Representational issues in modelling genetic map data

Simon Parsons
Department of Electronic Engineering
Queen Mary and Westfield College
Mile End Road
London E1 4NS
S.Parsons@qmw.ac.uk

Abstract

Much of the large amount of data of in-
consistent, incomplete and uncertain infor-
mation produced by the Human Genome
Project is information about genetic maps.
The increasing use of computers to store
and interpret genetic map data has stim-
ulated research into the kinds of represen-
tation and automated reasoning that may
be applied to typically imperfect genetic in-
formation. This paper discusses the repre-
sentation of a small amount of genetic in-
formation using a system of argumentation
and shows how this formalism may be used
to handle the different defects in the data.

1 INTRODUCTION

Around the world a huge scientific effort is being ex-
pended in the Human Genome Project. The rather
grandiose aim of this massive collaboration is, broadly
speaking, to elicit all the information encoded in hu-
man DNA by the end of the century. This is clearly a
vast undertaking, and will result in the production of
a huge amount of data—estimates are around 3 x 10°
bytes for the whole genome, with the necessary exper-
imental results accounting for many times this figure.
With such huge volumes of information, the use of
databases for storing data, and of computer systems to
process the data, is essential [4, 14]. However, the situ-
ation is complicated by the fact that much of the data
is highly imperfect. Therefore, in handling this kind
of data, unless one wants to ignore these imperfections
completely [2], it seems sensible to consider using some
of the techniques developed to handle imperfect infor-
mation, especially those used in artificial intelligence
since they lend themselves directly to computer-based
implementation.

One particular area of interest is the representation
of information about genetic maps. Genetic maps are
one of the ways of dealing with DNA data, and they
are especially useful since they deal with DNA at quite

a high level of abstraction. The functional unit of a
length of DNA is what is known as a gene, a piece
of DNA that contains information about how to build
a protein. A genetic map is an ordered list of loci,
which are the locations of genes, so that it identifies
the active pieces of a length of DNA | and specifies the
order in which they lie on the length of DNA. Now,
representing an ordered list of loci does not sound too
difficult, but this does not take account of the labora-
tory data upon which the maps are based [12]. These
data tend to take the form of binary relations between
loci, typically stating that two loci are close to one an-
other, or that one locus precedes another. From this
one has to infer the order and relative location of the
loci [13, 18], always bearing in mind the fact that the
data may be inaccurate and that different laboratories
may disagree on the results.

2 THE REPRESENTATIONAL
PROBLEM

Considering the bio-informatics literature, 1t is possi-
ble to identify the major representational issues. Ac-
cording to Guidi and Roderick [12], it is essential to
be able to represent both ambiguous data, where re-
sults from two different laboratories completely con-
tradict each other, and uncertain data, where experi-
mental error makes it clear that certain results cannot
be guaranteed to be correct. Now, no system in use by
molecular biologists can handle this kind of informa-
tion, and certainly cannot support the kind of reason-
ing required with this kind of information, which is to
make all the inferences of all the different maps that
the data will support, to identify the different pieces of
information that support the different maps, to iden-
tify the contradictions between the maps that may be
derived, and, when clarifying information arrives, to
allow the contradictions to be resolved.

Similar requirements are recorded by Harley and Bon-
ner [13], who apply logic programming to handle ge-
netic map data. However, rather than explicitly deal-
ing with the problems of ambiguity and noisy data,
Harley and Bonner instead concentrate on the repre-

(1:St:Sg)eA

Al A l_ACR (St, G, Sg)

A l_ACR (St/, G/, Sg’)

Ax A l_ACR (St, l, Sg)

A l_ACR (St A St/, G, Sg)

AEL Al_ACR (St,G,Sg)

—F

A l_ACR (St A St/, G, Sg)

A-E2 —-1

AFacr (StAST,GUG comb(Sy, Sg"))

AFaicr (St/ %St,G,Sg) AFaicr (St,G/,Sg/)

AFacr (St,GUG comb(Sy, Sg"))

AU (St, @, Sg) l_ACR (St/a Ga Sg/)

A l_ACR (St/, G, Sg)

A l_ACR (St/ — St, G, comb(Sg, Sg’))

Figure 1: Argumentation Consequence Relation

sentation of heuristic rules for building maps, rules of
the form:

