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Abstract. We are exploring the use of auction mechanisms to assign roles within
a team of agents operating in a dynamic environment. Depending on the degree
of collaboration between the agents and the specific auctionpolicies employed,
we can obtain varying combinations of role assignments thatcan affect both the
speed and the quality of task execution. In order to examine this extremely large
set of combinations, we have developed a theoretical framework and an environ-
ment in which to experiment with and evaluate the various options in levels of
collaboration and policies. This paper describes our framework and experimental
environment. We present results from examining a set of representative policies
within our test domain— a high-level simulation of the RoboCup four-legged
league soccer environment.

1 Introduction

Multi agent research has recently made significant progressin constructing teams of
agents that act autonomously in the pursuit of common goals [11, 14]. In a multi agent
team, each agent can function independently or can communicate and collaborate with
its teammates. When collaborating, the notion ofrole assignmentis used as a means
of distributing tasks amongst team members by associating certain tasks with particular
roles. The assignment of roles can be determineda priori or can change dynamically
during the course of team operation.

Collaboration enables a team of agents to work together to address problems of
greater complexity than those addressed by agents operating independently. In general,
using multiple robots is often suggested to have several advantages over using a single
robot [4, 7]. For example, [10] describes how a group of robots can perform a set of tasks
better than a single robot. Furthermore, a team of robots canlocalize themselves better
when they share information about their environment [7]. But collaboration in a team
of robots may also add undesirable delays through the communication of information
between the agents.

We are exploring — within dynamic, multi-robot environments — the use of auction
mechanisms to assign roles to agents dynamically and the effect of different approaches



to collaboration. In particular, we are studying the effecton both of the above on the
effectiveness of teams of soccer players. Varying the degree of collaboration between
the agents and the specific auction policies employed, we canobtain an extremely large
set of possible mechanisms for role assignment that can affect both the speed and the
quality of task execution. In order to evaluate this set, we have developed a theoretical
framework and a simulation environment. The theoretical framework helps us to iden-
tify the space of possibilities, and the simulation environment helps us to evaluate the
various options.

Our simulation environment allows us to perform a systematic study of the different
strategies that we may want our group of robots to follow in order to accomplish certain
tasks. It allows the user to define the degree of collaboration between agents (for now
we restrict collaboration to the sharing of information) and to define different bidding
techniques and auction policies. The user can use simulation to explore the range of
strategies, and we are currently implementing tools that use learning to automate this
process.

This paper begins by highlighting some background materialon auctions and the
use of auction mechanisms in multi agent systems. Then we describe our theoretical
framework, which provides the basis for a systematic exploration of the vast space of
possible role assignments. Next we detail our experimentalenvironment — a high-level
simulation of the RoboCup four-legged soccer league. RoboCup soccer is a very good
testbed for collaboration algorithms and role assignment and in general for all kinds
of algorithm applied to any distributed intelligent system. While the work described
in this paper was developed using a simulator, our longterm plan is to integrate its
use into our RoboCup four-legged team1. We present results of simulation experiments
evaluating both collaborative and non-collaborative models of information sharing as
well as various auction policies. Finally, we close with a brief discussion and directions
for future work.

2 Auctions

Following Friedman [8], we can consider anauctionto be a mechanism that regulates
how commodities are exchanged by agents operating in a multiagent environment.
Two characteristics of the exchange are important from our perspective. First, the ex-
change typically deals with two kinds of commodity — indivisible commodities (usu-
ally known asgoodsin the economics literature) and divisible commodities (usually
money). Second, agents reach an agreement by passing messages that identify how
much of the divisible commodity will be exchanged for the indivisible good.

The amount of divisible commodity (money) they choose to trade is related to the
value the agent places on the indivisible commodity (the good). This value, which is
usually not provided to other traders (though they may inferit from the agent’s bids),
is known as the trader’sprivate value. If a buyer pays more than its private value, or a
seller accepts less, then we consider that the agent is trading at a loss.

An auction mechanismdefines how the exchange takes place. It does this by laying
down rules about what the traders can do — whatmessagesthey can exchange in an

1 http://agents.cs.columbia.edu/metrobots



interaction — and rules for how the allocation of commodities is made given the actions
of the traders. When the exchange occurs, the process is known as the marketclearing.
An auctioneeris an agent that effects this process and clears the market using amatch-
ing policy that matches sellers with buyers and sets the prices at whichthe exchanges
of commodities occur.

