
On using degrees of belief in BDI agentsSimon Parsons and Paolo Giorgini�Department of Electronic EngineeringQueen Mary and West�eld CollegeUniversity of LondonLondon E1 4NSUnited KingdomfS.D.Parsons,P.Giorginig@qmw.ac.ukAbstractThe past few years have seen a rise in thepopularity of the use of mentalistic attitudessuch as beliefs, desires and intentions to de-scribe intelligent agents. Many of the modelswhich formalise such attitudes do not admitdegrees of belief, desire and intention. We seethis as an understandable simpli�cation, butas a simpli�cation which means that the re-sulting systems cannot take account of muchof the useful information which helps to guidehuman reasoning about the world. This pa-per starts to develop a more sophisticatedsystem based upon an existing formal modelof beliefs desires and intentions.1 IntroductionIn the past few years there has been a lot of attentiongiven to building formal models of autonomous soft-ware agents; pieces of software which operate to someextent independently of human intervention and whichtherefore may be considered to have their own goals,and the ability to determine how to achieve their goals.Many of these formal models are based on the use ofmentalistic attitudes such as beliefs, desires and inten-tions. The beliefs of an agent model what it knowsabout the world, the desires of an agent model whichstates of the world the agent �nds preferable, and theintentions of an agent model those states of the worldthat the agent actively tries to bring about. One ofthe most popular and well-established of these modelsis the BDI model of Rao and George� [12, 13].While Rao and George�'s model explicitly acknowl-edges that an agent's model of the world is incomplete,by modelling beliefs as a set of worlds which the agent�Visiting from Istituto di Informatica, Universit�a diAncona, via Brecce Bianche, 60131, Ancona, Italy.

knows that it might be in, the model makes no attemptto make use of information about how likely a particu-lar possible world is to be the actual world in which theagent operates. Our work is aimed at addressing thisissue, which we feel is a weakness of the BDI model, byallowing an agent's beliefs, desires, and intentions tobe quanti�ed. In particular this paper considers quan-tifying an agent's beliefs using Dempster-Shafer the-ory, which immediately makes it possible for an agentto express its opinion on the reliability of the agentsit interacts with, and to revise its beliefs when theybecome inconsistent. To do this, the paper combinesthe �rst author's work on the use of argumentationin BDI agents [11], with the second author's work onbelief revision [4]. The question of quantifying desiresand intentions is the subject of continuing work.2 PreliminariesAs mentioned above, our work here is an extensionof that in [11] to include degrees of belief. As in [11]we describe our agents using the framework of multi-context systems [8]. We do this because multi-contextsystems give a neat modular way of de�ning agentswhich is then directly executable, not because we areinterested in explicitly modelling context. This sectionbrie
y recaps the notions of multi-context systems andargumentation as used in [11].2.1 Multi-context agentsUsing the multi-context approach, an agent architec-ture consists of the following four components (see [10]for a formal de�nition):� Units : Structural entities representing the maincomponents of the architecture. These are alsocalled contexts.� Logics : Declarative languages, each with a set ofaxioms and a number of rules of inference. Eachunit has a single logic associated with it.
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Figure 1: The multi-context representation of a strongrealist BDI agent� Theories : Sets of formulae written in the logicassociated with a unit.� Bridge rules : Rules of inference which relate for-mulae in di�erent units.The way we use these components to model BDI agentsis to have separate units for belief B, desires D andintentions I , each with their own logic. The theoriesin each unit encode the beliefs, desires and intentionsof speci�c agents, and the bridge rules encode the re-lationships between beliefs, desires and intentions. Wealso have a unit C which handles communication withother agents. Figure 1 gives a diagrammatic repre-sentation of this arrangement. For each of these fourunits we need to say what the logic used by each unitis. The communication unit uses classical �rst orderlogic with the usual axioms and rules of inference. Thebelief unit also uses �rst order logic, but with a specialpredicate B which is used to denote the beliefs of theagent. Under the modal logic interpretation of belief,the belief modality is taken to satisfy the axioms K, D,4 and 5 [14]. Therefore, to make the belief predicatecapture the behaviour of this modality, we need to addthe following axioms to the belief unit (adapted from[2]): K B : B('!  )! (B(')! B( ))D B : B(')! :B(:')4 B : B(')! B(B('))5 B : :B(') ! B(:B('))The desire and intention units are also based on �rstorder logic, but have the special predicates D and Irespectively. The usual treatment of desire and inten-tion modalities is to make these satisfy the K and Daxioms [14], and we capture this by adding the relevantaxioms. For the desire unit:K D : D('!  )! (D(')! D( ))D D : D(')! :D(:')

