
Representational issues in modelling genetic map dataSimon ParsonsDepartment of Electronic EngineeringQueen Mary and West�eld CollegeMile End RoadLondon E1 4NSS.Parsons@qmw.ac.ukAbstractMuch of the large amount of data of in-consistent, incomplete and uncertain infor-mation produced by the Human GenomeProject is information about genetic maps.The increasing use of computers to storeand interpret genetic map data has stim-ulated research into the kinds of represen-tation and automated reasoning that maybe applied to typically imperfect genetic in-formation. This paper discusses the repre-sentation of a small amount of genetic in-formation using a system of argumentationand shows how this formalismmay be usedto handle the di�erent defects in the data.1 INTRODUCTIONAround the world a huge scienti�c e�ort is being ex-pended in the Human Genome Project. The rathergrandiose aim of this massive collaboration is, broadlyspeaking, to elicit all the information encoded in hu-man DNA by the end of the century. This is clearly avast undertaking, and will result in the production ofa huge amount of data|estimates are around 3� 109bytes for the whole genome, with the necessary exper-imental results accounting for many times this �gure.With such huge volumes of information, the use ofdatabases for storing data, and of computer systems toprocess the data, is essential [4, 14]. However, the situ-ation is complicated by the fact that much of the datais highly imperfect. Therefore, in handling this kindof data, unless one wants to ignore these imperfectionscompletely [2], it seems sensible to consider using someof the techniques developed to handle imperfect infor-mation, especially those used in arti�cial intelligencesince they lend themselves directly to computer-basedimplementation.One particular area of interest is the representationof information about genetic maps. Genetic maps areone of the ways of dealing with DNA data, and theyare especially useful since they deal with DNA at quite

a high level of abstraction. The functional unit of alength of DNA is what is known as a gene, a pieceof DNA that contains information about how to builda protein. A genetic map is an ordered list of loci,which are the locations of genes, so that it identi�esthe active pieces of a length of DNA, and speci�es theorder in which they lie on the length of DNA. Now,representing an ordered list of loci does not sound toodi�cult, but this does not take account of the labora-tory data upon which the maps are based [12]. Thesedata tend to take the form of binary relations betweenloci, typically stating that two loci are close to one an-other, or that one locus precedes another. From thisone has to infer the order and relative location of theloci [13, 18], always bearing in mind the fact that thedata may be inaccurate and that di�erent laboratoriesmay disagree on the results.2 THE REPRESENTATIONALPROBLEMConsidering the bio-informatics literature, it is possi-ble to identify the major representational issues. Ac-cording to Guidi and Roderick [12], it is essential tobe able to represent both ambiguous data, where re-sults from two di�erent laboratories completely con-tradict each other, and uncertain data, where experi-mental error makes it clear that certain results cannotbe guaranteed to be correct. Now, no system in use bymolecular biologists can handle this kind of informa-tion, and certainly cannot support the kind of reason-ing required with this kind of information, which is tomake all the inferences of all the di�erent maps thatthe data will support, to identify the di�erent pieces ofinformation that support the di�erent maps, to iden-tify the contradictions between the maps that may bederived, and, when clarifying information arrives, toallow the contradictions to be resolved.Similar requirements are recorded by Harley and Bon-ner [13], who apply logic programming to handle ge-netic map data. However, rather than explicitly deal-ing with the problems of ambiguity and noisy data,Harley and Bonner instead concentrate on the repre-



