Softening constraints in constraint-based protein topology prediction
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Abstract

This paper is concerned with the handling of un-
certain data about the applicability of constraints
in protein topology prediction. It discusses the
use of novel methods of representing and reason-
ing with uncertain data, and presents the results
of some experiments in using these methods to
build probabilistic models of constraint applica-
tion. It thus builds on work by other authors
in both constraint satisfaction and probabilistic
reasoning.

Introduction.

In recent years there has been a lot of interest in the use
of both constraint satisfaction techniques and proba-
bilistic models for solving problems in molecular bi-
ology. Constraint satisfaction techniques have been
applied to problems such as RNA structure predic-
tion (Altman 1994a), tertiary protein structure predic-
tion (Altman & Jardetzky 1989), genetic map assem-
bly (Clark, Rawlings, & Doursenot 1994), and protein
topology prediction (Clark, Shirazi, & Rawlings 1992;
Clark et al. 1994). Probabilistic models have also been
widely applied. Their use has mainly been restricted to
the prediction of protein structure (Asai, Hayamizu, &
Onizuka 1993; Brown ef al. 1994; Delcher et al. 1993;
1994; Haussler et al. 1993), but they have also been
applied to the prediction of RNA structure (Altman
1994b), and tasks such as pedigree analysis (Spiegel-
halter 1990; Szolovits 1992). There have even been
a few applications which combine constraint satisfac-
tion and the use of probability and similar measures
(Altman 1994a; Altman & Jardetzky 1989; Clark et
al. 1994).

*This work was partially supported by ESPRIT Basic
Research Action 3085 (DRUMS).

The reason for this interest is that each technique
provides a means of handling one of the more diffi-
cult aspects of molecular biology problems—that they
involve hugh search spaces, and that they are full of
uncertain and noisy information (Allison 1993). The
fact that the search spaces are so large means that
it 1s not feasible to search them exhaustively and so
some means of restricting the search is required. The
“constrain and generate” methods adopted by systems
of constraint satisfaction do precisely this. The fact
that data is uncertain and noisy suggests that meth-
ods that take this into account by explicitly modelling
the imperfections in the data (MacKenzie, Platt, &
Dix 1993) will be profitable, and this is borne out
by the good performance of probabilistic methods for
protein structure prediction (Delcher et al.  1993;
1994).

In this paper we describe some experiments in ex-
plictly representing the uncertainty of a set of con-
straints used for protein toplogy prediction which could
be combined with the constraint-based approach of
Clark and colleagues (Clark, Shirazi, & Rawlings 1992)
to soften the constraints, making it possible to model
situations in which they do not definitely hold. This
work uses an alternative model of uncertainty to that
described in (Clark et al. 1994) which is based upon
new means of representing and reasoning with uncer-
tainty known as valuation systems (Shenoy 1991) and
the theory of qualitative change (Parsons 1995b). As
with previous work in this area, the intention is to
help a molecular biologist explore the space of possible
protein structures, rather than to present her with a
structure that is guaranteed to be correct.

Protein topology prediction.

Since protein function is closely related to structure,
protein structure prediction—taking the amino acid



sequence of the primary structure, determining the lo-
cation of a-helices and (-strands that make up the
secondary structure, and then discovering the 3-D po-
sition of every atom in the tertiary structure—is an
important problem in molecular biology, and one that
can be eased by the use of computational methods.
Protein topology is an intermediate level somewhere
between secondary and tertiary structure which spec-
ifies how secondary structural units combine together
into larger complexes such as «/f-sheets. The pre-
diction of protein topology is particularly interesting
because 1t can be used to guide the choice of experi-
ments to confirm protein structure and to search for
similar known structures, whilst being easier to estab-
lish than the full 3-D structure. However, a vast num-
ber of possible topologies can be hypothesised for a
given secondary structure, for example, a mixed a/8-
sheet of n strands, where n > 1, can be arranged
in % possible ways (Clark et al. 1994). One
way to reduce this space is to identify and apply con-
straints based upon previous analyses of similar pro-
teins. For example, for o/ sheets (Clark et al. 1994;
Taylor & Green 1989) we might use!:

e C1. For parallel pairs of g-strands, f-a-3 and S-
coil- connections are right handed.