Associated with each trader is a component that shows the change in the amount of
money and goods that they hold. Traders with positive goods components arebuyers;
those with negative goods components aresellers. Typically we will deal with so-called
one-waytraders, meaning that traders are either buyers or sellers but not both. The
traders’ messages (generically calledoffers) include some price information; this infor-
mation may be an offer to buy at a given price, in the case of abid, or an offer to sell at
a given price, in the case of anask. One-sidedauctions allow only buyers or only sellers
to make offers;two-sidedor doubleauctions allow both.

While the most common auctions are those in which physical items are sold for
money, the concept of an auction is much more general than this. Auctions have been
used in different environments for resource allocation, such as electronic institutions
[6], distributed planning of routes [12] or giving roles to aset of robots to complete a
common task [9].

3 Theoretical framework

In our auction, there are two types of agents: theauctioneerand the trader — aplayer
in the RoboCup soccer game. The player makes anoffer and the auctioneer’s job is to
coordinate the offers from all the players and perform role assignment. There are five
main components to our model.

First, we defineR to be the set of possible roles:

R = {PA, OS, DS} (1)

wherePA is a primary attacker,OS is an offensive supporter, andDS is a defensive
supporter. Note that the goalie is not considered a role to beassigned in this manner,
since the goalie has to be predesignated and cannot change during the course of the
game. The roles are considered to be the indivisible commodity in the auction. Next,
we defineP to be a set of player attributes:

P = {dball, dgoals, dmates, dopps} (2)

wheredball contains the distance from the player (who is making the offer) to the ball;
dgoals contains the distance from the player to each goal;dmates contains the distance
from the player to each of its teammate; anddopps contains the distance from the player
to each player on the opposing team.

We interpret these attributes collectively as the divisible commodity a player will
trade for an indivisible commodity (a role). As will be seen below, a player can mod-
ulate the value of each attribute in an offer, in order to keepthe actual value of each
attribute private. Third, we defineF to be a set of functions which define the method for
sharing perception information between agents. The agentsthis information is shared



with could be teammates, auctioneer, or both. Fourth, we defineM to be amatching
function, the method used by the auctioneer for clearing the auction,i.e., matching the
offers with roles. In other words, the matching function captures the coordination strat-
egy. Finally, we define anauction,A, to be:

A = 〈P, R, M, f〉 (3)

whereP ⊆ P andP 6= ∅; R ⊆ R andR 6= ∅; M ⊆ M andM 6= ∅; andf ∈ F . Our
work is systematically exploring the space of all possible auctionsP ×R×M×F . B
denotes the set of possible types of offers in a particular auction,A ∈ A:

B = {r,w} (4)

where:r ⊆ R is a set of roles for which the player bids;w is a set of real-valued
weights, one weight corresponding to each of the roles inr (a weight of 0 means that
the player is not interested in making an offer for the corresponding role); andf(p),
p ⊆ P , is the mechanism by which perceptual data is used to determiner andw. To
date, we have defined two different types of auctions within this framework — asimple
auction [5] and acombinatorialauction [3].

In the simple auction, we consider each player as a “seller” whose offer consists of
a statement that it is willing to undertake a single role at a value that is based on its
temporal perception. The specificbt ∈ B at timet is:

bt = {r, w} (5)

where the roler andw are singletons. Note that there is only one role in the offer,this
is what makes this a simple auction. The auctioneer collectsall the offers from each of
the three players on the team needing roles (i.e., everyone except the goalie) and then
uses a matching strategyM to make the matches.

In a combinatorial auction, an agent’s offer consists of a set of roles and the value
the agent is prepared to accept for any of the roles. So in our case, an offer consists of:

bt = {(r0, r1, r2), (w0, w1, w2)} (6)

whereri andwj are singletons. Using different combinations of weights allows the
agent to bid for different combinations of roles, and this makes the auction combinato-
rial [1].

4 The Simulation Environment: RePast

RePast (REcursive Porous Agent Simulation Toolkit) [13] was developed by the Univer-
sity of Chicago’s Social Science Group. This tool is a software framework for creating
agent-based simulations using the Java language2. It provides a library of classes for
creating, running, displaying and collecting data from an agent-based simulation. In ad-
dition, RePast can take snapshots of running simulations and create Quicktime movies
of simulations.
2 RePast requires version Java 1.4 or greater.



