
Softening constraints in constraint-based protein topology predictionSimon Parsons �Advanced Computation Laboratory,Imperial Cancer Research FundP.O. Box 123, Lincoln's Inn FieldsLondon WC2A 3PXemail: sp@acl.lif.icnet.ukDepartment of Electronic EngineeringQueen Mary and West�eld CollegeMile End RoadLondon E1 4NSAbstractThis paper is concerned with the handling of un-certain data about the applicability of constraintsin protein topology prediction. It discusses theuse of novel methods of representing and reason-ing with uncertain data, and presents the resultsof some experiments in using these methods tobuild probabilistic models of constraint applica-tion. It thus builds on work by other authorsin both constraint satisfaction and probabilisticreasoning. Introduction.In recent years there has been a lot of interest in the useof both constraint satisfaction techniques and proba-bilistic models for solving problems in molecular bi-ology. Constraint satisfaction techniques have beenapplied to problems such as RNA structure predic-tion (Altman 1994a), tertiary protein structure predic-tion (Altman & Jardetzky 1989), genetic map assem-bly (Clark, Rawlings, & Doursenot 1994), and proteintopology prediction (Clark, Shirazi, & Rawlings 1992;Clark et al. 1994). Probabilistic models have also beenwidely applied. Their use has mainly been restricted tothe prediction of protein structure (Asai, Hayamizu, &Onizuka 1993; Brown et al. 1994; Delcher et al. 1993;1994; Haussler et al. 1993), but they have also beenapplied to the prediction of RNA structure (Altman1994b), and tasks such as pedigree analysis (Spiegel-halter 1990; Szolovits 1992). There have even beena few applications which combine constraint satisfac-tion and the use of probability and similar measures(Altman 1994a; Altman & Jardetzky 1989; Clark etal. 1994).�This work was partially supported by ESPRIT BasicResearch Action 3085 (DRUMS).

The reason for this interest is that each techniqueprovides a means of handling one of the more di�-cult aspects of molecular biology problems|that theyinvolve hugh search spaces, and that they are full ofuncertain and noisy information (Allison 1993). Thefact that the search spaces are so large means thatit is not feasible to search them exhaustively and sosome means of restricting the search is required. The\constrain and generate" methods adopted by systemsof constraint satisfaction do precisely this. The factthat data is uncertain and noisy suggests that meth-ods that take this into account by explicitly modellingthe imperfections in the data (MacKenzie, Platt, &Dix 1993) will be pro�table, and this is borne outby the good performance of probabilistic methods forprotein structure prediction (Delcher et al. 1993;1994).In this paper we describe some experiments in ex-plictly representing the uncertainty of a set of con-straints used for protein toplogy prediction which couldbe combined with the constraint-based approach ofClark and colleagues (Clark, Shirazi, & Rawlings 1992)to soften the constraints, making it possible to modelsituations in which they do not de�nitely hold. Thiswork uses an alternative model of uncertainty to thatdescribed in (Clark et al. 1994) which is based uponnew means of representing and reasoning with uncer-tainty known as valuation systems (Shenoy 1991) andthe theory of qualitative change (Parsons 1995b). Aswith previous work in this area, the intention is tohelp a molecular biologist explore the space of possibleprotein structures, rather than to present her with astructure that is guaranteed to be correct.Protein topology prediction.Since protein function is closely related to structure,protein structure prediction|taking the amino acid