Ax � `ACR (St; l; Sg) (l : St : Sg) 2 �^-E1 � `ACR (St ^ St0; G; Sg)� `ACR (St;G; Sg)^-E2 � `ACR (St ^ St0; G; Sg)� `ACR (St0; G; Sg) ^-I � `ACR (St;G; Sg) � `ACR (St0; G0; Sg0)� `ACR (St ^ St0; G[G0; comb(Sg; Sg0)) -E � `ACR (St0  St;G; Sg) � `ACR (St;G0; Sg0)� `ACR (St0; G[G0; comb(Sg; Sg0)) -I � [ (St; ;; Sg) `ACR (St0; G; Sg0)� `ACR (St0  St;G; comb(Sg; Sg0))Figure 1: Argumentation Consequence Relationsentation of heuristic rules for building maps, rules ofthe form:IF two STS probes hit a common YACTHEN the two probes are close togetherwhich are true in general, but may lead to false conclu-sions which may later need to be withdrawn. Overall,then, it seems that to build genetic maps we need asystem capable of representing and reasoning with un-certain, default, and inconsistent information in sucha way that the support for each conclusion is identi-�ed explicitly. This kind of reasoning is exactly thatprovided by argumentation [16], and the way in whichargumentation may be used to solve the problem is thesubject of this paper. Before we discuss the system inthe next section we will introduce a simple examplewhich will be used through out the paper to illustratethe issues at stake.We are interested in the order of four loci. Experi-ments from one laboratory tell us that locus a is closeto locus b, locus x is close to locus y, and a precedes bin the sense that it is closer to a given end of the DNAthan b. As with all experimentally derived informa-tion, this data is uncertain to some degree. There isalso data to support both x preceding y and y preced-ing x (such contradictory information is not uncom-mon). Experiments in another laboratory, which onpast experience is less reliable than the �rst, tell usthat a is closer to the top of the chromosome than x,while data from a third laboratory, which is even lessreliable, indicates that x precedes b. We can representall this information using the relations precedes(X, Y)and close(X, Y).In addition we have some very simple rules for inferringnew relations between loci, and for building orderedtuples of four loci, which are rough genetic maps. The�rst rule expresses the transitivity of the precedes rela-tion, while the second comes from the fact that knownpairs of loci are usually some distance apart so that,for instance, a and b will be some distance from x andy meaning that if a precedes b and a precedes x, b alsoprecedes x. This, then, is a default rule for coping withincomplete information about the order of two pairs ofloci. The third rule is that three precedes relations re-ferring to four di�erent loci are su�cient to build asimple genetic map. Like the transitivity rule, this iscompletely certain.

Thus our example data, like real genetic data, includesinformation that is both uncertain and contradictory,as well as including default rules.3 A SYSTEM OFARGUMENTATIONIn classical logic, an argument is a sequence of infer-ences leading to a conclusion. If the argument is cor-rect, then the conclusion is true. Consider the simpledeductive database [5] �1 which expresses some of theinformation in the example as if it were completelycertain (the rule is the transitivity rule).f1 : precedes(a; x): �1f2 : precedes(x; b):r1 : precedes(X;Z) precedes(X;Y )^ precedes(Y;Z):From this database the argument �1 ` precedes(a; b)is correct because precedes(a; b) follows from �1 giventhe usual logical axioms and rules of inference. Thusa correct argument simply yields a conclusion whichin this case could be paraphrased \precedes(a; b) istrue in the context of f1,f2 and r1". In our systemof argumentation this traditional form of reasoning isextended to allow arguments to indicate support anddoubt in propositions as well as proving them, by as-signing labels to arguments which denote the con�-dence that the arguments warrant in their conclusions.This formof argumentationmay be summarised by thefollowing schema:database `ACR (Sentence;Grounds; Sign)where `ACR is a consequence relation for a logic ofargumentation, which sanctions inferences made usingthe rules in Figure 1 (which are adapted from thosein [10] to �t our deductive database context), alongwith the identity :St � ?  St (? is logical con-tradiction). For a detailed exposition of these rulessee [16]|there is no room here to go into the detailedjusti�cation for them.Informally, Grounds (G) are the facts and rules usedto infer Sentence (St), and Sign (Sg) is a number or asymbol drawn from a dictionary of possible numbersor symbols which indicate the con�dence warranted