e (2. The first F-strand in the sheet is not at the edge
of the sheet.

e (3. Only one change in winding direction occurs.

e C4. The B-strands associated with the conserved
patterns lie adjacent in the sheet.

e (Cb. All strands lie parallel in the F-sheet.

e C6. Unconserved strands are at the edge of the
sheet.

e F1. Strands are ordered in the sheet by hydropho-
bicity, with the most hydrophobic strands central.

e F2. Parallel 3-coil-3 connections contain at least 10
amino acids.

e F3. Large insertions and deletions are expected to
occur on the edge of a domain.

e 4. Most conserved loops lie adjacent in front.

'The names of the constraints come from (Taylor &
Green 1989) where C'1-C6 are the constraints applied dur-
ing the construction of the solutions (C6 being implicit
as argued in (Clark, Shirazi, & Rawlings 1992)), and F1-
F'5 are generally applicable “folding rules” used to assess
whether predicted structures are valid

e F5. Long secondary-structure units should lie par-
allel or antiparallel to one another, with sequential
units being antiparallel.

These constraints can be applied manually, as de-
scribed by Taylor and Green (Taylor & Green 1989),
or by generating all possible topologies and removing
those that do not conform to the constraints (Cohen
& Kuntz 1987). However manual search is a time-
consuming and error-prone procedure suitable only for
small sheets, and exhaustive search is far too inefficient
to be applied to large structures. As aresult, Clark and
colleagues (Clark, Shirazi, & Rawlings 1992) developed
a Prolog program named CBS1 (later re-implemented
in ElipSys as CBSle and CBS2e (Clark et al. 1994))
to apply the constraints. In this constraint-based ap-
proach, the search proceeds by incrementally adding
components (such as S-strands) to a set of possible
structures. After each addition the set of structures is
pruned by testing against every constraint. CBS1 was
used to reproduce Taylor and Green’s results as well
as to identify a new topological hypothesis consistent
with the constraints (Clark, Shirazi, & Rawlings 1992),
indicating that the original search was not exhaustive.

As one might imagine, because the constraints are
derived from aggregate properties of a collection of pro-
teins, they do not apply to all of them. Clark and
colleagues (Clark, Shirazi, & Rawlings 1992) assessed
the validity of C'1, C2, C'3, C5, F1 and F'2 by check-
ing them against the known structures of eight nu-
cleotide binding domains with similar function. The
results are reproduced in Table 1, where the structures
that are grouped together are those relating to the
same protein. For instance plgpd, plgdl and p2gpd
are different experimentally determined structures for
D-glyceraldehyde-3-phosphate dehydrogenase. Each of
the variations should be considered equally valid, so
when a rule holds for one form of a protein and not for
another, it 1s ambiguous whether or not the constraint
holds for that protein. Other results support the idea
of constraints being uncertain. For instance, King and
colleagues (King et al. 1994) found that some of the
constraints used by Clark et al. failed to hold for some
proteins in wider domains.

Thus while the folding rules are useful heuristics,
they are only true some of the time, leading us to sus-
pect that explicitly modelling the uncertainty in the
constraints might be advisable. One approach to do-
ing this is to assess the validity of a structure based
upon the constraints to which that structure conforms,
and is one of the subjects of this paper. This was also
proposed in (Clark et al. 1994) though here we use a
more sophisticated model. This paper also explores an
alternative method based upon results for propagating



| Protein 1D. | Constraints Violated || Protein ID. | Constraints Violated || Protein 1D. | Constraints Violated |

pdadh F1 p3dfr

pbadh F1 padfr

p6adh F1

p7adh F1 p3adk
11dx 3grs

Ei&ldh F1 e

p4ldh F1 p3pgk

C3 C5 F1 plptk C5 F1
C3 C5 F1 F2 p2pfk C5 F1
p3pfk C5
papfk C5
C2 F1 plgpd C3 C5 F1 F2
plgdl C3 C5 F1 F2
F1 p2gpd C3 C5 F1 F2