sequence of the primary structure, determining the lo-cation of �-helices and �-strands that make up thesecondary structure, and then discovering the 3-D po-sition of every atom in the tertiary structure|is animportant problem in molecular biology, and one thatcan be eased by the use of computational methods.Protein topology is an intermediate level somewherebetween secondary and tertiary structure which spec-i�es how secondary structural units combine togetherinto larger complexes such as �=�-sheets. The pre-diction of protein topology is particularly interestingbecause it can be used to guide the choice of experi-ments to con�rm protein structure and to search forsimilar known structures, whilst being easier to estab-lish than the full 3-D structure. However, a vast num-ber of possible topologies can be hypothesised for agiven secondary structure, for example, a mixed �=�-sheet of n strands, where n > 1, can be arrangedin n!(4n�1)2 possible ways (Clark et al. 1994). Oneway to reduce this space is to identify and apply con-straints based upon previous analyses of similar pro-teins. For example, for �=� sheets (Clark et al. 1994;Taylor & Green 1989) we might usey:� C1. For parallel pairs of �-strands, �-�-� and �-coil-� connections are right handed.� C2. The �rst �-strand in the sheet is not at the edgeof the sheet.� C3. Only one change in winding direction occurs.� C4. The �-strands associated with the conservedpatterns lie adjacent in the sheet.� C5. All strands lie parallel in the �-sheet.� C6. Unconserved strands are at the edge of thesheet.� F1. Strands are ordered in the sheet by hydropho-bicity, with the most hydrophobic strands central.� F2. Parallel �-coil-� connections contain at least 10amino acids.� F3. Large insertions and deletions are expected tooccur on the edge of a domain.� F4. Most conserved loops lie adjacent in front.yThe names of the constraints come from (Taylor &Green 1989) where C1{C6 are the constraints applied dur-ing the construction of the solutions (C6 being implicitas argued in (Clark, Shirazi, & Rawlings 1992)), and F1{F5 are generally applicable \folding rules" used to assesswhether predicted structures are valid

� F5. Long secondary-structure units should lie par-allel or antiparallel to one another, with sequentialunits being antiparallel.These constraints can be applied manually, as de-scribed by Taylor and Green (Taylor & Green 1989),or by generating all possible topologies and removingthose that do not conform to the constraints (Cohen& Kuntz 1987). However manual search is a time-consuming and error-prone procedure suitable only forsmall sheets, and exhaustive search is far too ine�cientto be applied to large structures. As a result, Clark andcolleagues (Clark, Shirazi, & Rawlings 1992) developeda Prolog program named CBS1 (later re-implementedin ElipSys as CBS1e and CBS2e (Clark et al. 1994))to apply the constraints. In this constraint-based ap-proach, the search proceeds by incrementally addingcomponents (such as �-strands) to a set of possiblestructures. After each addition the set of structures ispruned by testing against every constraint. CBS1 wasused to reproduce Taylor and Green's results as wellas to identify a new topological hypothesis consistentwith the constraints (Clark, Shirazi, & Rawlings 1992),indicating that the original search was not exhaustive.As one might imagine, because the constraints arederived from aggregate properties of a collection of pro-teins, they do not apply to all of them. Clark andcolleagues (Clark, Shirazi, & Rawlings 1992) assessedthe validity of C1, C2, C3, C5, F1 and F2 by check-ing them against the known structures of eight nu-cleotide binding domains with similar function. Theresults are reproduced in Table 1, where the structuresthat are grouped together are those relating to thesame protein. For instance p1gpd, p1gd1 and p2gpdare di�erent experimentally determined structures forD-glyceraldehyde-3-phosphate dehydrogenase. Each ofthe variations should be considered equally valid, sowhen a rule holds for one form of a protein and not foranother, it is ambiguous whether or not the constraintholds for that protein. Other results support the ideaof constraints being uncertain. For instance, King andcolleagues (King et al. 1994) found that some of theconstraints used by Clark et al. failed to hold for someproteins in wider domains.Thus while the folding rules are useful heuristics,they are only true some of the time, leading us to sus-pect that explicitly modelling the uncertainty in theconstraints might be advisable. One approach to do-ing this is to assess the validity of a structure basedupon the constraints to which that structure conforms,and is one of the subjects of this paper. This was alsoproposed in (Clark et al. 1994) though here we use amore sophisticated model. This paper also explores analternative method based upon results for propagating