1r
THEN

which are true in general, but may lead to false conclu-
sions which may later need to be withdrawn. Overall,
then, it seems that to build genetic maps we need a
system capable of representing and reasoning with un-
certain, default, and inconsistent information in such
a way that the support for each conclusion is identi-
fied explicitly. This kind of reasoning is exactly that
provided by argumentation [16], and the way in which
argumentation may be used to solve the problem is the
subject of this paper. Before we discuss the system in
the next section we will introduce a simple example
which will be used through out the paper to illustrate
the issues at stake.

two STS probes hit @ common YAC

the two probes are close together

We are interested in the order of four loci. Experi-
ments from one laboratory tell us that locus a is close
to locus b, locus # is close to locus y, and a precedes b
in the sense that it is closer to a given end of the DNA
than b. As with all experimentally derived informa-
tion, this data is uncertain to some degree. There is
also data to support both « preceding y and y preced-
ing « (such contradictory information is not uncom-
mon). Experiments in another laboratory, which on
past experience 1s less reliable than the first, tell us
that a i1s closer to the top of the chromosome than x,
while data from a third laboratory, which 1s even less
reliable, indicates that @ precedes b. We can represent
all this information using the relations precedes(X, Y)

and close(X, Y).

In addition we have some very simple rules for inferring
new relations between loci, and for building ordered
tuples of four loci, which are rough genetic maps. The
first rule expresses the transitivity of the precedes rela-
tion, while the second comes from the fact that known
pairs of loci are usually some distance apart so that,
for instance, a and b will be some distance from x and
y meaning that if @ precedes b and a precedes z, b also
precedes x. This, then, is a default rule for coping with
incomplete information about the order of two pairs of
loci. The third rule is that three precedes relations re-
ferring to four different loci are sufficient to build a
simple genetic map. Like the transitivity rule, this is
completely certain.

Thus our example data, like real genetic data, includes
information that is both uncertain and contradictory,
as well as including default rules.

3 A SYSTEM OF
ARGUMENTATION

In classical logic, an argument is a sequence of infer-
ences leading to a conclusion. If the argument is cor-
rect, then the conclusion is true. Consider the simple
deductive database [5] A; which expresses some of the
information in the example as if it were completely
certain (the rule is the transitivity rule).
f1:precedes(a, x). A
f2: precedes(z,b).
rl: precedes(X,Z) — precedes(X,Y)
Aprecedes(Y, 7).

From this database the argument A; - precedes(a, b)
is correct because precedes(a, b) follows from A given
the usual logical axioms and rules of inference. Thus
a correct argument simply yields a conclusion which
in this case could be paraphrased “precedes(a,b) is
true in the context of f1,f2 and r1”. In our system
of argumentation this traditional form of reasoning is
extended to allow arguments to indicate support and
doubt in propositions as well as proving them, by as-
signing labels to arguments which denote the confi-
dence that the arguments warrant in their conclusions.
This form of argumentation may be summarised by the
following schema:

database Facg (Sentence, Grounds, Sign)

where F4cpr 18 a consequence relation for a logic of
argumentation, which sanctions inferences made using
the rules in Figure 1 (which are adapted from those
in [10] to fit our deductive database context), along
with the identity =St = L — St (L is logical con-
tradiction). For a detailed exposition of these rules
see [16]—there is no room here to go into the detailed
justification for them.

Informally, Grounds (G) are the facts and rules used
to infer Sentence (St), and Sign (Sg) is a number or a
symbol drawn from a dictionary of possible numbers
or symbols which indicate the confidence warranted

in the conclusion. The use of a number of different
dictionaries of signs is one of the marks of general-
ity of argumentation since most formalisms for han-
dling imperfect data are restricted to a single dictio-
nary. The rules in Figure 1 are independent of the
dictionary used—different dictionaries imply different
combination functions comb for combining signs dur-
ing the construction of arguments. Typically we will
have a number of different arguments for a given sen-
tence, and so we flatten these to give a single measure
which may or may not be expressed using the same
dictionary.

What this system of argumentation gives us is a gen-
eral framework for expressing logical facts which can
incorporate different models of uncertainty by varying
the signs and their associated combination and flat-
tening functions. As we shall see in the next section,
the scheme also offers a means of representing default
information and of handling inconsistent information.

4 USING ARGUMENTATION TO
REPRESENT IMPERFECT DATA

In this section we work through the representation of
the example introduced above, showing how argumen-
tation can be used to express the various types of im-
perfection that are present in the genetic information.