in the conclusion. The use of a number of di�erentdictionaries of signs is one of the marks of general-ity of argumentation since most formalisms for han-dling imperfect data are restricted to a single dictio-nary. The rules in Figure 1 are independent of thedictionary used|di�erent dictionaries imply di�erentcombination functions comb for combining signs dur-ing the construction of arguments. Typically we willhave a number of di�erent arguments for a given sen-tence, and so we atten these to give a single measurewhich may or may not be expressed using the samedictionary.What this system of argumentation gives us is a gen-eral framework for expressing logical facts which canincorporate di�erent models of uncertainty by varyingthe signs and their associated combination and at-tening functions. As we shall see in the next section,the scheme also o�ers a means of representing defaultinformation and of handling inconsistent information.4 USING ARGUMENTATION TOREPRESENT IMPERFECT DATAIn this section we work through the representation ofthe example introduced above, showing how argumen-tation can be used to express the various types of im-perfection that are present in the genetic information.4.1 HANDLING UNCERTAINTYThe most straightforward problem from a represen-tational point of view is that of handling the uncer-tainty associated with the information because it isexperimental data of varying quality. This may sim-ply be handled by giving each clause in the databasea numerical sign between 0 and 1, inclusive, which in-dicates the degree of certainty that one has in the factrepresented by the clause. Thus, provided that we be-lieve that even the third, and least trustworthy, of thelaboratories, produces reasonably accurate results, asuitable distribution of values would be those in �2.f1 : close(a; b) : (0:9): �2f2 : close(x;y) : (0:9):f3 : precedes(a; b) : (0:9):f4 : precedes(x; y) : (0:9):f5 : precedes(y; x) : (0:9):f6 : precedes(a; x) : (0:8):f7 : precedes(x; b) : (0:7):r1 : precedes(X;Z) precedes(X;Y )^ precedes(Y;Z) : (1):What may be derived depends upon the interpretationof the numbers, since this a�ects the choice of com-bination and attening function. For instance, if wewant to make use of a probabilistic method to quantifyuncertainty we have several di�erent ways in which wecan compute the probability of a proposition from theprobabilities of the steps in the argument. We may use

a local scheme such as that proposed by Ng and Sub-rahmanian [19] which requires the use of an intervalprobability because of the possible dependencies be-tween the steps. Alternatively, Krause et al. [16] pro-vide a global approach which takes the structure of thearguments into account. In this approach the proba-bility of an argument for a proposition is the product ofthe probabilities of all the steps in the argument, whileattening arguments consists of summing the proba-bilities of the di�erent arguments and then subtractingthe product of the probabilities of the steps in all thearguments.Alternatively, following Dubois et al. [6] we may alsouse possibility theory. Here the signs in a databaseare the lower bounds on the necessity measures of thepropositions, the combination operation is minimum,and the attening operation is maximum. This, ofcourse, e�ectively ignores the interdependence of thesteps in the arguments, but has signi�cant advantagesin e�ciency of computation. If we take the signs in�2 to be lower bounds on necessity measures we canderive, for instance:�2 `ACR (precedes(a; y); (f4; f6; r1); (0:8)):Since there is only one argument that relates toprecedes(a; y), there is no need to invoke the atteningfunction.4.2 HANDLING DEFAULT RULESUsing signs that are lower bounded necessity measuresalso gives us a simple way of handling default infor-mation. As several people have pointed out, for ex-ample [1, 9], one can assign a necessity measure of1 to all facts and rules that are known to be true,and then attach a lesser measure to default rules. Be-cause of the minimum operator used to combine signswhen rules are applied, facts that are deduced fromtrue rules will always have a larger necessity measurethan those deduced from default rules so that whencomparing two hypotheses, the one deduced from trueinformation will be preferred to that deduced from de-fault information. Using this method, we could obtaindatabase �3 where r2 is the default rule discussed inthe example, r1 is as above, and f1{f3 are some newfacts about other loci that are known to be true:f1 : close(d; c) : (1): �3f2 : precedes(d;e) : (1):f3 : precedes(f; c) : (1):r1 : precedes(X;Z) precedes(X;Y )^ precedes(Y;Z) : (1):r2 : precedes(Y;Z) close(X;Y )^ precedes(X;Z) : (0:85):This allows us to obtain results such as:�3 `ACR (precedes(c; e); (f2; f1; r2); (0:85)):



