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ABSTRACT

     This paper introduces the idea of using the Dempster-Shafer theory of evidence with
qualitative values. Dempster-Shafer theory is a formalism for reasoning under
uncertainty which may be viewed as a generalisation of probability theory with special
advantages in its treatment of ambiguous data and the ignorance arising from it. Here
we are interested in applying the theory when the numbers that it usually operates over
are not universally available. To cope with this lack of numbers, we use qualitative,
linguistic and relative values.

1. INTRODUCTION

     Dempster-Shafer theory is a numerical method for evidential reasoning. The theory
originated with a paper by the statistician Arthur Dempster [4] who wanted to free
probability theory from the need to attach a measure of uncertainty to every hypothesis
under consideration. His work remained hidden in the statistics literature until Glenn
Shafer, one of Dempster’s students, brought the material to a wider audience in his
doctoral dissertation [11]. The method has become popular, and the basic model has
been extended in a number of directions in recent years [12], [13], [14].

     In this paper we propose another adaptation of the model. Our area of interest is
reasoning under uncertainty when all the numerical information required by methods
such as Dempster-Shafer theory are not available, handling such a lack of information
[8] [9] by using techniques from qualitative reasoning [1]. Extending the approach first
suggested in [10], we consider replacing the numerical operands of more usual
applications of Dempster-Shafer theory with qualitative values. These give us
degraded, but still useful, results which are illustrated by a number of examples.

     In Section 2, the basics of Dempster-Shafer theory are explained for the benefit of
those who are not familiar with the approach. Section 3 introduces the qualitative
version of the theory, and Section 4 demonstrates the kind of results that may be
obtained by reference to a simple example. Section 5 then discusses some heuristic
extensions that may be useful when it is employed in more complex domains, Section
6 applies the theory to linguistic values, and Section 7 assesses the use of relative
values. Section 8 concludes.

2. DEMPSTER-SHAFER THEORY

     The basic idea of the theory is that numerical measures of uncertainty, termed basic
probability masses, may be assigned to sets of hypotheses as well as individual
hypotheses. Consider the following example, adapted from the work of Philippe Smets
[12]. Mr Jones has been murdered. We know that the murderer was one of three
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notorious assassins, Peter, Paul and Mary, so we have a set of hypotheses  Θ =
{Peter, Paul, Mary} .  The only evidence that we have initially is that of Mrs Jones
who saw the killer leaving the scene of the murder and is 80% sure that it was a man.

Thus all we know is that p(Man) = 0.8. If we were using probability theory we would
have to:

(a) allocate p(ŸMan) = p(Mary) = 1 - 0.8 = 0.2
(b) allocate p(Man) = 0.8 = p(Peter) = 0.4 + p(Paul) = 0.4 by some

principle such as the principle of maximum entropy.

     With evidence theory, however, we are not limited to allocating probability to the

members of the set {{Peter}, {Paul} , {Mary}} . We have instead a mass assignment

function m(.) where m: 2Θ → [0, 1] assigns probabilities to any set which is a member

of the power set of Θ, that is the set 2 Θ = {{Peter, Paul, Mary}, {Peter, Paul},
{Peter, Mary}, {Paul, Mary}, {Peter}, {Paul}, {Mary}, Ø} . The only restrictions on

m(.) are:

Σx“2Θ  m(x) =  1

m(Ø) = 0

so that all the assigned probabilities sum to unity, and there is no belief in the empty
set. Thus in the case of Mr Jones murder we can assign values to equate with what we

know and nothing more. We know that p(Man) = 0.8 so that m({Peter, Paul}) = 0.8 ,

and the remaining probability we know nothing about so that m({Peter, Paul, Mary})
= 0.2 .