and for the intention unit:K I : I('!  )! (I(')! I( ))D I : I(')! :I(:')Each unit also contains the generalisation, particular-isation, and modus ponens rules of inference. Thiscompletes the speci�cation of the logics used by eachunit.The bridge rules are shown as arcs connecting theunits. In our approach, bridge rules are used to en-force relations between the various components of theagent architecture. For example the bridge rule be-tween the intention unit and the desire unit is:I : I(�)) D : D(dI(�)e) (1)meaning that if the agent has an intention � then itdesires �1. The full set of bridge rules in the diagramare those for the \strong realist" BDI agent discussedin [14] : D : :D(�) ) I : :I(d�e) (2)D : D(�) ) B : B(d�e) (3)B : :B(�) ) D : :D(d�e) (4)C : done(e) ) B : B(ddone(e)e) (5)I : I(ddoes(e)e) ) C : does(e) (6)The meaning of most of these rules is obvious. The twowhich require some additional explanation are (5) and(6). The �rst is intended to capture the idea that ifthe communication unit obtains information that someaction has been completed (signi�ed by the term done)then the agent adds it to its set of beliefs. The secondis intended to express the fact that if the agent hassome intention to do something (signi�ed by the termdoes) then this is passed to the communication unit(and via it to other agents).With these bridge rules, the shell of a strong realistBDI agent is de�ned in our multi-context framework.To complete the speci�cation of a complete agent it isnecessary to �ll out the theories of the various unitswith domain speci�c information, and it may be neces-sary to add domain speci�c bridge rules between units.For an example, see [11].2.2 Multi-context argumentationThe system of argumentation which we use here isbased upon that proposed by Fox and colleagues [6, 9].As with many systems of argumentation, it works by1Because take B, D and I to be predicates rather thanmodal operators, when one predicate comes into the scopeof another, for instance because of the action of a bridgerule, it needs to be quoted using d�e.



constructing a series of logical steps (arguments) forand against propositions of interest and as such maybe seen as an extension of classical logic. In classicallogic, an argument is a sequence of inferences leadingto a true conclusion. In the system of argumentationadopted here, arguments not only prove that propo-sitions are true or false, but also suggest that propo-sitions might be true or false. The strength of sucha suggestion is ascertained by examining the proposi-tions used in the relevant arguments.We �t argumentation into multi-context agents bybuilding arguments using the rules of inference of thevarious units and the bridge rules between units. Theuse we make of argumentation is summarised by thefollowing schema: � `d (';G; �)where:� � is the set of formulae available for building ar-guments,� ` is a suitable consequence relation,� d = afr1;:::;rng means that the formula ' is de-duced by agent a from the set of formulae � byusing the set of inference rules or bridge rulesfr1; : : : ; rng (when there is no ambiguity the nameof the agent will be omitted),� ' is the proposition for which the argument ismade,� G indicates the set of formulae used to infer ',G � �, and� � is the degree of belief (also called \credibility")associated with ' as a result of the deduction.This kind of reasoning is similar to that provided bylabelled deductive systems [7], but it di�ers in its useof the labels. Whilst most labelled deductive systemsuse their labels to control inference, this system of ar-gumentation uses the labels to determine which of itsconclusions are most valid.In the remainder of the paper we drop the `B :', `D :'and `I :' to simplify the notation. With this in mind,we can de�ne an argument in our framework:De�nition 1 Given an agent a, an argument for aformula ' in the language of a is a triple ('; P; �)where P is a set of grounds for ' and � is the degreeof belief in ' suggested by the argument.It is the grounds of the argument which relate the for-mulae being deduced to the set of formulae it is de-duced from:

De�nition 2 A set of grounds for ' in an agent a isan ordered set hs1; : : : ; sni such that:1. sn = �n `dn ';2. every si, i < n, is either a formula in the theoriesof a, or si = �i `di  i; and3. every pj in every �i is either a formula in thetheories of agent a or  k, k < i.We call every si a step in the argument.For the sake of readability, we often refer to the con-clusion of a deductive step with the identi�er given tothe step. For an example of how arguments are built,see Section 5.3 A framework for adding degreesIn our previous work we have considered agents whosebelief, desire and intention units contain formulae ofthe form: B(') ^ B('!  )! B( )These have then been used to build arguments as out-lined in the previous section. What we want to dois to permit the beliefs, desires and intentions to ad-mit degrees, so that beliefs can have varying degreesof credibility, desires can be ordered, and intentionsadopted with varying degrees of resolution.3.1 Degrees of beliefSince argumentation already allows us to incorporatedegrees of belief it is reasonably straightforward tobuild in this component, and doing so is the subjectof the rest of this paper. Degrees of desire and in-tention are more problematic, and are the subject ofcontinuing work.Given the machinery already provided by argumenta-tion, the simplest way to build in degrees of belief isto translate every proposition in the belief unit thatthe agent is initially supplied with (which may con-tain nested modalities and so be of the form B(I(')))into an argument with an empty set of grounds. ThusB(I(')) becomes the argument:(B(I(')) : fg : �)where � is the associated degree of belief expressed as amass assignment in Dempster-Shafer theory [16]. Anypropositions deduced from this base set will then accu-mulate grounds as detailed above. In an agent which



has been interacting with other agents and making de-ductions about the world, we can distinguish four dif-ferent types of proposition by looking at the origin ofthe propositions. We distinguish the following.The basic facts are the data the agent was origi-nally programmed with. An observation is a propo-sition which describes something the agent has ob-served about the world in which it is acting. A commu-niqu�e is a proposition which describes something theagent has received from an another agent. A deduc-tion is a proposition that the agent has derived fromsome other pieces of information (which themselveswill have been basic facts, deductions, observations orcommuniqu�es). Since the argument attached to eachproposition records its origin, the four types of proposi-tion may be distinguished by examining the argumentsfor them. The reason for distinguishing the types ofproposition is that each is handled in a di�erent way.3.2 Handling communiqu�esConsider �rst the way in which an agent handles an in-coming communiqu�e. This is accepted by the commu-nication unit, and given an argument which indicateswhich agent it came from and a degree of credibil-ity which re
ects the known reliability of that agent.When the communiqu�e is passed to the belief unit fromthe communication unit, the agent could be in two dif-ferent situations.In the �rst situation the communiqu�e is not involved inany con
ict with other propositions in the belief unit.In this case, the following procedure is adopted:1. Calculate the credibility of the new proposition.2. Propagate the e�ect of this updating, re-calculating the credibility of all the propositionswhose arguments either include the new proposi-tion or some consequence of the new proposition.The credibility is calculated using Dempster-Shafertheory, and the precise way in which we do this de-pends upon the support for the communiqu�e. If thecommuniqu�e is the same as a proposition that was al-ready in the belief unit, the agent uses both the relia-bility of the agent which passed it the communiqu�e andthe credibility of the original proposition to calculatethe credibility. If the communiqu�e was not already inthe belief framework, the agent can use only the relia-bility of the agent which passed it the communiqu�e tocalculate the credibility.In the second situation the communiqu�e is in con
ictwith something in the belief unit. In this case we needto revise the agent's beliefs to make them consistent.