RePast envisions a simulation as a state machine whose stateis constituted by the
collective states of all its components. These components can be divided up intoinfras-
tructureandrepresentation. The infrastructure is the various mechanisms that run the
simulation, display and collect data and so forth. The representation is what the simula-
tion modeler constructs, i.e., the simulation model itself. The state of the infrastructure
is then the state of the display, the state of the data collection objects, etc. The state of
the representation is the state of what is being modeled, thecurrent values of all the
agents’ variables, the current value of the space or spaces in which they operate, as
well as the state of any other representation objects (e.g.,aggregate quasi-independent
“institution” objects). The history of the simulation as a software phenomenon is the
history of both these states, while the history of the simulation as a simulation is the
history of the representational states. In RePast, any changes to the states of the infras-
tructural components and the representational componentsoccur through a Schedule
object which emulates the passage of time as sequentialticks, as in ticks of a clock.

RePast allows a user to build a simulation as a state machine in which all the changes
to the state machine occur through a schedule. This providesclarity and extensibility
both for the simulation writer/user as well as the software designer seeking to extend
the toolkit.

5 SimRob: our Simulated Approach to a RoboCup Game

In order to model a RoboCup soccer game in RePast, we need to define the agents, the
environment and the state machine that RePast will execute at each scheduled tick.

5.1 Agent parameters

In order to simulate the RoboCup Legged-League field environment, we define four
robots per team and a ball. Each one of the robotic agents is associated with an array
containing the values that define their perception and localization —

(x, y, φ, dball, dgoals, dopps, dmates, bball, bgoals, bopps, bmates) (7)

where:(x, y) are the 2D coordinates of the robot on the field3; φ is region of orientation
of the robot4; dball is the distance from the robot to the ball,dgoals is the distance
from the robot to each goal,dopps is an array containing the distance from the robot to
each opponent, anddmates is an array containing the distance from the robot to each
teammate. The values above are correct, meaning that we can interpret them as correctly
calculated, as long as they are really detected by the perception system on the agent.

The agent also contains a set of Boolean variables that determine whether the ball,
goal, opponents or teammates have been seen or not. These values comprise the second
half of equation (7) and indicate if the ball has been detected by the player (bball), if
each goal has been detected by the player (bgoals), if each opponent has been detected
nearby (bopps) and if each teammate has been detected nearby (bmates).

3 The field itself is broken down into the same24 × 14 grid that we use for localization on the
AIBOs.

4 The 360◦ of orientation are divided into eight 45◦ sections, numbered 0 through 7.



5.2 Simulation skeleton

We use RePast in order to simulate the development of a game with the agents. The
simulation is run for the period of time that we desire. When the scheduler of RePast
reaches that time, it stops. We will callruntimethe amount of time that the simulation
is executed. At the beginning of the simulation, we define four agents (per team) and a
ball in the field. Each of the agents is defined as explained above, by means of an array
as in equation (7).

The simulation run in RePast can be divided into the following steps: (1) generation
of the agent parameters, (2) definition of the amount of shared information among the
agents, (3) definition of bidding policies for the agents, (4) definition of the auction
policies, and (5) game development.

Generation of the agent parametersIn this first step, we obtain the parameters of each
of the agents in the field. The localization of the robot is expressed with the coordinates
(x, y) in a 2D field. It is constructed to give a “realistic” sequenceof positions during a
soccer game and works by moving the agent one cell forward in the grid model every
time a movement is made. The ball localization is updated according to the game devel-
opment. We add a parameter to the behavior of the ball,bounce. This variable defines
the number of cells that the ball moves back when a wall is hit.Once the coordinates of
the ball are obtained, we can calculate the distance to the ball, dball. In order to calcu-
late the distance to the goals,dgoals, we retrieve the coordinates of the agent in the field.
Finally, we can calculate the distances to the opponentsdopps and the matesdmates.

Amount of information shared by the agentsIn order to simplify information sharing
and make the scenario relatively tractable, we have adaptedthe following strategy for
information sharing between agents. We build a boolean table that contains the percep-
tion datapt at timet and two columns for each of the possible1 or 0 values of each
variable. The tool allows the user to select, via the booleanvariables, which of the per-
ceptspi ∈ P are going to be shared by the agents in the field. Hence, if the user does
not want the agents to share any info all the variables in the table will be 0, 1 if we
want all the data to be shared between the agents, any other combination of values will
generate a partial-collaboration among the agents.

When the collaborative approach is selected, some common measures can be calcu-
lated from the shared information among the users. In this way, the tool allows the user
to use three more measures when the perceptions shared allows us to define them:

– mingoal is a boolean variable that is true when the agent is the one closest to the
goal. This variable can be defined when the agents share the variabledgoals among
them.

