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Abstract

The probabilistic Noisy OR model has been
widely used as a means of reducing the
amount of probabilistic information that is
needed to specify the interaction between
groups of variables. Motivated by our work
on the diagnosis of faults in satellite sub-
systems, which required a similar synthesis
of partial possibilistic information on interac-
tions, we consider a number of ways of gener-
alising the probabilistic Noisy OR model to
possibility theory.

1 INTRODUCTION

One of the major problems in building a probabilistic
network model of a domain is that of providing a full
set of conditional probabilities Pr(x |u) relating each
possible value z of each variable X to every set of pos-
sible values u of the set of variables U which have
been identified as the direct causes of X. Thus for
a variable D, with possible values {d1,ds, ds}, which
has direct causes A, B, and C', which have possible
values {ay,as,as}, {b1,b2,b3}, and {c1, ¢, c3} respec-
tively, it is necessary to provide estimates of Pr(d; |
ay, bl, Cl), PI’(dl | ay, bl, Cz), N PI’(dg | as, b3, 63). This
is no inconsiderable task, and, as Pearl [9] points out,
it is complicated by the fact that the various causes of-
ten point to disparate frames of knowledge whose only
connection is that they have a common consequence.
As a result 1t 1s useful to study canonical models of
interaction between multiple causes which provide a
means of computing the necessary set of conditional
probabilities from those in terms of a single cause.
In other words these models provide a means of es-
timating Pr(dy | a1,b1,¢1),Pr(dy | a1, b1, ¢2), ... Pr(ds|
as, bs, ¢3) from the more easily accessible sets of values
PI’(dl | Cll), PI’(dl | Clz), N PI’(dg | Clg), PI’(dl | bl), PI’(dl |
bz), N PI’(dg | bg), and PI’(dl |Cl), PI’(dl |Cz), N PI’(dg |

63).

The first such model to be suggested was the Noisy
OR model (or Noisy OR-gate to give it the title first

conveyed upon it) [9] which took as its basis a form
of disjunctive interaction in which any member of a
set of causes makes a particular event likely to occur,
and in which this likelihood is not diminished by the
occurrence of several causes simultaneously. A suit-
able example of this kind of interaction is if the event
in question is that of a patient suffering from a fever,
and the set of causes is a set of fever-inducing diseases.
If the patient suffers from one of the diseases then she
is likely to have a fever, and if she is suffering from
several diseases at the same time then she is yet more
likely to have a fever. Pearl shows that with two sim-
ple assumptions (that the event does not occur unless
there is a cause, and the mechanisms that prevent a
cause making the event occur are independent) dis-
junctive interactions can be modelled quite elegantly.
The simple model he provided, which only allows for
binary valued causes and effect, has subsequently been
adapted and generalised by a number of authors.

Henrion [7] extended the model to cover the case in
which the event in question may occur even when all
the direct causes identified by the model are absent
by including a “leak” probability, showing how this
model was useful in building Bayesian networks that
solve real world problems. In addition, Heckerman
[4] showed that models built using the leaky OR-gate
could be solved tractably. In particular, he developed
an algorithm that could solve such models and which
had a time complexity that was exponential in the
number of causes that actually occurred. In collab-
oration with Shwe [6], the same author has provided
empirical justification for the validity of the Noisy OR
model by comparing its performance with that of other
canonical models of causal interaction.

There have also been further generalisations of the
Noisy OR model beyond that of Henrion. Diez [1]
generalises the model to take account of events which
have more than two values, while Heckerman [3] dis-
cusses the use of a Noisy Adder—a model in which
the possible values of the event variable are the sums
of the possible (integer) values of the variables identi-
fied as its direct cause. Finally, Srinivas [10] completes
the generalisation of the probabilistic Noisy OR, by
allowing multi-valued causes, and permitting the com-
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Figure 1: A fragment of network for diagnosing satellite faults

bination of the effect of the causes to be calculated by
any discrete function, and Heckerman and Breese [5]
go beyond the Noisy OR model altogether by suggest-
ing a new, temporal, model for combining disparate
causes.

