. Considerthen, the e�ect of combining several uncertain causalrelations in (2). The e�ect is clearly to make the condi-tional possibility of the e�ect given all the causes thatof the strongest causal relation which is exactly whatwe would expect from a disjunctive relation. Whenwe establish all the conditional possibilities and sub-stitute their values into (3) to obtain �(e), the e�ectis to make �(e) as small as the combination of thestrongest link and the most possible set of causes, orto put it another way, it has the possibility value of theleast weak combination of cause and in
uence, and ex-pressed in this way, it is clear that the model has the



right kind of behaviour.Modelling uncertain relations, of course, gives us ameans of including a \leak possibility" if we wish, tomodel the situation in which e can occur even whenit is known that none of the ci have occurred. To dothis we merely give a non-zero value to the conditionalvalue �(e j :c1; . . .:cn) (�(e j ;) if you like) which by(2) would otherwise be zero, and use this in (3).We could, of course, also quantify the model of Fig-ure 2 using necessity measures rather than possibilitymeasures. If this were the case the complete condi-tional distribution would be built using:N(e jc) � maxi N(e jci) (5)and the necessity of e would be established using:N(e) = infc�Cmax�N(e jc)N(c)�where N(c) = minci2cN(ci)Finally, a leak necessity could be introduced by givingN(e j ;) a non-zero value, although the idea of a modelin which the leak is somewhat certain to occur is arather strange one.It should also be noted that (2) and (5) may be re-written as:�(e jc) � 1�maxi �1��(e jci)�and N(e jc) = 1�maxi �1�N(e jci)�respectively by exploiting the duality of possibility andnecessity, to make the connection with (1) quite clear.4 USING POSSIBILISTIC LOGICThe approach based on numerical possibility theorydiscussed in the previous section is, of course, just oneof the ways in which the Noisy OR may be addressedin the possibilistic framework. The other obvious ap-proach is to use possibilistic logic [2], modelling thecause and e�ect as logical propositions, and the in
u-ences between them as implications, and that is theapproach investigated in this section.4.1 THE BASIC APPROACHWhen using a logical approach we need to modify themodel slightly. We could describe the basic noiselessOR model in logical terms with the following state-ments fc1 � e; c2 � e; . . . ; cn � eg, but it is morecorrect to describe it as: c1 � e1c2 � e2...cn � ene1 _ . . ._ en � e
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E EnE2E1 . . .Figure 3: A more general Noisy OR modelmaking clear the fact that E is the result of some com-bination of intermediate events Ei which are caused bythe Ci. Thus the situation we are modelling is that de-picted in Figure 3, which is exactly that used as thebasis of the most general Noisy OR models developedusing probability theory [5, 6, 10].With our logical model, as soon as any cause is knownto be true, the truth of the event in which we areinterested is established. When the both the causesand the implications are less than completely certainthey may be assigned suitable possibility or necessitymeasures, and the resolution principles of possibilisticlogic used to perform deductive reasoning to establishthe possibility or necessity of e.For instance, if the causes and implications are quanti-�ed with necessity measures then we can use the usualpattern of resolution [2] to establish the necessities ofthe ei: N(ei) � min�N(ci);N(ci � ei)�and these may then be used to obtain an upper boundon the necessity of e:N(e) � maxi N(ei) (6)Alternatively, if we have a mixture of possibility andnecessity measures, we can establish the possibility val-ues of the ei using another result from [2]. We �nd thatif the causes have necessity values and the implicationshave possibility values, then:�(ei) � �(ci � ei) if �(ci � ei) + N(ci) > 1= 0 otherwisewhile if the causes have possibility values and the im-plications have necessity values, then:�(ei) � �(ci) if �(ci) + N(ci � ei) > 1= 0 otherwiseThe �(ei) may then be combined to get the possibilityof e: �(e) = maxi �(ei) (7)



Obviously it is also possible to have a situation inwhich we have possibility values for some of the ei,and necessity values for some of the others. In such acase, we can always establish a possibility value for esince every ei with a known non-zero necessity valuemust have a possibility of 1. In addition we may beable to establish a necessity value for e since if thepossibility of e is less than 1, N(e) is zero by de�ni-tion. Thus, if e1 . . . ej have known possibility values,and ej+1 . . .en have known necessity values, then from(6): N(e) � maxi=j+1 to nN(ei)while from (7) �(e) = 1, provided that at least one eihas a non-zero necessity measure, otherwise:�(e) � mini=1 to j�(ei)Finally, it should be noted that the concept of a \leakpossibility" could of course be incorporated into thismodel by introducing a \leaky cause" c0 which has apossibility and necessity of 1 (meaning that it is alwayscertain to occur), and which has a suitably quanti�edimplication relating it to e0.4.2 USING ASSUMPTIONSThere is a further approach to providing a possibilisticNoisy OR model. This is basically a logical model, butmakes explicit use of assumptions of failure. That is,rather than taking the approach of the previous sectionand writing: c1 � e1c2 � e2...cn � ene1 _ . . ._ en � eand then handling the fact that a given ci is not a cer-tain cause of e by attaching a possibility measure tothe implication ci � e, we instead acknowledge thatif ci occurs but does not cause e, it is because thereis some other event �i which is defeating the mecha-nism by which ci causes e. Thus we have some certaininformation: c1 ^ �1 � e1c2 ^ �2 � e2...cn ^ �n � ene1 _ . . ._ en � eand the uncertainty in the model is characterised byattaching a possibility or necessity measure to the de-featers �i.Now, the reason for adopting this kind of model is thatin some cases we may need to perform abduction onthe Noisy OR model, reasoning from observations ofthe event E in order to determine something about