     Now, consider that a second piece of evidence comes to light. It is reported with

confidence 0.6  that Peter was leaving on a jet plane when the murder occurred, so that

we have m '({Paul, Mary}) = 0.6 , m ’({Peter, Paul, Mary}) = 0.4 . We would like to
combine these two pieces of evidence, and this may be done by combining the mass

assignments using Dempster’s rule to create a new mass assignment m” defined by:

m”(A) = Σi,j m(Ai) m ’(Bj)

AifiBj = A

when the result is unnormalised as advocated by Smets [12]. There is some
controversy about the use of  normalisation, and since the qualitative version of the
theory is simpler without it we will follow Smets in not normalising. Put simply, the

result of combining two assignments is that for any intersecting sets A and B , where A
has mass M  from assignment m  and B has mass M ’ from assignment m ’, the belief

accruing to their intersection is the product of M and M’. So for our example:

          

{Peter, Paul}
            0.8

{Peter, Paul, Mary}
                  0.2

{Paul, Mary}
           0.6

{Peter, Paul, Mary}           
                0.4

{Paul}
    0.48

{Peter, Paul}
        0.32

{Paul, Mary}
         0.12

{Peter, Paul, Mary}
            0.08

m

m'
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     Having established the final mass assignments of the set of hypotheses we can
assess the belief and plausibility of any set of hypotheses as follows:

Bel(A) = Σ m(B)

B‹A

Pl(A) = Σ m(B)

BfiA ≠ Ø

These measures are clearly related to one another:

Bel(A) = 1 - Pl(ŸA)
Pl(A) = 1 - Bel(ŸA)

     The belief in any set is the lower bound of the probability of that set which is the
sum of all the probabilities of all the subsets of that set. The plausibility is the upper
bound on the probability, namely the sum of all the values not accruing to any sets that
are exclusive of the one in question. Thus:

Bel({Paul}) = 0.48,
Bel({Peter, Paul}) =  Bel({Peter}) + Bel({Paul})

+ Bel({Peter, Paul})
= 0 + 0.48 + 0.32
= 0.8,

Bel({Peter, Paul, Mary}) = 1.

While:

Pl({Peter}) = Pl({Peter, Paul})
+  Pl({Peter, Paul, Mary})

= 0.4,  
Pl({Mary}) = 0.2.

3. QUALITATIVE EVIDENCE THEORY

     As it stands, evidence theory is fine as long as all the necessary numerical
information is available. Provided that we can put a basic probability number on any
piece of evidence that  comes to light then everything is alright, and the theory gives us
nice, intuitive, results. However, a problem arises when we do not have easily
quantifiable evidence. For instance we may be taking readings from faulty sensors, or
we may be dealing with data which relates to occurrences that happen so rarely that no
accurate numbers are available. In such cases all we can say about a particular piece of
evidence is that it indicates that certain hypotheses are true to a certain degree. To what
degree “a certain degree” is we have no idea. What we would like is to use the intuitive
evidence theory style of reasoning to combine such pieces of evidence to give us some
idea of what the evidence implies.

     In a previous paper [10] it was argued that one way of coping with unknown
probability values was to represent them as qualitative numbers since assuming that

unknown values are equal to qualitative values such as + (which represents “positive”)
is an assumption that takes nothing for granted. If I know that a probability value

exists, then assuming that it is in the range [0, 1]  is a fact that follows trivially from
knowledge that the value is a probability [7]. What is proposed in “qualitative evidence

theory” is that all basic probability values are assumed to be 0  or + , that is some

unknown value between 0 and 1. It is, of course possible to use intermediate values to
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model whatever numerical information we possess [9], but here we are only interested
in the case where we have no numerical information whatsoever. We assign
probabilities and combine using Dempster’s rule as before, carrying out arithmetic
using restricted versions of the combinator tables for qualitative addition ⊕ and
qualitative multiplication  ⊗ [1]:

+ 0

+

+

++

0 0

⊕ + 0

+

0

0+

0 0

⊗

     Thus the example of Mr Jones’ murder from the first piece of evidence we have

p(Man) = + so that m({Peter, Paul}) = +  and m({Peter, Paul, Mary}) = + , and from

the second piece of evidence  we have m ’({Paul, Mary}) = +, m ’({Peter, Paul,
Mary}) = +. Combining these:

{Peter, Paul}
         +

{Peter, Paul, Mary}
             +

{Paul, Mary}
          +

{Peter, Paul, Mary}           
              +

{Paul}
    +

{Peter, Paul}
        +

{Paul, Mary}
           +

{Peter, Paul, Mary}
             +

 

 Bel({Paul}) = +
Bel({Peter, Paul}) = Bel({Peter}) + Bel({Paul})

   + Bel({Peter, Paul})
= +

Bel({Peter, Paul, Mary}) = +

and:

Pl({Peter}) = Pl({Peter, Paul})
   +  Pl({Peter, Paul, Mary})

= +
Pl({Mary}) = +

which doesn’t seem to have a great deal going for it at all, since all the sets of
hypotheses have the same degree of support from the evidence.

     However, this is not as useless as it seems at first sight. What this stripping away
of the numbers makes extremely clear is that the beautiful and intuitive mechanism of
evidence theory works just as well without numbers as it does with them, and it
continues to lay bare the implication of the evidence. What we can see from this, just as
well as we can see from the numerical example, is that there is only one singleton

hypothesis that  is indicated by the evidence, {Paul}, and that if we want to consider

hypotheses of the form “A or B”, then there is evidence against {Paul, Mary}  and

{Paul, Peter} . The method will even detect evidence for solutions other than those in

the frame of discernment {Peter, Paul, Mary} by the accruing of a + to the empty set Ø
[12]when the focal elements of the mass functions (that is the sets of hypotheses that
the mass functions support) do not intersect.

     Of course it is possible to invent pathological cases where the intuitive result is the

wrong one. Consider what would happen if m ’({Paul, Mary}) were 0.1. The final
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result of the weighing of the evidence would be Bel({Paul}) = 0.08, Bel({Peter,
Paul}) = 0.8 which suggests that there is little evidence against Paul alone, while the
qualitative solution would be the same as before. However, this does not mean that
there is no virtue in using the qualitative approach to establish which way the evidence
points in particular situations where no numerical probability masses may be
established.

4. A SIMPLE EXAMPLE

     By way of illustrating the usefulness of qualitative evidence theory we will consider
an example from decision making in gastroenterology which was also studied in [10].
We consider a clinic specialising in gastroenterological complaints. These complaints
have a number of possible origins which may be classified as gastric cancer, peptic
ulcers (both gastric and duodenal ulcers), gallstones, and functional disorders. The
latter are conditions  with no identifiable organic  cause, and are often stress related.
Over many years, a number of symptoms and signs which provide useful information
for discriminating between complaints have been recorded from many patients. These
are signs of jaundice, pain after meals, weight loss and the age of  the patient.

     The clinic’s research  into gastric disorders has progressed since it was reported in
[10]. The clinic has now established that particular symptoms point to particular sets of

diseases. Thus jaundice indicates gallstones or functional disorder {gs, fd} , pain after

meals indicates gastric cancer, peptic ulcer or functional disorder {gc, pu, fd} , weight

loss indicates gastric cancer {gc}  and if the patient is elderly then he is likely to be

suffering from gastric cancer, peptic ulcer or gallstones {gc, pu, gs} . We are interested
in the case of Jack, an elderly patient who shows no signs of jaundice but has recently
lost weight and often has pain after eating. Considering the evidence of Jack’s age and
the fact that he suffers pain after eating we have:

{gc, pu, fd}
       +

{gc, pu, fd, gs}
          +

{gc, pu, gs}
        +

{gc, pu}
     +

{gc, pu, fd, gs}
          +

{gc, pu, fd, gs}
           +

{gc, pu, gs}
        +

{gc, pu, fd}
        +

     Which suggests that the most specific diagnosis is that Jack is suffering from either
gastric cancer or peptic ulcer. Now we consider the evidence that Jack has recently lost
weight. This gives:
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{gc}
  +

{gc, pu, fd, gs}
          +

{gc, pu, gs}
        +

{gc, pu}
     +

{gc, pu, fd}
        +

{gc, pu, fd}
        +

{gc, pu, fd, gs}
          +

{gc, pu, fd, gs}
           +

{gc, pu, gs}
        +

{gc, pu}
     +

{gc}
  +

{gc}
  +

{gc}
  +

{gc}
  +
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which strongly indicates that Jack has gastric cancer since not only is gastric cancer the
only singleton hypothesis indicated by the evidence, but it is also a member of every
single other set of hypotheses that the evidence points to.