Our recent work on diagnosing faults in satellite equip-
ment has borne out Pearl’s predictions about the diffi-
culty of assessing the joint effect of a set of causes. For
instance, in the illustrative fragment of the knowledge
base in Figure 1, the satellite engineers would assess
the effects of “Exceptional power request” and “Over-
voltage transistor failure” on “Large power drop”, by
considering each of the causes independently, leaving
the problem of combining their estimates of the effects
in a suitable way. Thus it was clear that we needed to
use some form of canonical model, and the Noisy OR
model was an obvious candidate.

However, the engineers also preferred to express their
feelings about the strength of the influences between
cause and effect using possibility measures since they
felt that the behaviour of possibility measures best fit-
ted their understanding of how they themselves solved
the diagnostic problem. As a result we considered a
number of ways in which the Noisy OR model could be
extended into the framework of possibility theory, and
our conclusions are the subject of this paper. It is, of
course, possible to extend the other generalisations of
the Noisy OR mentioned above into possibility theory,
and this is done in [8§]

2 PROBABILISTIC NOISY OR

Before launching into a description of how one may
build a Noisy OR model in possibility theory, it is
worth remembering what the probabilistic Noisy OR
model is. The basic situation is depicted in Figure 2.
We have a binary variable £/, whose possible values are
e and —e, which is influenced by a number of binary
causes Cf, each of which has possible values ¢; and —¢;.
We have a series of conditional probabilities Pr(e|¢;),
and from these we build up conditional probabilities
such as Pr(e|ecy,ca, ...cp) as follows:

Pr(e|C)=1— ] 1-Pr(ele:) (1)
c,€EC

where C is a truth assignment to the set of all possible
causes of F/, and ¢ 1s the set of all causes of F that
are known to be present. Thus, for instance, Pr(e |
€1,¢2,7¢3,...7¢n) = 1 = (1 =Pr(e]er))(1 — Pr(e]c2)).
This can then be extended to take account of the fact
that £ may occur in the absence of any of the C; by

taking:
1—Pr(e|c
Pr(c|C)=1-(1-po) [] (%)
cec —Po

where pg is Pr(e | ey, —ea, ... —e,) and models the
fact that the gate is “leaky” and can give an output
even when there are no inputs. This is the model as
presented by Henrion [7], and it is the extension of this
to possibility theory that is the subject of this paper.
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Figure 2: The basic Noisy OR model

3 TOWARDS A POSSIBILISTIC
NOISY OR

We approach the construction of a possibilistic Noisy
OR in a stepwise fashion. First, within the frame-
work of Zadeh’s possibility theory [11], we consider
how a simple noiseless OR model could be built, and
then complicate this model by adding in first uncertain
causes and then uncertain influences. Then we take
Dubois and Prade’s possibilistic logic [2], and show
how this may be used, in a number of different ways,
to achieve much the same end.

3.1 A NOISELESS OR

In Zadeh’s theory, for each cause, C;, we have a condi-
tional possibility (e |¢;), and from these we need to
build a conditional possibility TI(e |y, ca, ... ¢y ), which
should behave in such a way that TI(e) is 1 as soon as
any II(¢;) is 1. Now, for an OR model, the possibility
of e conditional on any single cause, II(e]|¢;), must be
1, while the possibility of e conditional on the nega-
tion of any cause, II(e|—¢;), must be zero. Therefore,
a suitable complete conditional distribution may be
constructed using:

Me|c) = max M(e|e) (2)

taking e given ¢ to be the disjunction of e given all
the separate ¢;, a move which seems intuitive. From
these conditional possibilities TI(e¢) may be established
by using:

M(e) = su[()j min (H(e|c)H(c)) (3)
where
I(e) < minfl(c) ()

since ¢ 1s the conjunction of all the causes which are
known to have occurred, and C, as before, 1s a truth
assignment to the set of all possible causes of E. This
clearly gives the necessary result, yielding zero if the
possibility of every cause TI(¢;) is zero, and 1 other-
wise assuming, as we do, that we are dealing with nor-
malised possibility distributions so that either TI(¢;) or
M(—¢;) has value 1.