Protein ID. Constraints Violated Protein ID. Constraints Violated Protein ID. Constraints Violatedp4adh F1 p3dfr C3 C5 F1 p1pfk C5 F1p5adh F1 p4dfr C3 C5 F1 F2 p2pfk C5 F1p6adh F1 p3pfk C5p7adh F1 p3adk p4pfk C5p1ldx p3grs C2 F1 p1gpd C3 C5 F1 F2p3ldh F1 p1gd1 C3 C5 F1 F2p4ldh F1 p3pgk F1 p2gpd C3 C5 F1 F2Table 1: The results of checking constraints against eight nucleotide-binding domain proteinsConstraint Number of cases in which p(xA) Constraint Number of cases in which p(xA)(x) the constraint is violated (x) the constraint is violatedC1 0 1.0 C1 0 1.0C2 1 0.947 C2 1 0.875C3 5 0.737 C3 2 0.75C5 9 0.526 C5 3 0.625F1 15 0.211 F1 5{7 [0.125, 0.375]F2 4 0.789 F2 1{2 [0.750, 0.875](a) (b)Table 2: Probabilities of constraints holding based upon the (a) \disambiguated" and (b) \pure" interpretationsqualitative changes in probability (Parsons 1995b).Softening the constraints.The best way of modelling the uncertainty in the con-straints is not clear, and so in the tradition of experi-mental investigations of the best way of modelling un-certainty in a given problem (Heckerman 1990; Heck-erman & Shwe 1993; Sa�otti, Parsons, & Umkehrer1994) we discuss a number of di�erent ways in whichthe data from Table 1 may be represented. Thereare, of course, other possibilities which are not dis-cussed here|we just cover the most obvious proba-bilistic models|and for methods using other uncer-tainty handling techniques see (Parsons 1995a). Sincethe data is drawn from a reasonably random popula-tion of proteins the following simple argument can bemade. Table 1 holds a list of 8 proteins. Of these, 7conform to constraint C2, and 1 does not, so a possiblenucleotide binding domain structure that conforms toC2, has a probability of:P (C2A) = Number of proteins for which C2 holdsTotal number of proteins= 78of being a real protein. Since the sample size is verysmall, the probabilities will not be very accurate, butthey will be the best values that can be obtained giventhe data to hand.However, there is a problem with this approach thatarises because the data is ambiguous. Of the eight pro-teins analysed, several have alternative structures and

some constraints hold for some alternative structuresand not for others. Thus it is not clear whether or notsome constraints are valid for some proteins. To han-dle the ambiguitywe need more subtle approaches, andone is to \disambiguate" and consider each of the 19possible structures as a separate entity. Doing this al-lows us to argue that of these 19 structures 18 conformto C2 and 1 doesn't so that a structure that conformsto C2 has a probability of:P (C2A) = Number of structures for which C2 holdsTotal number of structures= 1819of being a real protein. This approach gives the prob-abilities of Table 2(a).However, it could be argued that disambiguation dis-torts the data, and the uncertainty should be modelledin a \purer" way acknowledging the ambiguity. Oneway of doing this is to use interval probabilities to rep-resent the uncertainty with the lower bound calculatedby counting proteins for which the rule is ambiguous asproteins for which it fails to hold, and the upper boundby counting proteins for which the rule is ambiguousas proteins for which it does hold. So, for a constraintfor which there is no ambiguity, for instance C2, wehave, as before:P (C2A) = Number of proteins for which C2 holdsTotal number of proteins= 78