4.1 HANDLING UNCERTAINTY

The most straightforward problem from a represen-
tational point of view is that of handling the uncer-
tainty associated with the information because it is
experimental data of varying quality. This may sim-
ply be handled by giving each clause in the database
a numerical sign between 0 and 1, inclusive, which in-
dicates the degree of certainty that one has in the fact
represented by the clause. Thus, provided that we be-
lieve that even the third, and least trustworthy, of the
laboratories, produces reasonably accurate results, a
suitable distribution of values would be those in As.

f1:close(a,b):(0.9). As
f2: close(x,y) : (0.9).

f3 : precedes(a,b) : (0.9).

f4: precedes(z,y) : (0.9).

f5: precedes(y,) : (0.9).

f6 : precedes(a,) : (0.8).
f7:precedes(z,b) : (0.7).

rl: precedes(X,Z) — precedes(X,Y)

Aprecedes(Y, Z) : (1).

What may be derived depends upon the interpretation
of the numbers, since this affects the choice of com-
bination and flattening function. For instance, if we
want to make use of a probabilistic method to quantify
uncertainty we have several different ways in which we
can compute the probability of a proposition from the
probabilities of the steps in the argument. We may use

a local scheme such as that proposed by Ng and Sub-
rahmanian [19] which requires the use of an interval
probability because of the possible dependencies be-
tween the steps. Alternatively, Krause et al. [16] pro-
vide a global approach which takes the structure of the
arguments into account. In this approach the proba-
bility of an argument for a proposition is the product of
the probabilities of all the steps in the argument, while
flattening arguments consists of summing the proba-
bilities of the different arguments and then subtracting
the product of the probabilities of the steps in all the
arguments.

Alternatively, following Dubois et al. [6] we may also
use possibility theory. Here the signs in a database
are the lower bounds on the necessity measures of the
propositions, the combination operation is minimumn,
and the flattening operation is maximum. This, of
course, effectively ignores the interdependence of the
steps in the arguments, but has significant advantages
in efficiency of computation. If we take the signs in
A5 to be lower bounds on necessity measures we can
derive, for instance:

Ao Facr (precedes(a, y), (f4, f6,r1),(0.8)).

Since there is only one argument that relates to
precedes(a, y), there is no need to invoke the flattening
function.

4.2 HANDLING DEFAULT RULES

Using signs that are lower bounded necessity measures
also gives us a simple way of handling default infor-
mation. As several people have pointed out, for ex-
ample [1, 9], one can assign a necessity measure of
1 to all facts and rules that are known to be true,
and then attach a lesser measure to default rules. Be-
cause of the minimum operator used to combine signs
when rules are applied, facts that are deduced from
true rules will always have a larger necessity measure
than those deduced from default rules so that when
comparing two hypotheses, the one deduced from true
information will be preferred to that deduced from de-
fault information. Using this method, we could obtain
database Az where r2 is the default rule discussed in
the example, rl is as above, and f1-f3 are some new
facts about other loci that are known to be true:

f1:close(d,c): (1). As
f2: precedes(d,e) : (1).
f3: precedes(f,c): (1).

rl: precedes(X,Z) — precedes(X,Y)
Aprecedes(Y, Z) : (1).
(Y, Z) — close(X,Y)
Aprecedes(X, Z) :

r2 : precedes
(0.85).

This allows us to obtain results such as:

Az Facr (precedes(c,e), (2, f1,72),(0.85)).

which is a reasonable conclusion from the data that
we have. However, were we to learn that e certainly
precedes f, so that the fact “f4 : precedes(e, f) : (1)”
was added to the database, we would be able to infer:

AS '_ACR (precedes(ea C)a (f3, f4’ Tl)’ (1))

thus overturning the original conclusion and demon-
strating that the database and the default rule behave
in the desired non-monotonic fashion, with certain in-
formation outweighing default mformatlon The sys-
tem can be further complicated by allowing for dif-
ferent necessity measures to be assigned to different
default rules, allowing their differing certainties to be
expressed.

There is, however, a problem when using the approach
suggested by Benferhat [1] and Froidevaux and Men-
gin [9] in combination with that outlined above for
handling uncertain information. Once the facts in the
database start to be quantified with necessity measures
other than 1, the comparative order expressed by the
default rules and the uncertain information becomes
important. Thus if we enter an uncertain fact into Az
with a measure greater than 0.85, as the data from the
first laboratory was in As, it means we consider this
to be more certain than inferences drawn using the
default rule, showing that a good deal of care must
be taken when assigning necessity measures. To pro-
vide a general solution to the problem of ensuring the
right interaction between defaults and uncertain infor-
mation it can be argued that default rules, by defini-
tion, should only be outweighed by information that
1s known to be true, so they should be quantified by a
value that is only outweighed by a necessity measure
of 1. This can be achieved by the use of the symbolic
value di, inspired by Ginsberg’s [11] “true by default”
value, which is infinitesimally close to 1. Thus:

dt if value =1

value otherwise

min(value, dt) = {

1 if value =1

lue, dt) =
max(value, di) { dt otherwise

This approach could clearly be extended to cover pref-
erences over sets of default rules by using an ordered
set of symbolic values [8, 11]. Using dt we can extend
Ajs to be Ay as below, from which we can infer:

Ay Facr (precedes(b, z), (f1, f6,72),(0.8)).
Ay Facr (precedes(y,b), (f2, f7,7r2),(0.7)).

Tt should be noted that the non-monotonicity is due to
the flattening function. When new information is added,
the same arguments as before can always be made, how-
ever, when these arguments are flattened, the overall con-
clusion may change. In this case, there is still an argu-
ment for the previous conclusion precedes(c,e), it is just
weaker then the argument for precedes(e,c). Thus argu-
mentation is monotonic in arguments but non-monotonic
in conclusions.

f1: close(a,b):

(0.9). Ay
f2: close(z,y) : (0.9).

b):

Y

f3: precedes(a, (0.9).
f4: precedes(z,y) : (0.9).
f5: precedes(y, z) : (0.9).
f6 : precedes(a, z) : (0.8).
f7: precedes(z,b) : (0.7).

rl: precedes(X,Z) — precedes(X,Y)
Aprecedes(Y, Z) : (1).
(Y, Z) — close(X,Y)
Aprecedes(X, Z) : (dt).

r2 : precedes

indicating that before(b, z) is slightly more certain to
be true than before(y, b). Now, if we add some certain
information such as precedes(a, z) (f8) and close(a, b)
(f9) to Ay we can establish:

Ay Facr (PTSC@d@S(b, x)a (f8a f9’ T2), (dt))

Flattening the two arguments for precedes(b, x) we can
establish that it is true by default, illustrating the in-
teraction between certain, uncertain and default infor-
mation.

4.3 HANDLING INCONSISTENCY

Database Az demonstrates one way of handling incon-
sistent information by viewing the argument for one of
a pair of inconsistent conclusions as more credible than
the other?. A more sophisticated approach is to use
the intuitive idea that arguments may be “defeated”
by other arguments, examining the structure of the ar-
guments to find conflicting alternatives, and to use the
conflicts to determine which conclusions are the most
acceptable.

The examination of argument structure is based upon
the notions of rebuttal and undercutting. Argument
Argy for proposition p rebuts argument Args, which
supports proposition ¢, if p directly contradicts ¢ (in
other words p is logically equivalent to —¢). Similarly,
Argy undercuts Args if p directly contradicts » which
is one of the steps in Args. We also distinguish con-
sistent arguments, which draw facts from consistent
subsets of the whole database, and tautological argu-
ments which are based on the axioms of the logic that
underlies the system of argumentation rather than the
information in the database. Having made these dis-
tinctions we can identify the following classes of argu-
ments for a database A, which are listed in increasing
order of acceptability [7]:

Al The class of all arguments that may be made
from A.

A2 The class of all logically consistent arguments
that may be made from A (so that L cannot
be derived from the steps in the argument).

’In an informal semantic semse precedes(c,e) and
precedes(e, c) are clearly inconsistent. To ensure for-
mal syntactic inconsistency we have to add the rule

—precedes(Y, X) — precedes(X,Y).

A3 The class of all arguments that may be made
from A for propositions for which there are no
rebutting arguments.

A4 The class of all arguments that may be made
from A for propositions for which there are no
undercutting arguments.

Ab The class of all tautological arguments that may
be made from A.

Since each class of arguments includes all classes of ar-
guments which are preferred to it, this idea of accept-
ability provides a simple way to determine an order
between arguments. Each argument is ranked on the
basis of the smallest acceptability class into which it
falls, and it is more acceptable than every argument in
any bigger class and as acceptable as any argument in
the same class. Propositions may then be ranked using
the order over the arguments that support them, in-
voked by the acceptability classes that the arguments
fall into. To see how we may use acceptability classes
in our example, consider adding the final rule to our
database of genetic data:

f1: close(a,b): As

(0.9).
f2: close(z,y) : (0.9).

b):