Now, as it stands, this model 1s not terribly helpful,
since all it does is to model a simple, deterministic,
disjunctive relationship using possibility values. Its
usefulness is to be found in the fact that it can be
easily extended to cover both the situation in which the
certainty of the causes is not known, and the situation
in which the uncertainty in the cause/effect influence
is acknowledged.

3.2 UNCERTAIN CAUSES

The first extension of the simple model which we con-
sider is that to cover the case in which the causes are
uncertain. That is, at the point at which we wish to as-
sess the possibility of the event E, we do not have suffi-
cient information to say which of the causes have defi-
nitely occurred. For those causes C; which we know to
have occurred, because, for example, we have observed
them directly, we know that it is impossible that they
take their negative value —¢;, and so the necessity of
those values, N(—¢;) must be zero. This then means
that the possibilities of those values II(¢;) are known
to be 1 by applying the identity T(z) = 1 — N(—z).

However, for those causes C} which have not been di-
rectly observed, the only information that we have is
some general information about their disposition to
occur. This may be suitably modelled by a possibil-
ity distribution across their possible values. Since each
cause has only two values, ¢j, and —¢y, this distribution
is rather restricted (because it is normalised) so that
at most one of Tl(c) and TI(—ey) can be less than 1.
Nevertheless, varying the possibility values of some of
the ¢; allows us to represent what knowledge we have
of their relative possibility of occurrence, and these
values may be used in (4) to calculate the possibilities
of sets of causes, and these latter values may then be

used in (3).

3.3 UNCERTAIN RELATIONS

The fact that a given cause, C; may not be sufficient
to ensure that £ happens may simply be modelled by
allowing TI(e | ¢;) < 1. Thus, considering C; alone,
the observation of ¢;, an event which results in TI(¢;)
being set to 1, makes it less than completely possible
that e occurs. Indeed, the possibility of e only rises
to a value that reflects the degree to which the occur-
rence of the cause makes the effect possible. Consider
then, the effect of combining several uncertain causal
relations in (2). The effect is clearly to make the condi-
tional possibility of the effect given all the causes that
of the strongest causal relation which is exactly what
we would expect from a disjunctive relation. When
we establish all the conditional possibilities and sub-
stitute their values into (3) to obtain TI(e), the effect
is to make TI(e) as small as the combination of the
strongest link and the most possible set of causes,; or
to put it another way, it has the possibility value of the
least weak combination of cause and influence, and ex-
pressed in this way, it is clear that the model has the



right kind of behaviour.

Modelling uncertain relations, of course, gives us a
means of including a “leak possibility” if we wish, to
model the situation in which e can occur even when
1t 1s known that none of the ¢; have occurred. To do
this we merely give a non-zero value to the conditional
value I(e|=ey,...me,) (H(e|0) if you like) which by
(2) would otherwise be zero, and use this in (3).

We could, of course, also quantify the model of Fig-
ure 2 using necessity measures rather than possibility
measures. If this were the case the complete condi-
tional distribution would be built using:

N(ele) > max N(e|c:) (5)
and the necessity of e would be established using:

N(e) = ciélg max (N(e | c)N(c))

where
N(c) = glené N(¢)

Finally, a leak necessity could be introduced by giving
N(e|®) a non-zero value, although the idea of a model
in which the leak is somewhat certain to occur is a
rather strange one.

It should also be noted that (2) and (5) may be re-
written as:

I(e|c) > 1—miax(1 - H(elcz'))

and

N(e|c) =1 — max (1 —N(6|Ci))

respectively by exploiting the duality of possibility and
necessity, to make the connection with (1) quite clear.

4 USING POSSIBILISTIC LOGIC

The approach based on numerical possibility theory
discussed in the previous section is, of course, just one
of the ways in which the Noisy OR may be addressed
in the possibilistic framework. The other obvious ap-
proach is to use possibilistic logic [2], modelling the
cause and effect as logical propositions, and the influ-
ences between them as implications, and that is the
approach investigated in this section.