For ambiguous constraints such as F1, we use the fol-lowing. We have one protein for which the constraintis known to hold for all structures and three for whichit is known to hold for at least one structure, so:P (C2A) = � Number of proteins for which C2holds for every structureTotal number of proteins ;Number of proteins for which C2holds for at least one structureTotal number of proteins �= h18 ; 38iUsing this method on data in Table 1 we get the prob-abilities of Table 2(b). Other methods of handling theambiguity may be adopted (Parsons 1995a).The available data can also be interpreted as tellingus how often constraints hold for real proteins, sinceevery structure in the table occurs in nature. Thus theproportion of the proteins for which a given constraintholds is the conditional probability that the constraintholds given that the protein is real. Thus, for C2:p(C2 jreal) = Number of proteins for which C2 holdsTotal number of proteinsWe have no information about the proportion of pro-teins for which C2 holds yet which are not real, sowe cannot establish p(C2 j :real) in the same way.Instead, we must employ the principle of maximumentropy to conclude that p(C2 j :real) = 0:5. From(Parsons 1995b) we learn that these values are su�-cient to establish the relationship between p(C2) andp(real) in terms of the derivative dp(C2)dp(real) which relatesthem. This information, in turn (Parsons 1995b), issu�cient to give us dp(real)dp(C2) , allowing us to establishhow p(real) changes when we have information aboutC2 holding. From the data we have, irrespective ofwhether we use the \disambiguated" or \pure" inter-pretations, we have the derivatives of Table 3. Notethat dp(real)dp(C1) = [+] indicates that as p(C1) increases,so does p(real), and dp(real)dp(F1) = [�] indicates that asp(F1) increases, p(real) decreases.This information about changes in probability �tsclosely to CBS1, since in that system, following eachstep, a structure can either conform to the same setof constraints as before, or to some superset or subsetof that set. So, after each step new evidence aboutwhether or not a constraint holds may be available. Ifit is possible to relate the fact that a particular struc-ture conforms to a particular constraint to it being cor-rect, then the e�ect of the new knowledge may be prop-agated to �nd out how it a�ects the likelihood that thestructure is correct. Thus it is possible to tell whether

Constraint Number of cases in which dp(real)dp(x)(x) the constraint is violatedC1 0 [+]C2 1 [+]C3 2 [+]C5 3 [+]F1 5{7 [�]F2 1{2 [+]Table 3: The probabilistic qualitative derivatives basedupon both \disambiguated" and \pure" interpreta-tionsthe protein structure that is being assembled has be-come more or less likely to be correct, and whether itshould be rejected or continued with accordingly.The valuation system models.Having considered the di�erent ways in which the un-certain nature of the constraints can be modelled, weturn to considering how to employ these models intopology prediction. CBS1 generates as its outputsets of possible topologies of nucleotide binding domainproteins and the constraints to which they conform.One kind of output that would be useful is some mea-sure of the validity of the sets of topologies based uponthe constraints to which they conform.To build suitable representations, valuation sys-tems were used. Valuation systems (Shenoy 1991)can be viewed as a generalisation of probabilistic net-works since they allow a variety of uncertainty han-dling methods to be employed including evidence the-ory (Shafer 1976) and possibility theory (Zadeh 1978)whilst losing none of the expressivenessz or computa-tional e�ciency of probabilistic networks (Delcher etal. 1994). They were selected for this work becausethey make it possible to use di�erent methods for han-dling uncertainty while maintaining the same under-lying model (Parsons 1995a). The valuation systemthat was adopted for handling the non-change data isgiven in Figure 1|ovals denote variables and boxes de-note relations between variables. This network is basedupon that in (Smets & Hsia 1990), and expresses thefact that the validity of the structure is a combinationof the e�ect of all constraints, and that the constraintshold by default until they are explicitly representedas failing. Thus, for C1 there is a node \C1" whichis true if C1 holds for the structure in question, andfalse otherwise. The value of this node combined onthe node \C1&C1A ! real" with p(C1A) which iszIn fact, valuation systems are more expressive sincethey can handle models which include directed cycles, anddirected cycles cannot be handled by any form of proba-bilistic network.
