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Abstract. Agent-based simulation is increasingly used to analyze the
performance of complex systems. In this paper we describe results of our
work on one specific agent-based model, showing how it can be validated
against the equation-based model from which it was derived, and demon-
strating the extent to which it can be used to derive additional results
over and above those that the equation-based model can provide.
The agent-based model that we build deals with human capital, the num-
ber of years of formal schooling that an individual chooses to undertake.
For verification, we show that our agent-based model makes similar pre-
dictions about the growth in inequality — that is the growth of the
variance in human capital across the population — as th equation-based
model from which it is derived. In addition, we show that our model can
make predictions about the change in human capital from generation to
generation that are beyond the equation-based model.

1 Introduction

We have been examining various sets of data related to human education. Typi-
cally, this data is collected in one of two ways: (1) very large, aggregate data sets
over entire populations (like whole cities, school districts, states or provinces) or
(2) very small, localized experimental samples. In both cases, the data is usually
analyzed using standard statistical methods. Often, the most highly publicized
statistics are the simplest, for example the mean and standard deviation of stan-
dardized test scores. These values are frequently the ones used to make policy
decisions. Occasionally, analysis is performed that examines how multiple factors
influence each other, such as the relationship between student-teacher ratios and
test scores, dollars per student and test scores, or class size and test scores. In
this example, it is difficult to analyze and understand the relationships between
these four factors (student-teacher ratios, test scores, dollars per student and



class size) using standard statistical techniques; and as the set of factors in-
creases in number and complexity, the analysis becomes even more complicated.
Additionally, the statistical methods do not provide a means for examining stu-
dents who fall more than one standard deviation outside the mean (either above
or below). For example, maybe students who perform above the mean benefit
from higher student-teacher ratios and smaller class sizes, while students who
perform below the mean prefer lower student-teacher ratios but also smaller
class sizes. Further, the statistical methods do not provide a means for modeling
the interactions between students. For example, some students may learn better
in a homogeneous classroom, where all their classmates are of similar ability,
while others might do better in a classroom where they can learn from social
peers whose ability differs from theirs by more than a standard deviation. Our
aim is to develop models that can make use of these subtle interactions, and use
them to analyze the effects of education policy [11, 12]. We are using agent-based
modeling to do this.

Agent-based modeling can help bridge the gap between macro and micro
data sets, using both interpolation and extrapolation techniques to combine
information and produce comprehensive, interactive and flexible environments
for experimentation. Agent-based modeling is particularly appropriate [9] for
systems in which there are many different loci of control [16], something that is
a particular feature of the kinds of system that we are interested in modeling.
In this paper, we describe results of our work on one specific agent-based model,
showing how it can be validated against the more traditional model from which
it was derived, and highlighting the extent to which it can be used to derive
additional results over and above those that the traditional model can provide.

2 Agent-based modeling

Agent-based modeling contrasts with traditional approaches to simulation, which
are typically built up from sets of interrelated differential equations. Such tradi-
tional models, commonly called equation-based models (ebms), have been widely
applied and generate useful predictions about the behavior of populations. So
why use agent-based models? There seem to be four main answers [2]: (i) agent-
based models are a natural way to describe systems comprised of interacting
entities; (ii) agent-based models are flexible; (iii) agent-based models capture
emergent phenomena; and (iv) agent-based models provide access to a greater
level of useful detail. In particular, modeling interactions between entities can be
much easier in agent-based systems than in ebms, even when one is comfortable
with the concepts of partial differential equations.

This naturalness and ease of modeling helps to make agent-based models
more flexible than ebms. As Bonabeau argues [2], agent models are typically
simple, and so are easy to understand and thus to change. It is usually easy to
increase the size of a simulation, adding new agents to see if interesting effects
are swamped by agent numbers, or taking agents away if interesting detail is
obscured. It is also possible to look at the results of simulations at different
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Fig. 1. Deriving an agent-based model from an equation-based model and then verify-
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levels of detail—at the level of a single agent, at the level of some specific group
of agents, or at the level of all agents together. All these things are harder to
manage in ebms.

In addition to their inherent naturalness and flexibility, agent-based simu-
lations allow one to identify emergent phenomena. Emergent phenomena result
from the actions and interactions of individual agents, but are not directly con-
trolled by the individuals. Indeed, they have an existence that is partly indepen-
dent of those individuals—the classic example of an emergent phenomenon is a
traffic jam, which, while caused by the actions of drivers moving in one direction,
may travel in the opposite direction.