Y

,Z) — precedes(X,Y)
Aprecedes(Y, Z) : (1).
Z) — close(X,Y)
Aprecedes(X, Z) : (dt).
r3:map(W, X, Y, Z) — precedes(W, X)
Aprecedes(X,Y) A precedes(Y, Z) : (1).
r4d : —precedes(Y, X) — precedes(X,Y) : (1).

rl : precedes

f3: precedes(a, (0.9).
f4: precedes(z,y) : (0.9).
f5: precedes(y, z) : (0.9).
f6: precedes(a, z) : (0.8).
f7: precedes(z,b) : (0.7).
(X
(

r2 : precedes(Y,

From this database, we can establish:

As Facr
As Facr

(map(a, z,y,b), (f2, f4, f6, f7,r2,73),(0.7)).
(map(a’ y’ b’ x)’ (fl’ f2’ f3’ f4’ f6’
f7,r1,72,73),(0.7)).

Now, these solutions clearly conflict®, but on the ba-
sis of their degrees of certainty no choice can be made
between them. However, if we look at the acceptabil-
ity classes into which the arguments for them fall, it
is a different story. The argument for map(a,z,y,b)
falls into A2 since it may be rebutted by the argument
for map(a,y,b,z), while the argument for map(a,y,b,z)
is in Al since it is inconsistent by virtue of contain-
ing both precedes(z, b) (f7), and precedes(h, z) (in-
ferred from f1, f6 and r2). On this basis, the argu-
ment for map(a,z,y,b) is more acceptable than that

?Again this is an informal semantic conflict. To get a
formal syntactic conflict we would have to include rules
such as —map(X,W,Y,Z) — map(W,X,Y,Z) to cover
all possible variations. These are omitted for the sake of
clarity.

for map(a,y,b,2), and so map(a,z,y,b) is preferred to
map(a,y,b,z).

It is also worth noting two additional points. Firstly,
from the same database, we can infer:

As Facr (map(a, b, x,y),(f1, f3, f4, f6),(0.8)).

This argument is in A2, and has a higher necessity
measure than either of the other arguments. The ques-
tion is, given that we now have two methods of rank-
ing solutions, one on the basis of acceptability of ar-
guments and the other on the basis of the necessity
measure, how do we combine their effects? Two ob-
vious methods spring to mind: to rank the solutions
on the basis of their acceptability and then use the
necessity measures to order the solutions within an
acceptability class, or to use acceptability to order the
solutions with the same necessity measure. In this
case whichever method we use we get map(a, b, z,y) >
map(a, z,y,b) > map(a,y, b, x) where > indicates the
overall order, but the order of application may be im-
portant in other cases, for instance, when the solution
with the highest necessity measure is in the lowest ac-
ceptability class, or vice versa. The second point is
illustrated by the fact that we can infer:

A5 '_ACR (map(aa Y, Cl?,b), (fla .f4a f5a f6a .f7a Tla T3)’ (07))

This solution is supported by an argument in A1, and
has the same ranking as map(a,y,b,2) no matter which
method 1s used, and so there is no means of identi-
fying which 1s to be preferred. Thus there is some
information which this scheme distinguishes as being
truly ambiguous.

5 SUMMARY

This paper has addressed some of the problems of mod-
elling information about genetic maps. In particular
it has discussed the use of a system of argumentation
to represent some typical genetic data which illustrate
the kinds of imperfections with which such data are
pervaded. The uncertainty of data introduced by the
fact that they are the results of experiments which are
usually less than completely reliable was handled by
numerically quantifying the data. The use of heuristic
default rules which, while they are not always reliable,
make it possible to make useful deductions on many
occasions, were handled by providing a symbolic quan-
tification for default rules that interacts in a suitable
way with certain and uncertain information. Finally,
the fact that genetic data is inconsistent was handled
by making use of the fact that the system of argu-
mentation that has been adopted is capable of draw-
ing meaningful conclusions from contradictory infor-
mation, and a means by which this capability may be
integrated with the handling of default and uncertain
information was proposed. This, then meets several of
the requirements for handling genetic data laid down
in the literature [12, 13], as well as going further in

integrating different types of information than anyone
whose work the author aware of.