However this can be done using information about thecredibilities of the various beliefs, and the result of therevision also gives information about the reliability ofthe various agents who have supplied information. Thefollowing procedure is followed:1. Revise the union of the set of beliefs in the be-lief unit and the new proposition which have beendirectly observed or communicated. To do thiswe can use the mechanism proposed in the nextsection. This mechanism will produce a new cred-ibility degree for each proposition and a new reli-ability degree for each agent from which commu-nications are received.2. Pass the new reliability of each communicatingagent to the communication unit.3.3 Handling observationsEssentially same procedure as for communiqu�es is fol-lowed when an agent makes a new observation. Thecommunication unit receives the proposition in ques-tion, 
ags it with a degree of reliability based on thebehaviour of the sensor it came from, and passes it tothe belief unit. The belief unit then carries out thesame procedure as outlined above, but using the reli-ability of its sensors in place of the reliability of otheragents.3.4 Basic factsUnlike observations and communiqu�es, new basic factsdo not emerge during an agent's life|by de�nitionthey are programmed in when the agent is built. How-ever, they are subject to change, since they are the verypropositions which may con
ict with observations andcommuniqu�es, and so when observations are made andcommuniqu�es are received, the basic facts are revisedas discussed in the previous two sections.3.5 Handling deductionsLike basic facts, new deductions are not received asinput to the belief unit, but they are revised whenobservations and communiqu�es are transmitted to thebelief unit. A slightly di�erent procedure is used to re-vise deductions since they have arguments supportingthem and the credibilities of the propositions in theargument are used in order to compute the credibilityof the deduction. However, some of these propositionsmight be intentions or desires, \imported" into the be-lief unit via bridge rules. For such propositions it isnot immediately clear what the credibility should be.For example, if we have the following bridge rule:I : I(�)) B : B(dI(�)e)



and if in the intention unit we have I : I(�), then inthe belief framework we will have B : B(dI(�)e). Now,what does the credibility of B : B(dI(�)e) depend on?The agent intends �, and this is not doubted. So, ifwe don't doubt the foundations of the bridge rule, wehave to take the proposition as being true, that is withcredibility equal to 1. So, if a proposition is supportedthrough the bridge rules only by desires and intentions,its credibility degree will be equal to 1. If, on theother hand its supporting propositions contain somewith degrees of credibility other than 1 (because theyare based on information from unreliable agents) theoverall credibility will be a combination of the cred-ibilities of the unreliable agents. We can again useDempster-Shafer to carry out the combination.Another di�erence with deductions is that even whena deduction is in con
ict with an observation or com-muniqu�e, the deduction itself is not directly revised.This is because this kind of con
ict doesn't depend onthe deduction but on the propositions which supportit, as may be seen from the following example.Example 1 Consider we have the following pieces ofinformation:1. ('; fg; C')2. ('!  ; fg; C'! )3. (: , fg, C: )from (1) and (2) we have the deduction ( ; hf'; ' ! g `modus ponens  i; C ) which is in con
ict with (3).This con
ict depends on (3) and the supporting items(1) and (2). Thus revision must be applied to (1), (2)and (3) rather than the deduction. 24 Belief revision and updatingBoth belief revision and updating allow an agent tocope with a changing world by allowing it to alter itsbeliefs in response to new, possibly contradictory, in-formation. We can say that:If the new information reports a change inthe current state of a dynamic world, thenthe consequent change in the representationof the world is called updating.If the new information reports of new ev-idence regarding a static world whose rep-resentation was approximate, incomplete orerroneous, then the corresponding change iscalled revision.

In this section we will give a suitable mechanism forbelief revision and updating in our framework.4.1 Belief revisionThe model for belief revision we adopt is drawn from[4]. Essentially, belief revision consists of rede�ningthe degrees of credibility of propositions in the light ofincoming information. The model adopts the recover-ability principle:Any previously believed information itemmust belong to the current cognitive state ifit is consistent with it.Unlike the case in which incoming information is givenpriority, this principle makes sure that the chronolog-ical sequence of the incoming information has nothingto do with the credibility of that information, and thatthe changes are not irrevocable.The propositions we called basic facts, observationsand communiqu�es in the previous section are thoseitems termed \assumptions" below (the term is thatused in [4]), and the deductions are the \conse-quences". We have the following de�nitionsDe�nition 3 A knowledge base (KB) is the set of theassumptions introduced from the various sources, anda knowledge space (KS) is the set of all beliefs (as-sumptions + consequences).Both the KB and KS grow monotonically since none oftheir elements are ever erased from memory. Normallyboth contain contradictions.De�nition 4 A nogood is de�ned as minimal incon-sistent subset of a KB. Dually, a good is a maximallyconsistent subset of a KB.Thus a nogood is a subset of KB that supports a con-tradiction and is not a superset of any other nogood.A good is a subset of a KB that is neither a superset ofany nogood nor a subset of any other good. Each goodhas a corresponding support set, which is the subset ofKS made of all the propositions that are in the goodor are consequences of them. These de�nitions origi-nate from de Kleer's work on assumption-based truthmaintenance systems [3]. Procedurally, the method ofbelief revision consists of four steps:S1 Generating the set NG of all the nogoods and theset G of all goods in the KB.S2 De�ning a credibility ordering over the assump-tions in the KB.