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""""""""����� TTTTT bbbbbbbb PPPPPPPPPPPPPPC1C1!real C2C2!real C3C3!real C5C5!real F1F1!real F2F2!realFigure 2: A network for relating changes in information about the applicability of constraints to the changes inlikelihood that a structure is real.the value of node \C1A". This is then combined withsimilar results for other constraints to get an overallmeasure of the likelihood that the protein is real. Thisvaluation system was then evaluated using Mummu(Parsons 1995b), which handles valuation systems withpoint and interval values, to get the results presented inthe next section. This system could easily be linked tothe members of the CBS family of programs, althoughsuch work has not been attempted.It is also possible to construct a network (Figure 2)which relates the qualitative change in probability ofoccurrence of the individual constraints to the changein the likelihood of a structure being a real protein byusing relations \Cx!real" which re
ect the relevantderivatives. Once again this model can be evaluatedusing Mummu, and could be linked to members of theCBS family of programs.
Results.Table 2(a) has point values for each of the con-straint probabilities p(xA) that are based on the dis-ambiguated sample of eight nucleotide binding domainproteins. The results of using these in the �rst valua-tion system model are given in Figure 3 and the secondand �fth columns of Table 4. In the graph each pointon the x-axis corresponds to a single set of constraints,with the validity measured up the y-axis, and the left-most point on the x-axis corresponds to the �rst setof constraints in Table 4. These results show a rangeof values from the certainty that a topology will be areal protein when all the constraints hold, to ignorance(a probability of 0.5) when no constraints hold. Notethat any structure which conforms to C1 is predictedto be certainly real. Table 2(b) has interval valueswhich represent the ambiguity surrounding F1 and F2



Constraint Set p(real) p(real) Constraint Set p(real) p(real)fC1; C2; C3; C5; F1; F2g 1:0 [1:0 1:0] fC2; C3; F1; F2g 0:998 [0:990 0:998]fC1; C2; C3; C5; F1g 1:0 [1:0 1:0] fC2; C3; F1g 0:988 [0:985 0:998]fC1; C2; C3; C5; F2g 1:0 [1:0 1:0] fC2; C3; F2g 0:997 [0:955 0:988]fC1; C2; C3; C5g 1:0 [1:0 1:0] fC2; C3g 0:986 [0:937 0:986]fC1; C3; C5; F1; F2g 1:0 [1:0 1:0] fC2; C5; F1; F2g 0:996 [0:985 0:997]fC1; C3; C5; F1g 1:0 [1:0 1:0] fC2; C5; F1g 0:979 [0:978 0:997]fC1; C3; C5; F2g 1:0 [1:0 1:0] fC2; C5; F2g 0:995 [0:934 0:982]fC1; C3; C5g 1:0 [1:0 1:0] fC2; C5g 0:975 [0:909 0:979]fC1; C2; C5; F1; F2g 1:0 [1:0 1:0] fC3; C5; F1; F2g 0:978 [0:970 0:995]fC1; C2; C5; F1g 1:0 [1:0 1:0] fC3; C5; F1g 0:905 [0:957 0:994]fC1; C2; C5; F2g 1:0 [1:0 1:0] fC3; C5; F2g 0:974 [0:877 0:965]fC1; C2; C5g 1:0 [1:0 1:0] fC3; C5g 0:889 [0:833 0:958]fC2; C3; C5; F1; F2g 0:999 [0:996 1:0] fC1; F1; F2g 1:0 [1:0 1:0]fC2; C3; C5; F1g 0:994 [0:994 1:0] fC1; F1g 1:0 [1:0 1:0]fC2; C3; C5; F1g 0:999 [0:983 0:995] fC1; F2g 1:0 [1:0 1:0]fC2; C3; C5g 0:993 [0:976 0:995] fC1g 1:0 [1:0 1:0]fC1; C2; C3; F1; F2g 1:0 [1:0 1:0] fC2; F1; F2g 0:991 [0:96 0:993]fC1; C2; C3; F1g 1:0 [1:0 1:0] fC2; F1g 0:957 [0:944 0:992]fC1; C2; C3; F2g 1:0 [1:0 1:0] fC2; F2g 0:989 [0:842 0:954]fC1; C2; C3; F1; F2g 1:0 [1:0 1:0] fC2g 0:950 [0:789 0:945]fC1; C2; F1; F2g 1:0 [1:0 1:0] fC3; F1; F2g 0:955 [0:923 0:986]fC1; C2; F1g 1:0 [1:0 1:0] fC3; F1g 0:819 [0:894 0:984]fC1; C2; F2g 1:0 [1:0 1:0] fC3; F2g 0:947 [0:727 0:911]fC1; C2g 1:0 [1:0 1:0] fC3g 0:792 [0:651 0:896]fC1; C3; F1; F2g 1:0 [1:0 1:0] fC5; F1; F2g 0:922 [0:889 0:980]fC1; C3; F1g 1:0 [1:0 1:0] fC5; F1g 0:715 [0:848 0:976]fC1; C3; F2g 1:0 [1:0 1:0] fC5; F2g 0:909 [0:64 0:873]fC1; C3g 1:0 [1:0 1:0] fC5g 0:678 [0:554 0:851]fC1; C5; F1; F2g 1:0 [1:0 1:0] fF1; F2g 0:849 [0:75 0:947]fC1; C5; F1g 1:0 [1:0 1:0] fF1g 0:543 [0:677 0:937]fC1; C5; F2g 1:0 [1:0 1:0] fF2g 0:826 [0:4 0:72]fC1; C5g 1:0 [1:0 1:0] fg 0:5 [0:318 0:682]Table 4: Results of the