Table 1: The results of checking constraints against eight nucleotide-binding domain proteins

Constraint | Number of cases in which | p(zxA) || Constraint | Number of cases in which p(zA)
(z) the constraint is violated (z) the constraint is violated
C1 0 1.0 C1 0 1.0
C2 1 0.947 C2 1 0.875
C3 5 0.737 C3 2 0.75
C5 9 0.526 C5 3 0.625
F1 15 0.211 F1 5-7 [0.125, 0.375]
F2 4 0.789 F2 1-2 [0.750, 0.875]
(a) (b)

Table 2: Probabilities of constraints holding based upon the (a) “disambiguated” and (b) “pure” interpretations

qualitative changes in probability (Parsons 1995b).

Softening the constraints.

The best way of modelling the uncertainty in the con-
straints is not clear, and so in the tradition of experi-
mental investigations of the best way of modelling un-
certainty in a given problem (Heckerman 1990; Heck-
erman & Shwe 1993; Saffiotti, Parsons, & Umkehrer
1994) we discuss a number of different ways in which
the data from Table 1 may be represented. There
are, of course, other possibilities which are not dis-
cussed here—we just cover the most obvious proba-
bilistic models—and for methods using other uncer-
tainty handling techniques see (Parsons 1995a). Since
the data 1s drawn from a reasonably random popula-
tion of proteins the following simple argument can be
made. Table 1 holds a list of 8 proteins. Of these, 7
conform to constraint C'2, and 1 does not, so a possible
nucleotide binding domain structure that conforms to
C?2, has a probability of:

Number of proteins for which C2 holds
Total number of proteins

P(C24A) =
7

8

of being a real protein. Since the sample size is very
small, the probabilities will not be very accurate, but
they will be the best values that can be obtained given
the data to hand.

However, there is a problem with this approach that
arises because the data is ambiguous. Of the eight pro-
teins analysed, several have alternative structures and

some constraints hold for some alternative structures
and not for others. Thus it is not clear whether or not
some constraints are valid for some proteins. To han-
dle the ambiguity we need more subtle approaches, and
one is to “disambiguate” and consider each of the 19
possible structures as a separate entity. Doing this al-
lows us to argue that of these 19 structures 18 conform
to C'2 and 1 doesn’t so that a structure that conforms
to C'2 has a probability of:

Number of structures for which C2 holds
Total number of structures

P(C2A)

18
19

of being a real protein. This approach gives the prob-
abilities of Table 2(a).

However, 1t could be argued that disambiguation dis-
torts the data, and the uncertainty should be modelled
in a “purer” way acknowledging the ambiguity. One
way of doing this is to use interval probabilities to rep-
resent the uncertainty with the lower bound calculated
by counting proteins for which the rule is ambiguous as
proteins for which it fails to hold, and the upper bound
by counting proteins for which the rule is ambiguous
as proteins for which it does hold. So, for a constraint
for which there is no ambiguity, for instance C2, we
have, as before:

Number of proteins for which C2 holds
Total number of proteins

P(C24A) =

7
8



For ambiguous constraints such as F'1, we use the fol-
lowing. We have one protein for which the constraint
is known to hold for all structures and three for which
it is known to hold for at least one structure, so:

holds for every structure

P(C2A)

|:Number of proteins for which C2

Total number of proteins

Number of proteins for which C2
holds for at least one structure

Total number of proteins
13
- &3
Using this method on data in Table 1 we get the prob-
abilities of Table 2(b). Other methods of handling the
ambiguity may be adopted (Parsons 1995a).