Emergent phenomena simply do not show up in ebms, but knowing about
them can be crucial. As an example, Greenwald and Kephart [3, 6] showed that
while intuition suggested that frequent price updates would allow firms to steal
extra profits from their competitors, in fact it would lead to damaging price wars;
and [1] showed how an agent-based model identifies effects of changes in rent-
control policy that are beyond the reach of ebms. Such findings are also echoed
in ecology [4, 13] where agent-based models (under the name “individual-based
models”) have been used for some years.

As others have described [2, 9], it is possible to generate agent-based models
from more traditional models. Figure 1 shows the process by which an agent-
based model can be derived from an equation-based model. Presumably, the
equation-based model (labeled box “B”) was created after performing statistical
analysis on a raw data set (box “A”). By definition, the statistical equation will
be able to capture regularities in the data set and will provide a snapshot view
of the environment or phenomena which it models. The agent-based model (box
“C”) is created by taking each of the variables in the equation-based model and
the distribution of each of the variables, and then by defining agent behaviors
that will produce results falling within this distribution. While single behaviors
may contribute to one or two variables, the interaction between multiple behav-
iors can replicate the entire data set; and do so in an interactive environment
that allows for experimentation.



The agent-based model can be verified by executing various scenarios itera-
tively, demonstrating that the parameter values stay within the expected confines
and collecting statistical data on these experimental runs—the same category
of values which were gathered to create the initial equation-based model. Then,
statistical analysis is performed on this experimental data (box “D”) to extract
summary statistics (box “E”) and these are then compared with the statistics
derived from the original equation-based model (box “F”). If the two analyses
agree, then the agent-based model has been verified. The fact that we can per-
form this validation is the reason that the work described here has been based on
an existing model. Doing this grounds our agent-based model in reality (since the
model we check it against was derived from census data), and gives us confidence
that the results we obtain by predicting beyond mere validation are reasonable.

3 A model of human capital

The model that we consider in this paper is drawn from a paper by Kremer [7],
an article that derives a linear equation from US census data, and analyzes the
aggregate behavior of the model. The original model was derived to identify the
effect of the tendency for human societies to stratify by level of education—so-
called human capital. The reason that the model is important in our wider work
on modeling aspects of the education system is that it provides a mechanism,
derived from data and verified against that data in [7], by which agents choose
a level of education to attain. It can therefore act as a driver for the models we
have previously developed [11, 12].

The model from [7] gives the level of human capital zi,t+1 of members of the
t + 1th generation of the ith dynasty as being:

zi,t+1 = kt+1 + α

(

zi,t + z′i,t
2

)

+ β

(

∑n

j=1 zj,t

n

)

+ εi,t+1 (1)

The notion of “dynasty” and “generation” that we use here are based on the
definitions in [7]. Each generation of the ith dynasty has two children, one male
and one female. Each is assumed to then become the spouse of an opposite sex
member of another dynasty, forming a family which in turn produces one male
and one female child. One family from a given generation of the ith dynasty
remains in the ith dynasty, and one becomes part of another dynasty (the non-
ith dynasty of the corresponding partner). Thus there is a constant number of
members of each generation, and of each dynasty at each generation.

Breaking down the rather simple linear model from (1) we have:

kt+1 (2)

which is constant across dynasties, but may vary in time to capture exogenous
trends in education—for example legislation that requires a certain number of
years of additional schooling for given generations. This represents the basic level
of education that every individual has to undergo (“education” and “human



capital” are used more or less interchangeably in this model). Kremer [7] gives
kt+1 = 6.815, and that constant value is what we adopt.

α

(

zi,t + z′i,t
2

)

(3)

measures the effect on the level of education of the t + 1th generation of the
education of its parents in the t-th generation. The effect of the term is to assign
to each child the average human capital of its parents, modified by α. Kremer
[7] computes a baseline value of α to be approximately 0.39, based on census
data. zi,t is the human capital of a member of the previous generation of the ith
dynasty, and z′

i,t is the spouse of zi,t.
The next term:

β

(

∑n

j=1 zj,t

n

)

(4)

does something similar to (3) but based upon the level of education of the par-
ents’ neighbors rather than the level of education of the parents themselves—
these are the j in the summation, and n is the size of the neighborhood. Kremer
[7] measures the baseline value of β to be around 0.15.