4.1 THE BASIC APPROACH

When using a logical approach we need to modify the
model slightly. We could describe the basic noiseless
OR model in logical terms with the following state-
ments {¢; D e,en D oe,...,¢, D e}, but it is more
correct to describe it as:

c1T Dep
co D es

Cn D) €n

e1V...Vey = e

C 1 Cz Cn

E1 E2 En

E

Figure 3: A more general Noisy OR model

making clear the fact that  is the result of some com-
bination of intermediate events F; which are caused by
the C;. Thus the situation we are modelling is that de-
picted in Figure 3, which is exactly that used as the
basis of the most general Noisy OR models developed
using probability theory [5, 6, 10].

With our logical model, as soon as any cause is known
to be true, the truth of the event in which we are
interested is established. When the both the causes
and the implications are less than completely certain
they may be assigned suitable possibility or necessity
measures, and the resolution principles of possibilistic
logic used to perform deductive reasoning to establish
the possibility or necessity of e.

For instance, if the causes and implications are quanti-
fied with necessity measures then we can use the usual
pattern of resolution [2] to establish the necessities of
the e;:

N(e;) > min (N(ci), N(¢; D ei))

and these may then be used to obtain an upper bound
on the necessity of e:

N(e) > max N(e;) (6)

Alternatively, if we have a mixture of possibility and
necessity measures, we can establish the possibility val-
ues of the ¢; using another result from [2]. We find that
if the causes have necessity values and the implications
have possibility values, then:

M(e;) > (e Dey)if M(e; Deg)+ Ney) > 1
= 0 otherwise

while if the causes have possibility values and the im-
plications have necessity values, then:

M(e;) > T(e;) if M)+ N(e; Deg) > 1
= 0 otherwise

The TI(e;) may then be combined to get the possibility
of e:

M(e) = max M(e;) (7)



Obviously it is also possible to have a situation in
which we have possibility values for some of the e;,
and necessity values for some of the others. In such a
case, we can always establish a possibility value for e
since every e; with a known non-zero necessity value
must have a possibility of 1. In addition we may be
able to establish a necessity value for e since if the
possibility of e is less than 1, N(e) is zero by defini-
tion. Thus, if e;...¢e; have known possibility values,
and e;41 . ..e, have known necessity values, then from
max

(6):
N(@) T i=j+1 ton

while from (7) T(e) = 1, provided that at least one e;
has a non-zero necessity measure, otherwise:
(e) < min T(e:)
i=1 to j

Finally, it should be noted that the concept of a “leak
possibility” could of course be incorporated into this
model by introducing a “leaky cause” ¢y which has a
possibility and necessity of 1 (meaning that it is always
certain to occur), and which has a suitably quantified
implication relating it to eg.

\Y

N(e:)

4.2 USING ASSUMPTIONS

There is a further approach to providing a possibilistic
Noisy OR model. This is basically a logical model, but
makes explicit use of assumptions of failure. That 1s,
rather than taking the approach of the previous section
and writing:

c1T Dep

co D es

Cn D) €n

e1V...Vey = e

and then handling the fact that a given ¢; is not a cer-
tain cause of e by attaching a possibility measure to
the implication ¢; D e, we instead acknowledge that
if ¢; occurs but does not cause e, it 18 because there
is some other event é; which is defeating the mecha-
nism by which ¢; causes e. Thus we have some certain
information:
c1Nb D e

coNbdy D e

ca N6y D ey
e1V...Ve, = e

and the uncertainty in the model is characterised by
attaching a possibility or necessity measure to the de-
featers 6;.