It is clear that the treatment presented here is rather
tentative and informal. This is naturally the case given
the ongoing nature of the work, and is a problem that
hopefully will be remedied in the near future. In the
short term it is also intended to implement the kind of
reasoning that described in this paper. Such an imple-
mentation will involve the extension of the Argumen-
tation Theorem Prover (ATP) [15], a system which
differs from standard theorem provers in that it allows
the automated construction of the argument support-
ing a proposition as well as deducing the proposition.
The necessary changes to handle the work described
here are not major—it is only necessary to slightly
alter some of the combination and flattening func-
tions which can already handle several different sets
of quantifiers. Whilst the efficiency of this implemen-
tation will clearly be an issue in the long run, the suc-
cess of the logic programming approach advocated by
Harley and Bonner [13] and the rule-based approach of
Letovsky and Berlyn [17] suggests that these problems
will not be insurmountable.

Acknowledgements

This work was partially supported by ESPRIT Basic
Research Action 6156 DRUMS IT (Defeasible Reason-

ing and Uncertainty Management Systems).

References

[1] Benferhat S. (1994) Handling hard rules and de-
fault rules in possibilistic logic, Proceedings of the
International Conference on Information Process-
g and the Management of Uncertainty, Paris.

[2] Clark, D. A., Rawlings, C. J., and Doursenot,
S. (1994) Genetic map construction with con-
straints, Proceedings of the Second International
Conference on Intelligent Systems for Molecular
Biology, Stanford.

[3] Cui, Z. (1994) Using interval logic for order as-
sembly, Proceedings of the 2nd International Con-
ference on Intelligent Systems for Molecular Bi-
ology, Stanford.

[4] Cui, Z., Fox, J., and Hearne, C. (1993) Knowl-
edge based systems for molecular biology: the role
of advanced technology and formal specification,
Proceedings of the IJCAI Workshop on Al and the

Genome, Chambéry, France.

[5] Das, S. K. (1992) Deductive databases and logic
programmaing, Addison-Wesley, Wokingham.

[6] Dubois, D., Lang, J., and Prade, H. (1991) To-
wards possibilistic logic programming, Proceed-
wngs of the International Conference on Logic
Programming, Paris.

[7] Elvang-Ggransson, M., Krause, P., and Fox, J.
(1993) Dialectic reasoning with inconsistent in-
formation, Proceedings of the 9th Conference on
Uncertainty in Artificial Intelligence, Washington
D. C.

[8] Froidevaux, C. and Grossetéte, C. (1990) Graded
default theories for uncertainty, Proceedings of
the 9th European Conference on Artificial Intel-
ligence, Stockholm.

[9] Froidevaux, C. and Mengin, J. (1990) A theorem
prover for free graded default theories, Technical
Report LRI, Université Paris Sud, Orsay.

[10] Fox, J., Parsons, S., Krause, P., and Elvang-
Ggransson, M. (1993) A generic framework for
uncertain reasoning, in Qualitative Reasoning and
Decision Technologies, N. Piera Carrete and M.
G. Singh eds., CIMNE Press, Barcelona, pp 461-
470.

[11] Ginsberg, M. L. (1988) Multivalued logics: a uni-
form approach to inference in artificial intelli-
gence, Computational Intelligence, 4, 265-316.

[12] Guidi, J. N. and Roderick, T. H. (1993) Infer-
ence of order in genetic systems, Proceedings of
the First Conference on Intelligent Systems for
Molecular Biology, Bethesda, MD.

[13] Harley, E. and Bonner, A. J. (1994) A flexible
approach to genome map assembly, Proceedings
of the 2nd International Conference on Intelligent
Systems for Molecular Biology, Stanford.

[14] Hearne, C., Cui, Z., Parsons, S., and Haj-
nal, S. (1994) Prototyping a genetics deductive
database, Proceedings of the 2nd International
Conference on Intelligent Systems for Molecular
Biology, Stanford.

[15] Krause, P.; Ambler, S.; and Fox, J. (1992) ATP
User Manual, Technical Report 187, Advanced
Computation Laboratory, Imperial Cancer Re-
search Fund.

[16] Krause, P., Ambler; S.; Elvang-Ggransson, M.,
and Fox, J. (1995) A logic of argumentation for
reasoning under uncertainty, Computational In-
telligence, 11, 113-131.

[17] Letovsky, S. and Berlyn, M. B. (1992) CPROP:
a rule-based program for constructing genetic
maps, Genomics, 12, 435-446.

[18] Mott, R., Grigoriev, A., Maier, E., Hoheisel, J.,
and Lehrach, H. (1993) Algorithm and software
tools for ordering clone libraries: application to

the mapping of the genome of Schizosacchromyces
pombe, Nucleic Acids Research, 21, 1965-1974.

[19] Ng, R. T. and Subrahmanian, V. S. (1992) Proba-
bilistic logic programming, Information and Com-
putation, 101, 150-201.