experiment in assessing the validity of sets of constraintsholding. Results using these values are given in thethird and sixth columns of Table 4 and Figure 4. Inorder to represent intervals graphically they have beentransformed into point values by replacing them withtheir mid-points. This transformation may be justi�ed(Parsons 1995b) by an argument based on the prin-ciple of maximum entropy. Both sets of results aredominated by the value attached to C1, but it is nev-ertheless clear that as the set of constraints to whicha protein conforms is reduced (which is what proceed-ing along the x-axis represents), its measure of validitydecreases, except where a very unreliable constraint isrelaxed when there is a sharp increase in validity.We also have results about the e�ect of changingthe set of constraints to which a structure conforms.Adding constraints one at a time using the network ofFigure 2 and establishing the results of the additionusing Mummu allows us to evaluate the model thatuses qualitative changes. This shows that the additionof all constraints except F1 causes p(real) to rise, thelatter causing it to fall (Table 5|[+] indicates a rise inp(real), [�] a fall) an outcome which is expected from
Constraint Added Change in p(real)C1 [+]C2 [+]C3 [+]C5 [+]F1 [�]F2 [+]Table 5: The results of using the probabilistic qualita-tive derivatives from Table 3the data of Table 2. It is less easy to see how theseresults �t against those in Table 4 and Figures 3{4since since they are based on a di�erent underlyingmodel. However, both in tabular and graphical formit is clear that removing some constraints, C1 for in-stance, causes the validity of a structure to decreasesharply, while removing less reliable constraints suchas F2 cause a less dramatic change.Discussion.Unfortunately, there is no obvious \gold standard"(Heckerman 1990) against which to compare the re-
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Figure 3: Results based on the point probabilities fromTable 2(a)sults, so we are forced to use more pragmatic methodsof evaluation, and on this basis it is possible to suggesta number of criteria for both choosing between resultsand deciding whether any of them are useful, whilebearing in mind that the intention of this work is toprovide a means of focussing attention on a group oflikely structures rather than determining the absolutebest structure.For instance the decision about which results aremost acceptable will partly depend on which methodof dealing with ambiguity is preferred. If the \disam-biguated" values are chosen, the results in the secondand �fth columns and Figure 3 apply. If an intervalrepresentation of the ambiguity is desired, then thethird and sixth columns and graph of Figure 4 shouldbe considered.Thought might also be given to what the results areto be used for, and the decision about whether theyare useful made on the basis of which are most use-ful. In this case it may be of little use having a setof values which contain many identical entries, an ar-gument which suggests that the results might be moreuseful if they were more disperate since, as they stand,they have a value of 1 for any constraint set containingC1. On the other hand this could be acceptable as aclear indication of the necessity of having structuresconformant with C1.Another point is that the prediction of protein topol-ogy is only a part of the process of establishing struc-ture. Clearly, if a large number of experiments arerequired in order to reject each possible structure, it