5. EXTENDING THE BASIC APPROACH

     The basic approach discussed in Sections 3 and 4 is fine when dealing with simple
sets of evidence. When there is only one singleton hypothesis then it is clear which
hypothesis is most favoured by the evidence. Similarly, when there is one set of two
hypotheses which is smaller than any other supported set, then it is clear which
hypotheses the evidence points to. However, this will not always be the case. Take the
case of Irwin, another patient who comes to the clinic of Section 4 as an example of the
problems that might arise. When Irwin’s symptoms are related to the diseases that the
clinic specialises in, it is clear that there is evidence for two possible sets of diseases,

gallstones and functional disorder {gs, fd}  and  gastric cancer or peptic ulcer {gc, pu} .
The result of combining this evidence is:

   {gs, fd}
       +

{gc, pu, fd, gs}
          +

   {gc, pu}
        +

     Ø
     +

{gc, pu, fd, gs}
          +

{gc, pu, fd, gs}
           +

  {gc, pu}
        +

    {gs, fd}
        +

 

From which it is clear that there is good evidence for Irwin suffering from none of the
usual diseases. This seems a natural reasonable conclusion, but consider how this
changes with a third piece of evidence which indicates that Irwin is suffering from
gastric cancer:

{gc}
  +

{gc, pu, fd, gs}
          +

   {gc, pu}
        +

 {gs, fd}
     +

        Ø
        +

        Ø
        +

{gc, pu, fd, gs}
          +

{gc, pu, fd, gs}
           +

   {gc, pu}
        +

{gs, fd}
     +

  Ø
  +

{gc}
  +

{gc}
  +

  Ø
  +

     As a result of this third piece of evidence, there are two singleton hypotheses
identified; Irwin is suffering from gastric cancer, or Irwin is suffering from none of the
usual diseases. How can we decide which to choose? Well, there is good evidence [2],
[3] that when it is not possible to put accurate numerical weights on terms, it is
reasonable to use an improper linear model to sum them up. Using such a model in this
case is trivial, and tells us that since there are more indications that Irwin is suffering
from a disease outside the frame of discernment (3) than there are that he is suffering
from gastric cancer (2), then our belief in him suffering from gastric cancer is less than
our belief in him suffering from a disease that is not under consideration.
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6. USING LINGUISTIC QUANTIFIERS

     It is possible to further refine the approach if we have some idea of the magnitude of
the mass assignments to the focal elements. For instance, consider that we have
information that allows us to quantify the mass assignments in terms of a set of
linguistic labels, which correspond to a subintervals of the unit interval [0, 1], in a
similar manner to that considered by Dubois et al. [1992]. We take the following

symmetric set of subintervals: P  = {0, (ε, α], [ α, 1 - α], [1 - α , 1 - ε), 1}  whose

names are, respectively; None, Little, (About) Half, Much and All . These
subintervals are ordered:

None ≤ Little ≤ Half ≤ Much ≤ All

As  in Dubois et al. [1992] we take ε to be some positive infinitesimal quantity while α

is some number in (0, 0.5) . In practice we take α = 0.3, so that it is appropriate to note
(as Dubois et al. do) that “about half” is short for “neither little, nor much but
somewhere in between”.