Now, the reason for adopting this kind of model is that
in some cases we may need to perform abduction on
the Noisy OR model, reasoning from observations of
the event E in order to determine something about

the causes C;. If we do this, then explicitly includ-
ing the defeaters allows us to establish the reasons for
the occurrence or otherwise of ¥ in terms of the oc-
currence of the C; and whether or not they have been
defeated. When we are reasoning abductively we also
need to explicitly take account of the causes of —e—
those sets of conditions under which the event does
not take place—since we will often only have observa-
tions of the form “E does not occur”. In order to use
this kind of information, we need to build a model of
the causes of —e. This will clearly be constrained by
information about the causes of e.

For instance, consider the situation in which E has
just two causes, C7 and C5, so that the model for the
occurrence of e is:

et ANd D e
co Ny D e
egVe, = e

Assuming that these are the only possible causes of E
(so that there is no “leak” possibility), we have:

Cl/\61V62/\62 =€
which may be negated and manipulated to give:

("Cl A _|Cz) vV ("Cz A _|61)
vV ("Cz A —|61) vV (—|(51 A —|(52)

e =

This expression immediately gives four implications
which involve —e, and are thus suitable for abduc-
tive reasoning from the observation that E has not
occurred. These are:

—C1 A —1C9 D
g Amd D —e
—1C9 A —|61 D
=8 A—by D —e

Of these only —8; A—83 D —e does not have an obvious
interpretation and this may be transformed [8] into:

1 Aeg A=y A —dy D —e

to complete the logical side of our model. The possi-
bility and necessity measures are then simple to add.
We started off with the causes being certain and each
defeater having a possibility or a necessity measure.
From these values we can easily determine the possi-
bilities and necessities of the negations of the defeaters
for the new rules, and from these the measures to be
attached to the rules that involve them. The new rules
can then be used with the modus tollens forms of pos-
sibilistic logic [2] to establish the possibility and ne-
cessity of the causes ¢; given information about the
events e;.

If both events and implications have necessity values,
then the necessity values of the causes may be estab-

lished:

N(¢;) > min (N(ei), N(ei D 6i))



If the events have necessity values and the implica-
tions have possibility values, then we can establish the
possibility values of the causes:

H(Ci) > H(Ci D 62') if H(Ci D 62') + N(ei) > 1

= 0 otherwise
as we can 1f the events have possibility values and the
implications have necessity values:

H(Ci) if H(Ci) + N(CZ' D 62') >1

(e;) >
= 0 otherwise

5 DISCUSSION

This paper has examined a number of different ap-
proaches to building canonical Noisy OR models in
the framework of possibility theory—there are doubt-
less others since we have not tried to be exhaustive
(nor have we space to be)—concentrating upon the
use of the two main approaches to possibilistic rea-
soning, Zadeh’s theory of possibility and Dubois and
Prade’s possibilistic logic. In both approaches we be-
gan by looking at how a noiseless OR model could be
built, and then iteratively complicated the model by
adding in uncertain causes and uncertain influences
between cause and effect, building up to a model that
is sufficiently rich to capture the detail present in most
real-world situations.

Whilst there are strong similarities between the mod-
els developed using the different approaches, there are
slight differences of emphasis. The model built using
Zadeh’s theory is intended as a means of constructing
full conditional possibility and necessity distributions
from a series of partial distributions in order to sim-
plify the building of a possibilistic model. Once this
model has been built, the theory tells us how to infer
the possibility and/or necessity of the event given the
causes. In this respect the intention of model is very
like the probabilistic Noisy OR. On the other hand,
when the model is developed in possibilistic logic, there
are two main points of focus. The first is on how to
make the correct combination of the effects of each
cause on its own, and the second 1s how to build a
complete model (in the sense that it will support ab-
duction) from a partial model.

Finally, it should be noted that the possibilistic Noisy
OR model differs in one important way from the prob-
abilistic Noisy OR model. As stated in the introduc-
tion, the development of the probabilistic Noisy OR
model was predicated on the idea of causal indepen-
dence. This assumption 1s not necessary for the devel-
opment of the possibilistic Noisy OR model, so that it
1s possible to model situations in which there 1s some
correlation between the causes. This may be partic-
ularly useful when considering how to model the de-
featers mentioned in the abduction model, since these
may be correlated even when the causes are not.
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