The final term in (1) is
εi,t+1 (5)

which captures a specific “shock” to the human capital in a specific generation
of a specific dynasty—for example the early death of a parent, requiring the
children to curtail their education (though this value can be positive as well as
negative). Once again we follow [7] in picking εi,t+1 from a normal distribution
with mean 0 and standard deviation 1.79.

4 Agent-based simulation

We have developed an agent-based model that is derived from the equation-based
model given above. The agent-based model is concerned with a fixed number of
agents, m in each generation, with m/2 dynasties, and 2 children per family.
For simplicity, each family has one male child and one female child. The basic
simulation loop, which executes once for each generation, has three steps given in
Table 1. The result of Step 1 is fixed by (1), and Step 3 is fixed by the requirement
to produce one male and one female child in each generation. Clearly the results
are going to depend on the way in which Step 2 is implemented, and our model
includes a number of variations.

The core of [7] is to determine, or measure, the extent to which sorting

(that is, the tendency for people to choose both spouse and neighbors with
similar levels of human capital) affects divergence in human capital between
given dynasties as generations proceed. The agent-based model includes two
mechanisms by which this sorting can mimic these choices: choice of spouse and
choice of neighbor. For choice of spouse, there are three models that an agent
can employ:



1. Establish level of z based on:

(a) Parents

(b) Neighbors of parents

2. Establish factors that influence z for children

(a) Spouse

(b) Neighbors

3. Generate children

Table 1. The basic agent lifecycle.

No sorting: Agents pick partners at random.
Sorting: An agent with human capital z attempts to pick a partner with

a human capital value in [0.9z, 1.1z]. If there are no such agents that are
unmarried, the original agent picks the eligible agent with the highest human
capital.

Max-matching: Agents pick as their partner the agent with the human capital
value closest to their own.

In our experiments we need to be able to manipulate the correlation between
married agents’ human capital values. We achieve this by setting the probability
ps that a given agent uses a sorting method to choose a spouse. If ps = 0, then,
all agents will pick a partner at random. If ps = 1, then every agent will use
one of the sorting methods to pick a spouse. Figure 2(a) shows how varying
ps changes the correlation between spousal human capital. As elsewhere in this
paper, the error bars indicate one standard deviation above and below the mean
value. Here, and throughout the paper, the choice the agent makes with ps is
between no sorting and max-matching.

Given that the model in [7] is based upon census data, and that this has built
into it a geographic notion of neighborhood, that is the kind of neighborhood
used in the agent-based model3. Each dynasty has a unique location. Initial
positions for dynasties are picked randomly, and as each generation goes through
Step 2(a), the female child stays in the dynastic location, and the male child
“moves” to the position of the spouse. The dynastic location is allowed to change
between generations, modeling “sorting” between neighborhoods. Again we have
three possibilities:

No sorting: Step 2(b) involves no operation—dynasties do not move relative
to one another.

Sorting: Step 2(b) allows the families established in Step 2(a) to move to the
neighborhood with the highest human capital value that has room for a
dynasty to move in.

Max-matching: Dynasties move to the neighborhood that has the human
capital value closest to the parental average and has room for a dynasty to
move in.

3
As opposed, for example, to a “social neighborhood” based on the acquaintances of the parents,
which might not coincide with the geographical neighbors.
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Fig. 2. The effect of ps and qs. (a) The relationship between ps and the correlation
between spouse agents’ human capital values. (b) The relationship between qs and the
correlation between neighbor agents human capital values.

The human capital value of a neighborhood is the average value of the human
capital of the agents located in that neighborhood.

Again, we control the sorting effect probabilistically, with each dynasty hav-
ing a probability qs of moving at a given generation. qs = 1 means that all
dynasties will move, and qs = 0 means no dynasty will move. This probabil-
ity, just like ps, can be used to manipulate the correlation between the human
capital of neighbors, and this relationship is plotted in Figure 2(b). For all the
experiments in this paper, qs chooses between no sorting and max-matching.