The available data can also be interpreted as telling
us how often constraints hold for real proteins, since
every structure in the table occurs in nature. Thus the
proportion of the proteins for which a given constraint

holds is the conditional probability that the constraint
holds given that the protein is real. Thus, for C'2:

Number of proteins for which C2 holds
Total number of proteins

p(C2|real) =

We have no information about the proportion of pro-
teins for which C'2 holds yet which are not real, so
we cannot establish p(C2 | —real) in the same way.
Instead, we must employ the principle of maximum
entropy to conclude that p(C2 | —real) = 0.5. From
(Parsons 1995b) we learn that these values are suffi-
cient to establish the relationship between p(C2) and

p(real) in terms of the derivative %ﬂ which relates

real)

them. This information, in turn (Parsons 1995b), is

sufficient to give us dg}f(g;l)), allowing us to establish

how p(real) changes when we have information about
C?2 holding. From the data we have, irrespective of
whether we use the “disambiguated” or “pure” inter-

pretations, we have the derivatives of Table 3. Note
dp(real)

that “Zr=gy = [+] indicates that as p(C'1) increases,
so does p(real), and dg}f(;(il)) = [~] indicates that as

p(F1) increases, p(real) decreases.

This information about changes in probability fits
closely to CBS1, since in that system, following each
step, a structure can either conform to the same set
of constraints as before, or to some superset or subset
of that set. So, after each step new evidence about
whether or not a constraint holds may be available. If
it 1s possible to relate the fact that a particular struc-
ture conforms to a particular constraint to it being cor-
rect, then the effect of the new knowledge may be prop-
agated to find out how it affects the likelihood that the
structure is correct. Thus it is possible to tell whether

Constraint | Number of cases in which dp;l(;(z(;l)

(z) the constraint 1s violated

1 0 +
C?2 1 +
C3 2 +
5 3 +
£l 5-7 _
£2 1-2 +

Table 3: The probabilistic qualitative derivatives based
upon both “disambiguated” and “pure” interpreta-
tions

the protein structure that is being assembled has be-
come more or less likely to be correct, and whether it
should be rejected or continued with accordingly.

The valuation system models.

Having considered the different ways in which the un-
certain nature of the constraints can be modelled, we
turn to considering how to employ these models in
topology prediction. CBS1 generates as its output
sets of possible topologies of nucleotide binding domain
proteins and the constraints to which they conform.
One kind of output that would be useful is some mea-
sure of the validity of the sets of topologies based upon
the constraints to which they conform.

To build suitable representations, valuation sys-
tems were used. Valuation systems (Shenoy 1991)
can be viewed as a generalisation of probabilistic net-
works since they allow a variety of uncertainty han-
dling methods to be employed including evidence the-
ory (Shafer 1976) and possibility theory (Zadeh 1978)
whilst losing none of the expressivenesst or computa-
tional efficiency of probabilistic networks (Delcher et
al. 1994). They were selected for this work because
they make it possible to use different methods for han-
dling uncertainty while maintaining the same under-
lying model (Parsons 1995a). The valuation system
that was adopted for handling the non-change data is
given in Figure 1—ovals denote variables and boxes de-
note relations between variables. This network is based
upon that in (Smets & Hsia 1990), and expresses the
fact that the validity of the structure is a combination
of the effect of all constraints, and that the constraints
hold by default until they are explicitly represented
as failing. Thus, for C'1 there is a node “C'1” which
is true if C'1 holds for the structure in question, and
false otherwise. The value of this node combined on

the node “C1&C1A — real” with p(C'1A) which is

'n fact, valuation systems are more expressive since
they can handle models which include directed cycles, and
directed cycles cannot be handled by any form of proba-
bilistic network.
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Figure 1: A network relating the effects of constraints to the likelihood that a structure is real.
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Figure 2: A network for relating changes in information about the applicability of constraints to the changes in

likelihood that a structure is real.

the value of node “C'1A”. This is then combined with
similar results for other constraints to get an overall
measure of the likelihood that the protein is real. This
valuation system was then evaluated using Mummu
(Parsons 1995b), which handles valuation systems with
point and interval values, to get the results presented in
the next section. This system could easily be linked to
the members of the CBS family of programs, although
such work has not been attempted.