the causes Ci. If we do this, then explicitly includ-ing the defeaters allows us to establish the reasons forthe occurrence or otherwise of E in terms of the oc-currence of the Ci and whether or not they have beendefeated. When we are reasoning abductively we alsoneed to explicitly take account of the causes of :e|those sets of conditions under which the event doesnot take place|since we will often only have observa-tions of the form \E does not occur". In order to usethis kind of information, we need to build a model ofthe causes of :e. This will clearly be constrained byinformation about the causes of e.For instance, consider the situation in which E hasjust two causes, C1 and C2, so that the model for theoccurrence of e is: c1 ^ �1 � e1c2 ^ �2 � e2e1 _ e2 � eAssuming that these are the only possible causes of E(so that there is no \leak" possibility), we have:c1 ^ �1 _ c2 ^ �2 � ewhich may be negated and manipulated to give::e � (:c1 ^:c2) _ (:c2 ^:�1)_ (:c2 ^ :�1) _ (:�1 ^ :�2)This expression immediately gives four implicationswhich involve :e, and are thus suitable for abduc-tive reasoning from the observation that E has notoccurred. These are::c1 ^ :c2 � :e;:c2 ^ :�1 � :e:c2 ^ :�1 � :e:�1 ^ :�2 � :eOf these only :�1^:�2 � :e does not have an obviousinterpretation and this may be transformed [8] into:c1 ^ c2 ^ :�1 ^ :�2 � :eto complete the logical side of our model. The possi-bility and necessity measures are then simple to add.We started o� with the causes being certain and eachdefeater having a possibility or a necessity measure.From these values we can easily determine the possi-bilities and necessities of the negations of the defeatersfor the new rules, and from these the measures to beattached to the rules that involve them. The new rulescan then be used with the modus tollens forms of pos-sibilistic logic [2] to establish the possibility and ne-cessity of the causes ci given information about theevents ei.If both events and implications have necessity values,then the necessity values of the causes may be estab-lished: N (ci) � min�N (ei); N (ci � ei)�



If the events have necessity values and the implica-tions have possibility values, then we can establish thepossibility values of the causes:�(ci) � �(ci � ei) if �(ci � ei) + N(ei) > 1= 0 otherwiseas we can if the events have possibility values and theimplications have necessity values:�(ci) � �(ci) if �(ci) + N(ci � ei) > 1= 0 otherwise5 DISCUSSIONThis paper has examined a number of di�erent ap-proaches to building canonical Noisy OR models inthe framework of possibility theory|there are doubt-less others since we have not tried to be exhaustive(nor have we space to be)|concentrating upon theuse of the two main approaches to possibilistic rea-soning, Zadeh's theory of possibility and Dubois andPrade's possibilistic logic. In both approaches we be-gan by looking at how a noiseless OR model could bebuilt, and then iteratively complicated the model byadding in uncertain causes and uncertain in
uencesbetween cause and e�ect, building up to a model thatis su�ciently rich to capture the detail present in mostreal-world situations.Whilst there are strong similarities between the mod-els developed using the di�erent approaches, there areslight di�erences of emphasis. The model built usingZadeh's theory is intended as a means of constructingfull conditional possibility and necessity distributionsfrom a series of partial distributions in order to sim-plify the building of a possibilistic model. Once thismodel has been built, the theory tells us how to inferthe possibility and/or necessity of the event given thecauses. In this respect the intention of model is verylike the probabilistic Noisy OR. On the other hand,when the model is developed in possibilistic logic, thereare two main points of focus. The �rst is on how tomake the correct combination of the e�ects of eachcause on its own, and the second is how to build acomplete model (in the sense that it will support ab-duction) from a partial model.Finally, it should be noted that the possibilistic NoisyOR model di�ers in one important way from the prob-abilistic Noisy OR model. As stated in the introduc-tion, the development of the probabilistic Noisy ORmodel was predicated on the idea of causal indepen-dence. This assumption is not necessary for the devel-opment of the possibilistic Noisy OR model, so that itis possible to model situations in which there is somecorrelation between the causes. This may be partic-ularly useful when considering how to model the de-featers mentioned in the abduction model, since thesemay be correlated even when the causes are not.
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