which is a reasonable conclusion from the data thatwe have. However, were we to learn that e certainlyprecedes f , so that the fact \f4 : precedes(e; f ) : (1)"was added to the database, we would be able to infer:�3 `ACR (precedes(e; c); (f3; f4; r1); (1)):thus overturning the original conclusion and demon-strating that the database and the default rule behavein the desired non-monotonic fashion, with certain in-formation outweighing default information1. The sys-tem can be further complicated by allowing for dif-ferent necessity measures to be assigned to di�erentdefault rules, allowing their di�ering certainties to beexpressed.There is, however, a problem when using the approachsuggested by Benferhat [1] and Froidevaux and Men-gin [9] in combination with that outlined above forhandling uncertain information. Once the facts in thedatabase start to be quanti�ed with necessity measuresother than 1, the comparative order expressed by thedefault rules and the uncertain information becomesimportant. Thus if we enter an uncertain fact into �3with a measure greater than 0.85, as the data from the�rst laboratory was in �2, it means we consider thisto be more certain than inferences drawn using thedefault rule, showing that a good deal of care mustbe taken when assigning necessity measures. To pro-vide a general solution to the problem of ensuring theright interaction between defaults and uncertain infor-mation it can be argued that default rules, by de�ni-tion, should only be outweighed by information thatis known to be true, so they should be quanti�ed by avalue that is only outweighed by a necessity measureof 1. This can be achieved by the use of the symbolicvalue dt, inspired by Ginsberg's [11] \true by default"value, which is in�nitesimally close to 1. Thus:min(value; dt) = � dt if value = 1value otherwisemax(value; dt) = �1 if value = 1dt otherwiseThis approach could clearly be extended to cover pref-erences over sets of default rules by using an orderedset of symbolic values [8, 11]. Using dt we can extend�3 to be �4 as below, from which we can infer:�4 `ACR (precedes(b; x); (f1; f6; r2); (0:8)):�4 `ACR (precedes(y; b); (f2; f7; r2); (0:7)):1It should be noted that the non-monotonicity is due tothe attening function. When new information is added,the same arguments as before can always be made, how-ever, when these arguments are attened, the overall con-clusion may change. In this case, there is still an argu-ment for the previous conclusion precedes(c; e), it is justweaker then the argument for precedes(e; c). Thus argu-mentation is monotonic in arguments but non-monotonicin conclusions.

f1 : close(a; b) : (0:9): �4f2 : close(x;y) : (0:9):f3 : precedes(a; b) : (0:9):f4 : precedes(x;y) : (0:9):f5 : precedes(y; x) : (0:9):f6 : precedes(a; x) : (0:8):f7 : precedes(x; b) : (0:7):r1 : precedes(X;Z) precedes(X;Y )^ precedes(Y;Z) : (1):r2 : precedes(Y;Z) close(X;Y )^ precedes(X;Z) : (dt):indicating that before(b, x) is slightly more certain tobe true than before(y, b). Now, if we add some certaininformation such as precedes(a, x) (f8) and close(a, b)(f9) to �4 we can establish:�4 `ACR (precedes(b; x); (f8; f9; r2); (dt)):Flattening the two arguments for precedes(b; x) we canestablish that it is true by default, illustrating the in-teraction between certain, uncertain and default infor-mation.4.3 HANDLING INCONSISTENCYDatabase �3 demonstrates one way of handling incon-sistent information by viewing the argument for one ofa pair of inconsistent conclusions as more credible thanthe other2. A more sophisticated approach is to usethe intuitive idea that arguments may be \defeated"by other arguments, examining the structure of the ar-guments to �nd conicting alternatives, and to use theconicts to determine which conclusions are the mostacceptable.The examination of argument structure is based uponthe notions of rebuttal and undercutting. ArgumentArg1 for proposition p rebuts argument Arg2, whichsupports proposition q, if p directly contradicts q (inother words p is logically equivalent to :q). Similarly,Arg1 undercuts Arg2 if p directly contradicts r whichis one of the steps in Arg2. We also distinguish con-sistent arguments, which draw facts from consistentsubsets of the whole database, and tautological argu-ments which are based on the axioms of the logic thatunderlies the system of argumentation rather than theinformation in the database. Having made these dis-tinctions we can identify the following classes of argu-ments for a database �, which are listed in increasingorder of acceptability [7]:A1 The class of all arguments that may be madefrom �.A2 The class of all logically consistent argumentsthat may be made from � (so that ? cannotbe derived from the steps in the argument).2In an informal semantic sense precedes(c; e) andprecedes(e; c) are clearly inconsistent. To ensure for-mal syntactic inconsistency we have to add the rule:precedes(Y;X) precedes(X;Y ).