S3 Extending this into a credibility ordering over thegoods in G.S4 Selecting the preferred good CG with its corre-sponding support set SS.The �rst step S1 deals with consistency and adopts theset-covering algorithm [15] to �nd NG and the cor-responding G. S2 deals with uncertainty and adoptsthe Dempster-Shafer theory of evidence [16] to �ndthe credibility of the beliefs and Bayesian condition-ing (see [5] for details) to calculate the new reliabilityof sources. S3 also deals with uncertainty, but at thelevel of the goods, extending the ordering de�ned byS2 over the assumptions, into an ordering onto thegoods. There are a number of possible methods fordoing this [1], including best-out, inclusion-based andlexicographic. An alternative is to order the goods ac-cording to the average credibility of their elements.Doing this, however, means that the preferred goodmay no longer necessarily contain the most crediblepiece of information. Finally S4 consists of two sub-steps: selecting a good CG from G (normally, CG isthe good with the highest credibility) and selectingfrom KS the derived sentences that are consequencesof the propositions belong to CG. Recapitulating wehave:INPUT:� New proposition p;� KB : set of all propositions introduced fromthe various sources (observations and com-muniqu�es); and� Reliability of all sources.OUTPUT:� New credibilities of the propositions in KB[fpg;� New credibilities of the goods in G;� Preferred good CG and corresponding sup-port set SS; and� New reliability of all the sources.4.2 Belief updatingIf the particular application requires updating of be-liefs instead of revision, then conceptually there isno di�erence in the dynamics of the propagation ofweights. The main di�erence between the two pro-cedures is that in updating the incoming informationreplaces the old. Thus the recoverability principle issubstituted by the principle of priority of the incom-ing information. In order to explain what we exactlymean by updating consider the following example.

Example 2 Suppose the belief unit contains thepropositions � and � ! �. If the new proposition:� is observed we will have a contradiction between�; �! � and :� and consequently we will have threedi�erent goods:1. f�;:�g2. f:�; �! �g3. f�; �! �gUsing belief revision we can choose one of them asthe preferred good while updating we can't choose thethird because it doesn't contain the new information.2Thus the only di�erence between the belief revisionand updating is the fourth step S4 of the belief revisionprocedure. We can de�ne a di�erent step for updating:S40 Selecting the preferred good CG which containsthe new proposition, with its corresponding sup-port set SS.5 An exampleAs an example of the use of the degrees of belief in themulti-context BDI model, let consider the situation inFigure 2. The �gure shows the base set of the agent'sbeliefs above the line and the deductions below it. Theagent in question, Nico, knows that Paolo is dead, andalso has information from a witness Carl which sug-gests that Benito shot Paolo, though Nico only judgesCarl to be reliable to degree 0.5. From additional in-formation Nico has about shooting and murdering shecan conclude that Benito murdered Paolo, though herconclusion is not certain because there is some doubtabout Carl's evidence. This conclusion takes the formof the argument:(murderer(paolo; benito) :hf1; 2; 5g `mp murderer(paolo; benito)i : 0:5)where (i) murderer(paolo; benito) is the formulaewhich is the subject of the argument; (ii) the termsf1; 2; 5g2 are the grounds of the argument which maybe used along with modus ponens|signi�ed by the\mp"|to infer murderer(paolo; benito); and (iii) 0.5is the sign.If new information that Ana was with Benito at thetime of the shooting comes from a second witnessDana, whose reliability is 0.6, then because Nico has2These denote the formulae dead(paolo), shot(X;Y ) ^dead(Y ) ! murderer(Y;X) and shot(benito; paolo).