– maxopp is a boolean variable that is true when the agent is farthest away from the
opponents in the field. This variable can be defined when the agents sharedopps.

– maxball is a boolean variable that is true when the agent is farthest away from the
ball. This value can be defined when the variabledball is shared among the agents.



Defining a bidding policy for the agentsThe simulation makes it possible to define
which offer should be made by an agent depending on the perception data that agent
has. The amount of information shared or not shared (elements pi ∈ P ) defines a
set of values that can be represented in a table with two possible boolean values, 0,
when perception is false, 1 when perception is true. The usercan associate a certain
role to each of the possible entries of the table. Hence, for each simulation tick of the
game development, the agent’s bid will be the role associated by the user to the set of
perceptions gathered by the agent at that simulation tick.

Defining an auction policy for the auctioneerThe auction is responsible for distributing
the roles between the agents on the field. The behavior of the auctioneer can be defined
by a boolean table whose entries are the different possible combinations of true and
false values of the perception variablespi ∈ P . Depending on the collaboration policy,
those variables will come from the agent itself or from any ofthe agents of the team
if it is a shared parameter. The simulation makes it possibleto define each entry in the
table as a suitable situation for the role to be assigned or not. In a simple auction, the
auctioneer will try to assign the role in the bid depending onthe set of perceptions. In
a combinatorial auction, the auctioneer will try to assign each of the roles in the bid in
decreasing order of weights. The auctioneer will go throughthe different roles in the
bid until one of the roles in the array is assigned to the agent, meaning that the bid is
won.

Game DevelopmentOnce the agent-roles are defined, we have to actually simulate the
joint task to be developed by the agents. As stated before, our aim is that of simulating
a soccer game. The game model is very simple. Each role has a state graph that will
output a certain behavior depending on the perceptions gathered by the agent:

– PA BEHAVIOR: If the agent sees the goal and the ball, then, kick it, otherwise turn
to look for the ball without loosing track of the goal.

– OS BEHAVIOR: If the ball is seen, the agent kicks it.
– DS BEHAVIOR: If the ball is seen, the agent follows it in order to avoid that an

agent from the opponent team scores.

The output of the state graphs of each role may generate one ofthe following methods:
turn(): the robot turns (changes angle of view region 0..7) to look for perceptions;
kick(): the coordinates of the ball change according to the hit intensity and robot’s
coordinates; andfollowball(): agent is assigned a position that is as close to the
ball as its closest teammate.

Finally, if a goal is scored, the robots are sent back to theirinitial positions and the
ball randomly changes location. Then, the three step (parameter’s generation, auction
policy and game development) simulation is run again. We consider that a goal is scored
when its coordinates are inside a predefined square around tothe goal coordinates.

6 Experiments

This section describes our experimental work to date. This has started to explore the
range of possible auctions and their effect on the coordination of a team, as measured



Table 1.Non-collaborative simple auction

Ball seenOpponent seenMate seenRole
0 0 0 DS
0 0 1 DS
0 1 0 DS
0 1 1 DS
1 0 0 DS
1 0 1 DS
1 1 0 OS
1 1 1 OS

Table 2.Matching policy between roles and perceptions.

Ball seenOpponent seenMate seen Role
0 0 0 PA
0 0 1 PA
0 1 0 PA
0 1 1 PA
1 0 0 PA
1 0 1 PA
1 1 0 OS,DS
1 1 1 OS,DS

by their performance in simulated games. We have experimented with four very simple
types of coordination.

6.1 Non-collaborative simple auction

This approach defines a team of agents that don’t share any perception data. Hence,
each one relies on the information that it gathers independently of the others. The offers
made by the agents follow the policy in Table 1. This shows that we have defined the
agent to offer to be OS when both ball and opponent are seen. Inany other case, our
agent will offer to be DS. The matching policy that we have defined is represented by
Table 2. This is very simple and just associates a fixed role toeach of the possible sets
of perceptions.