A3 The class of all arguments that may be madefrom � for propositions for which there are norebutting arguments.A4 The class of all arguments that may be madefrom � for propositions for which there are noundercutting arguments.A5 The class of all tautological arguments that maybe made from �.Since each class of arguments includes all classes of ar-guments which are preferred to it, this idea of accept-ability provides a simple way to determine an orderbetween arguments. Each argument is ranked on thebasis of the smallest acceptability class into which itfalls, and it is more acceptable than every argument inany bigger class and as acceptable as any argument inthe same class. Propositions may then be ranked usingthe order over the arguments that support them, in-voked by the acceptability classes that the argumentsfall into. To see how we may use acceptability classesin our example, consider adding the �nal rule to ourdatabase of genetic data:f1 : close(a; b) : (0:9): �5f2 : close(x;y) : (0:9):f3 : precedes(a; b) : (0:9):f4 : precedes(x;y) : (0:9):f5 : precedes(y; x) : (0:9):f6 : precedes(a; x) : (0:8):f7 : precedes(x; b) : (0:7):r1 : precedes(X;Z) precedes(X;Y )^ precedes(Y;Z) : (1):r2 : precedes(Y;Z) close(X;Y )^ precedes(X;Z) : (dt):r3 : map(W;X;Y;Z) precedes(W;X)^ precedes(X;Y ) ^ precedes(Y;Z) : (1):r4 : :precedes(Y;X) precedes(X;Y ) : (1):From this database, we can establish:�5 `ACR (map(a; x;y; b); (f2; f4; f6; f7; r2; r3); (0:7)):�5 `ACR (map(a; y; b; x); (f1; f2; f3; f4; f6;f7; r1; r2; r3); (0:7)):Now, these solutions clearly conict3, but on the ba-sis of their degrees of certainty no choice can be madebetween them. However, if we look at the acceptabil-ity classes into which the arguments for them fall, itis a di�erent story. The argument for map(a,x,y,b)falls into A2 since it may be rebutted by the argumentfor map(a,y,b,x), while the argument for map(a,y,b,x)is in A1 since it is inconsistent by virtue of contain-ing both precedes(x, b) (f7), and precedes(b, x) (in-ferred from f1, f6 and r2). On this basis, the argu-ment for map(a,x,y,b) is more acceptable than that3Again this is an informal semantic conict. To get aformal syntactic conict we would have to include rulessuch as :map(X;W; Y;Z)  map(W;X;Y;Z) to coverall possible variations. These are omitted for the sake ofclarity.

for map(a,y,b,x), and so map(a,x,y,b) is preferred tomap(a,y,b,x).It is also worth noting two additional points. Firstly,from the same database, we can infer:�5 `ACR (map(a; b; x; y); (f1; f3; f4; f6); (0:8)):This argument is in A2, and has a higher necessitymeasure than either of the other arguments. The ques-tion is, given that we now have two methods of rank-ing solutions, one on the basis of acceptability of ar-guments and the other on the basis of the necessitymeasure, how do we combine their e�ects? Two ob-vious methods spring to mind: to rank the solutionson the basis of their acceptability and then use thenecessity measures to order the solutions within anacceptability class, or to use acceptability to order thesolutions with the same necessity measure. In thiscase whichever method we use we get map(a; b; x; y) >map(a; x; y; b) > map(a; y; b; x) where > indicates theoverall order, but the order of application may be im-portant in other cases, for instance, when the solutionwith the highest necessity measure is in the lowest ac-ceptability class, or vice versa. The second point isillustrated by the fact that we can infer:�5 `ACR (map(a; y; x; b); (f1; f4; f5; f6; f7; r1; r3); (0:7)):This solution is supported by an argument in A1, andhas the same ranking as map(a,y,b,x) no matter whichmethod is used, and so there is no means of identi-fying which is to be preferred. Thus there is someinformation which this scheme distinguishes as beingtruly ambiguous.5 SUMMARYThis paper has addressed some of the problems of mod-elling information about genetic maps. In particularit has discussed the use of a system of argumentationto represent some typical genetic data which illustratethe kinds of imperfections with which such data arepervaded. The uncertainty of data introduced by thefact that they are the results of experiments which areusually less than completely reliable was handled bynumerically quantifying the data. The use of heuristicdefault rules which, while they are not always reliable,make it possible to make useful deductions on manyoccasions, were handled by providing a symbolic quan-ti�cation for default rules that interacts in a suitableway with certain and uncertain information. Finally,the fact that genetic data is inconsistent was handledby making use of the fact that the system of argu-mentation that has been adopted is capable of draw-ing meaningful conclusions from contradictory infor-mation, and a means by which this capability may beintegrated with the handling of default and uncertaininformation was proposed. This, then meets several ofthe requirements for handling genetic data laid downin the literature [12, 13], as well as going further in
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