Index Argument Source Reliability1 (dead(paolo) : fg : 1) - -2 (shot(X;Y ) ^ dead(Y )! murderer(Y;X) : fg : 1) - -3 (was with(X;Y )! was with(Y;X) : fg : 1) - -4 (was with(X;Y ) ^murderer(Y )! suspected(X) : fg : 1) - -5 (shot(benito; paolo) : fg : 0:5) carl 0.56 (murderer(paolo; benito) : hf1; 2; 5g `mp murderer(paolo; benito))i : 0:5) - -Figure 2: The initial state of Nico's belief context.Index Argument Source Reliability1 (dead(paolo) : fg : 1) - -2 (shot(X;Y ) ^ dead(Y )! murderer(Y;X) : fg : 1) - -3 (was with(X;Y )! was with(Y;X) : fg : 1) - -4 (was with(X;Y ) ^murderer(Y )! suspected(X) : fg : 1) - -5 (shot(benito; paolo) : fg : 0:5) carl 0.56 (was with(ana; benito) : fg : 0:6) dana 0.67 (murderer(paolo; benito) : hf1; 2; 5g `mp murderer(paolo; benito)i : 0:5) - -8 (suspected(ana) : hf4; 6; 7g `mp suspected(ana)i : 0:3) - -Figure 3: Nico's belief context after Dana's evidencesome information about co-location and accomplice-hood, Ana becomes a suspect in the killing and Nico'sbelief context becomes that of Figure 3.Suppose now that a new information comes from thewitness Dana that Benito did not shoot Paolo. Thisinformation is not compatible with the Nico's proposi-tion number 5, so the belief revision process calculatesnew degrees of credibility for her beliefs and new reli-abilities for Carl and Dana. After this process Nico'snew belief context is that of Figure 4 (where no de-ductions are shown). If new evidence against Benitoemerges, for example an other agent Ewan, whose re-liability Nico judges be 0.9, says that Benito did shootPaolo, the belief context changes again. The belief re-vision mechanism starts from the reliabilities �xed apriori and Nico gets the context of Figure 5. The re-sult of all these revisions is that Nico is fairly sure thatCarl and Ewan are reliable and that Benito murderedPaolo. In addition, she believes that Dana is ratherunreliable and so does not have much con�dence thatAna is a suspect.6 SummaryThis paper has suggested a way of re�ning the treat-ment of beliefs in BDI models, in particular those builtusing multi-context systems as suggested in [11]. Webelieve that this work brings signi�cant advantages.Firstly because the treatment is based upon the gen-eral ideas of argumentation, the approach we take isvery general; it would, for instance, be simple to devise

an analogous approach which made use of possibilitymeasures rather than measures based on Dempster-Shafer theory. Secondly, the use of degrees of belief,as we have demonstrated, gives a plausible means ofcarrying out belief revision to handle inconsistent data,something that would be much harder to do in moreconventional BDI models. Thirdly, introducing de-grees of belief in propositions provides the foundationfor using decision theoretic methods within BDI mod-els; currently a topic which has had little attention.However, we acknowledge that this work is rather pre-liminary. In particular we need to extend the approachto deal with degrees of desire and intention, and to testout the approach in real applications. Both these di-rections are the topic of ongoing work.References[1] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, andH. Prade. Inconsistency management and priori-tized syntax-based entailment. In Proceedings ofthe 13th International Joint Conference on Arti-�cial Intelligence, pages 640{645, 1995.[2] B. F. Chellas. Modal Logic: An Introduction.Cambridge University Press, Cambridge, UK,1980.[3] J. de Kleer. An assumption-based TMS. Arti�cialIntelligence, 28:127{162, 1986.[4] A. Dragoni and P. Giorgini. Belief revisionthrough the belief function formalism in a multi-
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