It is also possible to construct a network (Figure 2)
which relates the qualitative change in probability of
occurrence of the individual constraints to the change
in the likelihood of a structure being a real protein by
using relations “Czr—real” which reflect the relevant
derivatives. Once again this model can be evaluated
using Mummu, and could be linked to members of the
CBS family of programs.

Results.

Table 2(a) has point values for each of the con-
straint probabilities p(zA) that are based on the dis-
ambiguated sample of eight nucleotide binding domain
proteins. The results of using these in the first valua-
tion system model are given in Figure 3 and the second
and fifth columns of Table 4. In the graph each point
on the z-axis corresponds to a single set of constraints,
with the validity measured up the y-axis, and the left-
most point on the z-axis corresponds to the first set
of constraints in Table 4. These results show a range
of values from the certainty that a topology will be a
real protein when all the constraints hold, to ignorance
(a probability of 0.5) when no constraints hold. Note
that any structure which conforms to C'1 1s predicted
to be certainly real. Table 2(b) has interval values
which represent the ambiguity surrounding F'1 and F'2



Constraint Set p(real) | p(real) Constraint Set p(real) | p(real)

1C1,C2,C3,05,FL, F2) | 1.0 1.0 1.0 1C2,C3,F1, F2} | 0.998 | [0.990 0.998
{C1,C2,03,C5, F1} 1.0 1.0 1.0 {C2,C3,F1} 0.98% | [0.985 0.998
{C1,C2,03,C5, F2) 1.0 1.0 1.0 {C2,C3, F2) 0.997 | [0.955 0.988
{C1,C2,C3,C5) 1.0 1.0 1.0 {C2, 03} 0.986 | [0.937 0.986
{C1,C3,C5, F1, F2} 1.0 1.0 1.0 {C2,C5,F1,F2} | 0.996 | [0.985 0.997
{C1,C3,C5, F1} 1.0 1.0 1.0 {C2,C5,F1} 0.979 | [0.978 0.997
{C1,C3,C5, F2} 1.0 1.0 1.0 {C2,C5, F2) 0.995 | [0.934 0.982
{C1,C3,05) 1.0 1.0 1.0 {C2,C5) 0.975 | [0.909 0.979
{C1,C2,C5, F1, F2} 1.0 1.0 1.0 {C3,C5,F1,F2} | 0.978 | [0.970 0.995
{C1,C2,C5, F1} 1.0 1.0 1.0 {C3,C5,F1} 0.905 | [0.957 0.994
{C1,C2,C5, F2} 1.0 [1.0 1.0] {C3,C5, F2) 0.974 | [0.877 0.965]
{c1,C2,05) 1.0 1.0 1.0] {C3, 05} 0.889 | [0.833 0.958]
{C2,C3,C5, F1, F2) 0.999 | [0.996 1.0] | {C1,F1, F2} 1.0 1.0 1.0]

{C2,C3,C5, F1} 0.994 | [0.904 1.0] | {C1,F1} 1.0 1.0 1.0]

{C2,C3,C5, F1} 0.999 | [0.983 0.995] || {C1, F2} 1.0 1.0 1.0]

{C2,C3,05) 0.993 | [0.976 0.995] | {C'1} 1.0 1.0 1.0]