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Figure 4: Results based on the interval probabilitiesfrom Table 2(b)would be advantageous to start with the smallest pos-sible set of structures. This suggests considering thenumber of possible structures associated with varioussets of constraints when considering the usefulness ofthe results. It is possible to determine the number ofstructures associated with sets of constraints, and theorder of the seven sets for which this has been done(Rawlings 1995), based upon the number of possiblestructures, agrees broadly with the order obtained fromour results. This suggests that our results are helpful inthis regard, though again more disperate values mightmake things easier.Finally, the way in which the topology predictionsystem is to be used can be considered. If it is intendedthat the system be used in batch mode to predict agroup of structures and their respective validities, thenthe absolute values given using the �rst valuation sys-tem seem to be the most useful. However, this changesif the system is used interactively, with constraints be-ing added and deleted one by one so that their e�ecton the structure and the validity can be observed. Inthis case the use of the qualitative derivatives and thesecond valuation system seems to be the best alterna-tive since it gives immediate feedback on the change invalidity as the constraint set is altered.Summary.This paper is not the �rst to suggest that it wouldbe sensible to model uncertainty in topological con-straints. That distinction, to my knowledge, falls to(Clark, Shirazi, & Rawlings 1992). It is also not the



�rst paper to present work that actually models theuncertainty in the constraints, since, to my knowledge,the �rst paper to do so was (Clark et al. 1994). Itdoes, however, make a number of useful contributions.One of these is the suggestion that valuation systemscan be usefully employed in this area. To date valua-tion systems have had only a fraction of the publicityreceived by probabilistic networks, yet they are by nomeans a lesser tool for the modelling of uncertain infor-mation, and deserve wider application. In particular,as we have demonstrated in this paper, they are quiteappropriate for modelling uncertainty about proteinstructures, and it is to be hoped that our demonstra-tion convinces others to adopt them in their work.Another contribution is the demonstration thatthere are a number of di�erent ways of handling theuncertain information in protein topology prediction,and that all of these may be useful in di�erent situa-tions. In this vein we have shown that there are dif-ferent ways to handle the ambiguity of the data aboutthe extent to which constraints apply, and that thereis merit in simply looking at the way in which the like-lihood of a structure being valid changes as well asconsidering what that likelihood is.In addition to this the paper has proposed the use ofmore sophisticated models of handling uncertainty inprotein topology prediction than have previously beenused. Clark and colleagues (Clark et al. 1994) usea simple weighting which records the penalty associ-ated with constraints holding and failing. The weightsare obtained in the same way as \pure" probabilities,and combined additively and with the assumption thatthey are completely independent. Whilst the methodpresented here also assumes independence, the valueswe use are more strongly based on objective probabil-ity theory, and combined as one would combine prob-abilities. Furthermore, the use of the valuation systemmodel means that it is easy to extend the approachpresented in this paper to use other methods of han-dling uncertainty (Parsons 1995a), and it is not easyto see how this might be done with simple weights.Lastly, the rather preliminary nature of this papershould be acknowledged. The work presented hereonly represents a fraction of the possible work thatcould be carried out in this area|it really raises manymore questions than it answers, and points to a muchmore signi�cant contribution than the modest e�ortit records. For instance, the models we have adoptedare very simple, and could be greatly re�ned by con-sidering the dependencies between the constraints, byobtaining more data on the applicability of the con-straints, or by using di�erent methods for handlingthe rather imperfect data that is available. Given time
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