6.2 Non-collaborative combinatorial auction

In this case there is still no sharing of perception, but the bid now contains a vector
defining the agent’s role preferences For our experiments, we have defined two different
bidding policies. Theoffensivepolicy, defined in Table 3, represents a team with an
attacking approach, always looking for the goal and aiming to score. The other policy



Table 3.Non-collaborative combinatorial auction

Ball seenOpponent seenMate seen Role
0 0 0 [OS,.7,DS,.2,PA,.1]
0 0 1 [OS,.7,DS,.2,PA,.1]
0 1 0 [OS,.7,DS,.2,PA,.1]
0 1 1 [OS,.7,DS,.2,PA,.1]
1 0 0 [OS,.7,DS,.2,PA,.1]
1 0 1 [OS,.7,DS,.2,PA,.1]
1 1 0 [OS,.7,DS,.2,PA,.1]
1 1 1 [OS,.7,DS,.2,PA,.1]

Table 4.Collaborative simple auction

Ball seenOpp seenMate seenMinGoal MaxOppMaxBall Role
0 0 0 0 0 0 [DS]
0 0 0 0 0 1 [DS]
... . . . . . .
1 1 1 1 1 1 [OS]

is more defensive. This one assigns the array of roles [DS,.7,OS,.2,PA,.1] to each of the
agents. The matching table is the same as before.

6.3 Collaborative simple auction

In this case, the agents share all the perception data. Hence, when defining the bids, we
can also share the three variables related to the minimum andmaximum distances to the
ball, opponents and goal. The table defining the bidding policy is huge. In Table 4 we
show a few lines to give the sense of it, but it is deliberatelysimilar to the policy for the
non-collaborative auction to give a reasonable comparison. When no elements are seen
by any of the agents, the agent bids for the role DS. When everything is seen and the
distances are minimum, the agents bid to be OS. The matching policy is also the same
as for the non-collaborative examples.

6.4 Collaborative combinatorial auction

Here the bidding table (Table 5) is similar to the previous one, but contains a vec-
tor of bids and weights instead of only one role, and this vector is like that for the
non-collaborative combinatorial auction. Again we ran experiments with an attacking
bidding policy and a defensive bidding policy, and the matching table is the one used in
the previous examples.



Table 5.Collaborative combinatorial auction

Ball seenOpp seenMate seenMinGoal MaxOppMaxBall Role
0 0 0 0 0 0 [OS,.7,DS,.2,PA,.1]
0 0 0 0 0 1 [OS,.7,DS,.2,PA,.1]
... . . . . . ..
1 1 1 1 1 1 [OS,.7,DS,.2,PA,.1]

Table 6.Results

unique not unique
offensivedefensiveoffensivedefensive

bid bid bid bid
noncollab simple 16 – 16 –
noncollab comb 33 43 30 47
collab simple 40 – 67 –
collab comb 49 37 78 67

6.5 Results

Teams using each of the types of coordination described above (including separate of-
fensive and defensive techniques in the combinatorial auction) were run in simulation
against the same, simple, opponent in order to evaluate the effectiveness of the col-
laboration policy. The opposing team moved randomly aroundthe field, but was not
intended as serious opposition, rather it was intended as a baseline against which all
mechanisms could be judged equally. For each coordination mechanism, we ran two
sets of experiments. In one, the “unique” experiments, we made the auctioneer assign
unique roles to agents. In the “not unique” experiments, theauctioneer was allowed to
assign duplicate roles. The average number of goals scored for each of the different
kinds of collaboration are given in Table 6, and plots of the goals scored over time for a
sample game are given in Figures 1 and 2.

In the non unique approach, collaborative teams score almost double the number
of goals of the non-collaborative teams. In the unique role approach, differences in
the score of the games between the collaborative and non-collaborative approaches for
both simple and combinational auctions are not so marked. This is due to the fact that
our matching policy is very demanding and since we do not allow repeated roles, the
auctioneer often ends up distributing roles randomly. In order to prove this last assertion,
we defined a parameter called ratio in the simulation. The ratio is associated to the
acceptance of the bids made by an agent. The higher the ratio,the more times its bid
has been accepted. In the not uniqueness experiments, we obtained very low ratios,
meaning that the agents almost never won a bid, and so, the roles were distributed
randomly.
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Fig. 1. Goals scored over the course of a game — unique matching policy

7 Conclusions and Future work

This paper has described our preliminary work in exploring the use of auction mecha-
nisms to coordinate players on a RoboCup team. While this work is only just beginning,
we believe that the results demonstrate the potential of theapproach to capture a wide
range of types of coordination, and to be able to demonstratetheir effectiveness through
simulation. In addition, this approach makes it simple to explore more complex, and po-
tentially more flexible, kinds of role allocation than have been previously used in the
legged-league, for example [2, 15].

Our future work is to build on this foundation, exploring a wider range of possible
auctions through simulation, and moving towards using learning techniques to automat-
ically explore the space of auctions. We further intend to implement the most effective
bidding and matching policies on our legged-league team.
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