{C1,C2,C3, F1,F2} 1.0 1.0 1.0] {C2, F1,F2} 0.991 | [0.96 0.993]
{C1,C2,C3, F1} 1.0 1.0 1.0 {C2, F1} 0.957 | [0.944 0.992
{C1,C2,C3, F2} 1.0 1.0 1.0 {C2, F2} 0.989 | [0.842 0.954
{C1,C2,C3, F1, F2} 1.0 1.0 1.0 {c2} 0.950 | [0.789 0.945
{C1,C2, F1, F2} 1.0 1.0 1.0 {C3, F1,F2} 0.955 | [0.923 0.986
{C1,C2, F1} 1.0 1.0 1.0 {C3, F1} 0.819 | [0.894 0.984
{C1,C2, F2) 1.0 1.0 1.0 {C3, F2} 0.947 | [0.727 0.911
{c1,C2} 1.0 1.0 1.0 {c3} 0.792 | [0.651 0.896
{C1,C3, F1, F2} 1.0 1.0 1.0 {C5, F1, F2} 0.922 | [0.889 0.980
{C1,C3,F1} 1.0 1.0 1.0 {C5, F1} 0.715 | [0.848 0.976]
{C1,C3, F2) 1.0 1.0 1.0 {C5, F2} 0.900 | [0.64 0.873]
{c1,C3) 1.0 1.0 1.0 {c5} 0.678 | [0.554 0.851]
{C1,C5, F1, F2} 1.0 1.0 1.0 {F1, F2} 0.849 | [0.75 0.947]
{C1,C5,F1} 1.0 1.0 1.0 {F1} 0.543 | [0.677 0.937]
{C1,C5, F2) 1.0 1.0 1.0 {F2} 0.826 | [0.4 0.72]

{c1,C5) 1.0 [1.0 1.0] 0O 0.5 [0.318 0.682]

Table 4: Results of the experiment in

holding. Results using these values are given in the
third and sixth columns of Table 4 and Figure 4. In
order to represent intervals graphically they have been
transformed into point values by replacing them with
their mid-points. This transformation may be justified
(Parsons 1995b) by an argument based on the prin-
ciple of maximum entropy. Both sets of results are
dominated by the value attached to C'1, but it 1s nev-
ertheless clear that as the set of constraints to which
a protein conforms is reduced (which is what proceed-
ing along the z-axis represents), its measure of validity
decreases, except where a very unreliable constraint is
relaxed when there is a sharp increase in validity.

We also have results about the effect of changing
the set of constraints to which a structure conforms.
Adding constraints one at a time using the network of
Figure 2 and establishing the results of the addition
using Mummu allows us to evaluate the model that
uses qualitative changes. This shows that the addition
of all constraints except F'1 causes p(real) to rise, the
latter causing it to fall (Table 5—[+] indicates a rise in
p(real), [-] a fall) an outcome which is expected from

assessing the validity of sets of constraints

Constraint Added
1
2
3
C5
F1
F2

Change in p(real) |

]

N e P

— —————|

+

Table 5: The results of using the probabilistic qualita-
tive derivatives from Table 3

the data of Table 2. It is less easy to see how these
results fit against those in Table 4 and Figures 3-4
since since they are based on a different underlying
model. However, both in tabular and graphical form
it is clear that removing some constraints, C'1 for in-
stance, causes the validity of a structure to decrease
sharply, while removing less reliable constraints such
as F'2 cause a less dramatic change.

Discussion.

Unfortunately, there is no obvious “gold standard”
(Heckerman 1990) against which to compare the re-
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Figure 3: Results based on the point probabilities from
Table 2(a)

sults, so we are forced to use more pragmatic methods
of evaluation, and on this basis it is possible to suggest
a number of criteria for both choosing between results
and deciding whether any of them are useful, while
bearing in mind that the intention of this work 1s to
provide a means of focussing attention on a group of
likely structures rather than determining the absolute
best structure.

For instance the decision about which results are
most acceptable will partly depend on which method
of dealing with ambiguity is preferred. If the “disam-
biguated” values are chosen, the results in the second
and fifth columns and Figure 3 apply. If an interval
representation of the ambiguity is desired, then the
third and sixth columns and graph of Figure 4 should
be considered.

Thought might also be given to what the results are
to be used for, and the decision about whether they
are useful made on the basis of which are most use-
ful. In this case it may be of little use having a set
of values which contain many identical entries, an ar-
gument which suggests that the results might be more
useful if they were more disperate since, as they stand,
they have a value of 1 for any constraint set containing
C'1. On the other hand this could be acceptable as a
clear indication of the necessity of having structures
conformant with C'1.