     Given that the mass assignments are quantified with this set of labels, we can use
interval arithmetic and Dempster’s rule to compute the result of combining evidence in

terms of the linguistic labels and their combinations, such as [Few, Most] = {X “ P |
Few ≤ X < Most} . For instance, to hark back to Jack’s trip to the clinic, consider what
would have happened if we had the information that if a patient has pain after meals we
should have much belief in his having gastric cancer, peptic ulcer or functional disorder

{gc, pu, fd} , whilst if a patient is elderly then we should have a middling belief that he

is suffering from gastric cancer, peptic ulcer or gallstones {gc, pu, gs} . For Jack, we
have:

{gc, pu, fd}
    Much

{gc, pu, fd, gs}
       Little

{gc, pu, gs}
      Half

  {gc, pu}
[Little, Half}

{gc, pu, fd, gs}
        Half

{gc, pu, fd, gs}
       Little

{gc, pu, gs}
     Little

  {gc, pu, fd}
 [Little, Half]

which is rather more precise than before. We could, of course, add in the third mass
assignment to make use of the fact that if the patient has recently suffered a weight loss
then we should have much belief in his having gastric cancer. The reader is encouraged

to check that this yields Bel({gc}) = [Little, Much] while all other sets of hypotheses

have belief Little . This method would work equally well for larger sets of
subintervals, or for any set of combinations of subintervals.

     Another way of reasoning with linguistic quantifiers is to “pre-compile” the results
of all possible assignments of linguistically quantified mass assignments. To

demonstrate the idea, we deal with the case of mass assignments where m(·) assigns
belief to a single subset of Θ, and we have just two such assignments. The concept can
be extended, but at too great a length for inclusion in this paper. For two mass

assignments m1 and m2 each with a single focal element F1 and F2, such that m1(F1)
= M1, m2(F2) = M2, there are four sets to which the combined mass is assigned; F1 fi
F2, F1, F2 and Θ. These have belief masses M1. M2, M1. (1 - M2), (1 - M1). M2 and

(1 - M1). (1 - M2) respectively, assigned to them. The set of hypotheses (which can

under the open world assumption include the hypothesis Ø indicating something
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outside Θ) which has the largest belief is the one preferred by the evidence. With a set
of linguistic labels, we can compute the most believable set of hypotheses for every
possible mass assignment, and the belief in that hypothesis. We have:

Mass of focal 
elements

Preferred Hypothesis Preferred HypothesisMass of focal 
elements

m (F ) = all1 1

m (F ) = all
2 2

Bel(F fi F ) = all
1 2

m (F ) = all1 1

m (F ) = much
2 2

Bel(F fi F ) = much1 2

m (F ) = all1 1

m (F ) = half2 2

Bel(F fi F ) = half
1 2

Bel(F )       = half
1

m (F ) = all1 1

m (F ) = few2 2

Bel(F )       = much
1

m (F ) = all1 1

m (F ) = none
2 2

m (F ) = much1 1

m (F ) = much
2 2

Bel(F fi F ) = [half, all]1 2

m (F ) = much
1 1

m (F ) = half2 2

Bel(F fi F ) = [little, half]
1 2

Bel(F )       = [little, half]
1

m (F ) = much
1 1

m (F ) = little2 2

Bel(F )    = [half, much]
1

Bel(F )       = all
1

m (F ) = much1 1

m (F ) = none2 2 m (F ) = half1 1

m (F ) = half
2 2

Bel(F fi F ) = [little, half]
1 2

m (F ) = half
1 1

m (F ) = little2 2

Bel(F )  = [little, half]
1

Bel(F )       = [little, half]
1

m (F ) = half
1 1

m (F ) = none2 2

m (F ) = little
1 1

m (F ) = little
2 2

m (F ) = few1 1

m (F ) = none2 2

m (F ) = none1 1

m (F ) = none2 2

Bel(F )       =  much
1

Bel(F )       = [little, half]
2

Bel(  )   = [little, half]Θ

Bel(  )  = [half, most]Θ
Bel(F )  = half

1

Bel(  )   = halfΘ

Bel(  )        = [little, half]Θ

Bel(  )   = mostΘ Bel(  )   = allΘ

     Thus when Old Bull Hubbard attends the clinic with symptoms that indicate that

m1({fd, gs, pu}) = All and m1({fd, gc}) = Few we can say that the most likely

diagnosis is {fd, gs, pu} and that we have much belief in this.