The impact of these different sorting policies will clearly depend on the nature
of neighborhoods. We incorporated two types of neighborhood in the model:



1. Moore neighborhood: [5] The neighborhood for each dynasty is the set
of locations directly around that dynasty—hence each dynasty has its own
neighborhood, and these neighborhoods overlap.

2. Fixed neighborhood: The whole area we simulate is carved up into fixed
neighborhoods, so several dynasties share the same neighborhood, and neigh-
borhoods do not overlap.

For the experiments described in this paper, we only used fixed neighborhoods.

5 Experiments

We implemented the model described in the previous section in repast [10],
a Java-based Swarm-like [14] tool developed at the University of Chicago for
agent-based modeling in social science applications. We handled the geographic
aspects by placing agents on an N ×N grid, where at most one dynasty “lives”
in a single grid-square. By varying the size of the grid and number of agents
we can create environments of differing population density and have modeled
communities of up to 10,000 dynasties.

5.1 Verification

Having constructed an agent-based model of human capital from the equation-
based model in [7], we first need to “complete the loop” (as in Figure 1) by
performing a statistical analysis of the results from the agent-based model, ob-
tained when using the parameter values assumed in the paper, to show that our
agent-based model will achieve the same results as the equation-based model we
started with. This verification step is needed in order to justify further experi-
mental results that are obtained with the model.

The central result of [7], and the only quantitative result from [7] that we
can use to check the model against, is the prediction that increasing sorting—
which the paper takes to mean increasing the correlation between the human
capital values of the parent agents of a generation—will only cause an increase
in inequality—which the paper takes to mean that the standard deviation of the
human capital distribution grows generation by generation—when the value of
α is large. [7] demonstrates this by showing the effect of changing correlation
from 0.6 to 0.8 for various values of α. This result can be established though a
steady-state analysis of (1), and this is done in full detail in [7]. Since the latter
paper is based on census data, we take this as the experimentally determined
truth against which we compare the predictions of our agent-based model.

Our agent-based model does not give us direct control of the correlations, but
as we have already shown, we can, rather imprecisely, change the value of the
correlations by changing the value of ps. Running experiments on a 50×50 grid—
which allows us to deal with a population that is considerably larger than the
1500 individuals analyzed in [7]—we find that our model gives good agreement
with the predictions made in [7].
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Fig. 3. Parental effect on inequality. (a) The relationship between the parental effect
α and relative change in the standard deviation of the human capital distribution
when sorting is increased. (b) The relationship between the parental effect α and the
percentage change in inequality.

First, we plot the value of α against the change in the standard deviation of
the human capital distribution (expressed as a fraction of the standard deviation)
caused by switching from ps = 0.75 (which is a correlation between parental
capital of 0.6) to ps = 0.88 (a correlation between parental capital of 0.8). This
gives us Figure 3(a), which shows that the increase in standard deviation of the
human capital distribution, and hence inequality, that is caused by increased
sorting doesn’t start to grow until α exceeds 0.8. We can also plot the effects in
terms of the percentage change in inequality (as defined in [7]) rather than the
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Fig. 4. Other than parental effects on inequality. (a) The relationship between ps,
the probability of agents picking partners based on capital value, and the percentage
change in inequality. (b) The relationship between qs, the probability of agents picking
location based on capital value, and the percentage change in inequality.

increase in standard deviation of the human capital distribution. For ps = 0.88,
we get the relationship between α and inequality plotted in Figure 3(b).

To check that this change in inequality was really due to the change in α,
and not due to some other parameter in the model, we examined how inequality
changes when we vary such parameters. Figures 4 and 5, for example, show that
for α held at 0.39 and β held at 0.15, there is no significant change in inequality
if we change ps, qs and population density.

Note that the changes in inequality that we observe due to changes in α
hinge on the value of εi,t+1, the term in (1) that does not depend on the capital
values of parents or neighbors. If we run our model with εi,t+1 set to zero for
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Fig. 5. Other than parental effects o inequality. The relationship between population
density and the percentage change in inequality.

all dynasties and all generations, then inequality does not grow. Indeed, the
standard deviation of the capital distribution falls over time until all agents
have the mean value. This “seeding” effect of εi,t+1 is another prediction that
can be made from the analysis of (1).

Together these results—where statistics that can be extracted from the orig-
inal, equation-based model match against the predictions made by the agent-
based model—suggest that the agent-based model we have constructed ade-
quately replicates the essence of the model it was designed to capture.