Another point is that the prediction of protein topol-
ogy 1s only a part of the process of establishing struc-
ture. Clearly, if a large number of experiments are
required in order to reject each possible structure, it

1 -

0

Figure 4: Results based on the interval probabilities
from Table 2(b)

would be advantageous to start with the smallest pos-
sible set of structures. This suggests considering the
number of possible structures associated with various
sets of constraints when considering the usefulness of
the results. It is possible to determine the number of
structures associated with sets of constraints, and the
order of the seven sets for which this has been done
(Rawlings 1995), based upon the number of possible
structures, agrees broadly with the order obtained from
our results. This suggests that our results are helpful in
this regard, though again more disperate values might
make things easier.

Finally, the way in which the topology prediction
system 1s to be used can be considered. If it 1s intended
that the system be used in batch mode to predict a
group of structures and their respective validities, then
the absolute values given using the first valuation sys-
tem seem to be the most useful. However, this changes
if the system is used interactively, with constraints be-
ing added and deleted one by one so that their effect
on the structure and the validity can be observed. In
this case the use of the qualitative derivatives and the
second valuation system seems to be the best alterna-
tive since it gives immediate feedback on the change in
validity as the constraint set is altered.

Summary.

This paper is not the first to suggest that 1t would
be sensible to model uncertainty in topological con-
straints. That distinction, to my knowledge, falls to

(Clark, Shirazi, & Rawlings 1992). Tt is also not the



first paper to present work that actually models the
uncertainty in the constraints, since, to my knowledge,
the first paper to do so was (Clark et al. 1994). Tt
does, however, make a number of useful contributions.
One of these is the suggestion that valuation systems
can be usefully employed in this area. To date valua-
tion systems have had only a fraction of the publicity
received by probabilistic networks, yet they are by no
means a lesser tool for the modelling of uncertain infor-
mation, and deserve wider application. In particular,
as we have demonstrated in this paper, they are quite
appropriate for modelling uncertainty about protein
structures, and it is to be hoped that our demonstra-
tion convinces others to adopt them in their work.

Another contribution is the demonstration that
there are a number of different ways of handling the
uncertain information in protein topology prediction,
and that all of these may be useful in different situa-
tions. In this vein we have shown that there are dif-
ferent ways to handle the ambiguity of the data about
the extent to which constraints apply, and that there
is merit in simply looking at the way in which the like-
lihood of a structure being valid changes as well as
considering what that likelihood is.

In addition to this the paper has proposed the use of
more sophisticated models of handling uncertainty in
protein topology prediction than have previously been
used. Clark and colleagues (Clark et al. 1994) use
a simple weighting which records the penalty associ-
ated with constraints holding and failing. The weights
are obtained in the same way as “pure” probabilities,
and combined additively and with the assumption that
they are completely independent. Whilst the method
presented here also assumes independence, the values
we use are more strongly based on objective probabil-
ity theory, and combined as one would combine prob-
abilities. Furthermore, the use of the valuation system
model means that it is easy to extend the approach
presented in this paper to use other methods of han-
dling uncertainty (Parsons 1995a), and it is not easy
to see how this might be done with simple weights.

Lastly, the rather preliminary nature of this paper
should be acknowledged. The work presented here
only represents a fraction of the possible work that
could be carried out in this area—it really raises many
more questions than it answers, and points to a much
more significant contribution than the modest effort
it records. For instance, the models we have adopted
are very simple, and could be greatly refined by con-
sidering the dependencies between the constraints, by
obtaining more data on the applicability of the con-
straints, or by using different methods for handling
the rather imperfect data that is available. Given time

such refinements could be incorporated into the meth-
ods outlined in this paper, and it is hoped that such
work will be undertaken in the future. In addition, it
would be extremely useful to find some means of es-
tablishing a “gold standard” against which the results
can be judged, and again it is hoped that such work
can be undertaken.
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