7. RELATIVE ORDERS OF MAGNITUDE

     This exhaustive analysis of the different outcomes of the application of Dempster’s
rule suggests that it might be possible to extend the approach. Rather than being able to
predict which will be the most likely set of hypotheses when the weight of the evidence
is placed into some interval, surely it is possible to carry out a more precise analysis to
determine the conditions on the masses assigned to two sets of hypotheses so that, for
instance, the intersection of their focal elements is the most credible set of hypotheses?

In other words, what are the conditions upon M1 and M2 such that the most credible set

of hypotheses is F1 fi  F2? Or, for that matter, F1 , F 2 or Θ? Once again, we are
constrained by the space available to restrict our attention to the combination of two
mass functions each with a single focal element, but the analysis may be simply
extended to more complex cases. For the restricted case we have the following.

     It is clear that F1 fi F2 is one of the most credible hypotheses if belief in it is greater

than or equal to the belief in F1, F 2 or Θ. This will be the case if M1 . M2 ≥  M1. (1 -
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M2), (1 - M1). M2 and (1 - M1). (1 - M2).Thus we can say that F1 fi F2 is one of the
most credible hypotheses if:

M1 ≥ 0.5 and M2 ≥ 0.5

while F1  is one of the most credible hypotheses if:

M1 ≥ 0.5 and M2 ≤ 0.5

     From these and similar calculations, we can determine a set of rules that specify the
result of combining a pair of mass functions based only on the relative sizes of the
masses distributed.

IF M1 ≥ 0.5 and M2 ≥ 0.5
THEN F1 fi F2 is one of the preferred hypotheses.

IF M1 ≥ 0.5 and  M2 ≤ 0.5
THEN F1 is one of the preferred hypotheses.

IF M2 ≥ 0.5 and  M1 ≤ 0.5
THEN F2 is one of the preferred hypotheses.

IF M1 ≤ 0.5 and  M2 ≤ 0.5
THEN Θ is one of the preferred hypotheses.

     Clearly, these rules are not mutually exclusive, and we can have sets of preferred
hypotheses. Note also that the rules are very similar to the specified  form of rules for
combining evidence discussed by Cohen et al. [1989], while the use of the relative size
of the masses is reminiscent of absolute order of magnitude reasoning as discussed by
Dubois and Prade [1989].

     To illustrate the kind of reasoning that it is possible to perform with these rules,
consider what happens when Cody visits the clinic. Cody’s symptoms fall into two

groups, one of which suggests that he is suffering from {fd, gs}  and the other of which

suggests that he has {gs, pu} . While it is not possible to put precise numbers on the
degree to which the symptoms suggest the sets of diseases, the physician who

examines Cody is confident that the belief mass that she assigns to the set {fd, gs}  is at

least 0.5 , and she is even more sure that the second set of symptoms indicate {gs, pu} .
Thus the first rule may be applied to obtain the fact that the most credible diagnosis of

Cody’s problem is that he is suffering from {fd, gs}  fi {gs, pu} = {gs} . In other words
the disease that it is most believable that Cody is suffering from is gallstones.

8. SUMMARY

This paper has introduced a number of different ways in which the Dempster-Shafer
theory of evidence may be applied when precise numerical weights are not given for
the various pieces of evidence. Firstly, the idea of a completely qualitative theory of
evidence was introduced. In this approach, all numbers are abstracted away to be
replaced by  the qualitative values + and 0. This strips the theory down to its bare
bones, which may still prove useful in identifying which hypotheses are indicated by
the evidence in situations where numerical weights may not easily be identified. By
assuming that the smallest set of hypotheses is the most likely set, a sort of single fault
hypothesis, it is possible to combine evidence to identify the most likely hypothesis.
Adopting the heuristic approach of the improper linear model allows us to choose
between several smallest sets. The paper also discussed two ways of using the
Dempster-Shafer theory with limited numerical information. Firstly, the idea of using
“linguistic quantifiers” in the sense of [Dubois et al. 1992] was introduced, and results
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given for the combination of a pair of consonant belief functions. Secondly, a similar
analysis was performed for belief functions where the size of the mass assignments are
known relative to one another, so that it is possible to tell, for instance, that hypothesis

X is more likely that hypothesis Y since belief mass M is greater than belief mass N.
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