5.2 Identifying new features

As we discussed above, one of the advantages that agent-based models have
over equation-based models is that one can examine the model in greater detail.
Whereas equation-based models can only really be studied in terms of broad
statistical features—such as the results from [7] examined above—we can probe
agent-based models in considerable detail, discovering what happens to individ-
uals as well as to classes of individual. We have carried out such an investigation
into the human capital model.

The main result from [7], replicated by our agent-based model, is that on av-

erage inequality in terms of human capital grows over generations. The widening
standard deviation of the human capital distribution suggests that rich dynas-
ties get richer and poor dynasties get poorer. However true this may be at a
population level, it is interesting to ask whether it is true for all (or even most)
individual dynasties, or whether there is some mobility between dynasties with
different levels of human capital. It turns out that such mobility exists.

We divided our dynasties up into three “classes”—the quotes reminding us
that this terminology, while convenient, conflates human capital, basically years
of formal schooling, with monetary capital and social status. We call dynasties
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Fig. 6. Parental effect on “class”. (a) The relationship between the percentage of dy-
nasties that change “class” and α. (b) The relationship between the percentage of
dynasties that change “class” and β.

that fall within one standard deviation above or below the average human capital
for the population middle class, we call those more than one standard deviation
below average poor, and those more than one standard deviation above average
rich. We then examined whether dynasties moved between classes.

The results are given in Figures 6(a) and 6(b), which show the way that
the number of dynasties that are mobile in this sense changes for two different
values of α and β, respectively. When α changes, β is held constant and vice-
versa. These graphs show the total percentage of dynasties that move, and the
percentage that become richer and poorer. They show that, no matter what the
value of α and β, there is some mobility (at least 25% of the population, and
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Fig. 7. Other than parental effect on “class”. The relationship between the percentage
of dynasties that change “class” and population density.

as much as 45% of the population changes class). Furthermore this change is
symmetrical.

Note that this effect is separate from the growing inequality—because “mid-
dle class” is always defined in terms of the current standard deviation, if in-
equality was the only effect, the percentage of dynasties changing class would be
lower than the figure we find. What we see here is the result of mixing. That is,
individuals are choosing partners or neighbors who are sufficiently far above or
below them in human capital terms so that their offspring move from one class
to another.

We can follow up this investigation with a subsidiary one, checking to see
whether additional factors have an effect on the class mobility of dynasties. One
of the factors that we can imagine having an impact on the results we obtain
in the model is the density of the agent population. In terms of the model,
population density relates to the number of agents that are placed on the grid.
Since the neighbor effect is based upon a geographic notion of neighborhood,
and since neighbors certainly have an effect on class mobility — for example as
shown in Figure 6 (b) — then one might imagine that changing the density of
the population might have some effect on class mobility as well. However, this
is not the case. As Figure 7 shows, population density has no systematic effect
on class mobility. Carrying out similar investigations for the effects of ps and
qs, Figures 8(a) and 8(b) respectively, again show no systematic effect on class
mobility.

6 Summary

This paper set out to construct an agent-based model from a traditional, equation-
based model, and to show that (i) this model could be verified against the pre-
dictions make by the equation-based model; and (ii) this model could identify
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Fig. 8. Other than parental effect on “class”. The relationship between the percentage
of dynasties that change “class” and (a) ps, the probability that a given agent chooses
a partner by human capital value, (b) qs, the probability that a given dynasty chooses
its location by human capital value.

new predictions that could not be obtained directly from the equation-based
model. Both these aims have been achieved.

This work fits into our wider effort to model aspects of the education system
[11, 12], with the overall aim of being able to establish the impact of, changes in
education policy (rather as [1] does for the case of rent control). As described in
[12], we have developed a number of models, including a model of interactions in
classrooms [11]—which, for example, shows the effects of different pedagogical
techniques to overcome absenteeism—and a model of school districts—which,
for example, shows the effect of policies like “No child left behind”. Our current



work is to tie these models together, and, more ambitiously, to tie them into a
comprehensive simulation of the way that education fits into the economy. This
latter can be done, for example, by using the model in [8], a model that relates
education and student ability with their lifetime productivity, and our interim
results can be found in [15].
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