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Abstract. We are exploring the use of auction mechanisms to assigewéthin
a team of agents operating in a dynamic environment. Depgrath the degree
of collaboration between the agents and the specific auptitinies employed,
we can obtain varying combinations of role assignmentsdhataffect both the
speed and the quality of task execution. In order to exantiiseeixtremely large
set of combinations, we have developed a theoretical fraeand an environ-
ment in which to experiment with and evaluate the variousoogtin levels of
collaboration and policies. This paper describes our fremne and experimental
environment. We present results from examining a set okesgmtative policies
within our test domain— a high-level simulation of the RolupCfour-legged
league soccer environment.

1 Introduction

Multi agent research has recently made significant progresenstructing teams of
agents that act autonomously in the pursuit of common gadalsl@]. In a multi agent
team, each agent can function independently or can comaterand collaborate with
its teammates. When collaborating, the notiorra@é assignmenis used as a means
of distributing tasks amongst team members by associatirigin tasks with particular
roles. The assignment of roles can be determiediori or can change dynamically
during the course of team operation.

Collaboration enables a team of agents to work together doead problems of
greater complexity than those addressed by agents opmpnatiapendently. In general,
using multiple robots is often suggested to have severalragdges over using a single
robot[4, 7]. For example, [10] describes how a group of relsan perform a set of tasks
better than a single robot. Furthermore, a team of robot$otatize themselves better
when they share information about their environment [7] &allaboration in a team
of robots may also add undesirable delays through the conwation of information
between the agents.

We are exploring— within dynamic, multi-robot environmgnt the use of auction
mechanisms to assign roles to agents dynamically and tbet eff different approaches



to collaboration. In particular, we are studying the effestboth of the above on the
effectiveness of teams of soccer players. Varying the @egfeollaboration between
the agents and the specific auction policies employed, welatin an extremely large
set of possible mechanisms for role assignment that cantdfé¢h the speed and the
quality of task execution. In order to evaluate this set, weehdeveloped a theoretical
framework and a simulation environment. The theoretiahiework helps us to iden-
tify the space of possibilities, and the simulation envinemt helps us to evaluate the
various options.

Our simulation environment allows us to perform a systecrsdtidy of the different
strategies that we may want our group of robots to follow mhesto accomplish certain
tasks. It allows the user to define the degree of collabardteiween agents (for now
we restrict collaboration to the sharing of informationiidn define different bidding
techniques and auction policies. The user can use simulagi@xplore the range of
strategies, and we are currently implementing tools thatlearning to automate this
process.

This paper begins by highlighting some background matenahuctions and the
use of auction mechanisms in multi agent systems. Then weidesour theoretical
framework, which provides the basis for a systematic exgtion of the vast space of
possible role assignments. Next we detail our experimentdfonment— a high-level
simulation of the RoboCup four-legged soccer league. Ropa&dccer is a very good
testbed for collaboration algorithms and role assignmadtia general for all kinds
of algorithm applied to any distributed intelligent systevihile the work described
in this paper was developed using a simulator, our longtdan s to integrate its
use into our RoboCup four-legged tehrve present results of simulation experiments
evaluating both collaborative and non-collaborative ni®@dé information sharing as
well as various auction policies. Finally, we close with ebdiscussion and directions
for future work.

2 Auctions

Following Friedman [8], we can consider anctionto be a mechanism that regulates
how commodities are exchanged by agents operating in a amgit environment.
Two characteristics of the exchange are important from eusgective. First, the ex-
change typically deals with two kinds of commodity — indibi® commodities (usu-
ally known asgoodsin the economics literature) and divisible commoditieu@lly
money). Second, agents reach an agreement by passing eesksagidentify how
much of the divisible commodity will be exchanged for theiuisible good.

The amount of divisible commaodity (money) they choose tdére related to the
value the agent places on the indivisible commodity (thedyo®his value, which is
usually not provided to other traders (though they may iitfetnom the agent’s bids),
is known as the traderjgrivate value If a buyer pays more than its private value, or a
seller accepts less, then we consider that the agent isitratia loss.

An auction mechanismefines how the exchange takes place. It does this by laying
down rules about what the traders can do — whatsagethey can exchange in an
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interaction — and rules for how the allocation of commoditeemade given the actions
of the traders. When the exchange occurs, the process iskaothe markeatlearing
An auctioneelis an agent that effects this process and clears the maiketasatch-
ing policythat matches sellers with buyers and sets the prices at wiécbxchanges
of commodities occur.

Associated with each trader is a component that shows thregelia the amount of
money and goods that they hold. Traders with positive goodgponents arbuyers
those with negative goods componentssekers Typically we will deal with so-called
one-waytraders, meaning that traders are either buyers or sellgradi both. The
traders’ messages (generically caltdterg include some price information; this infor-
mation may be an offer to buy at a given price, in the caselndizor an offer to sell at
a given price, in the case of ask One-sidedauctions allow only buyers or only sellers
to make offerstwo-sidedor doubleauctions allow both.

While the most common auctions are those in which physieahst are sold for
money, the concept of an auction is much more general thanAkictions have been
used in different environments for resource allocatiorthsas electronic institutions
[6], distributed planning of routes [12] or giving roles tesat of robots to complete a
common task [9].

3 Theoretical framework

In our auction, there are two types of agents:dhetioneerand the trader — player
in the RoboCup soccer game. The player makesffar and the auctioneer’s job is to
coordinate the offers from all the players and perform re&ignment. There are five
main components to our model.

First, we defineR to be the set of possible roles:

R = {PA,08,DS} 1)

wherePA is a primary attackei).S is an offensive supporter, adS is a defensive

supporter. Note that the goalie is not considered a role tassgned in this manner,
since the goalie has to be predesignated and cannot changg the course of the
game. The roles are considered to be the indivisible comyatihe auction. Next,

we defineP to be a set of player attributes:

P = {dballa dgoalsa dmateSa dopps} (2)

whered,,;; contains the distance from the player (who is making therpféethe ball;
dgoals CONtains the distance from the player to each géal,., contains the distance
from the player to each of its teammate; afyg,s contains the distance from the player
to each player on the opposing team.

We interpret these attributes collectively as the divisibbmmodity a player will
trade for an indivisible commaodity (a role). As will be seesidw, a player can mod-
ulate the value of each attribute in an offer, in order to klepactual value of each
attribute private. Third, we defing to be a set of functions which define the method for
sharing perception information between agents. The adleistinformation is shared



with could be teammates, auctioneer, or both. Fourth, wene@fi to be amatching
function the method used by the auctioneer for clearing the audtmnmatching the
offers with roles. In other words, the matching functiontcaps the coordination strat-
egy. Finally, we define aauction A, to be:

A= (P,R,M,f) Q)

whereP C PandP # 0; RC RandR # (0; M C M andM # 0; andf € F. Our
work is systematically exploring the space of all possiblet®nsP x R x M x F. B
denotes the set of possible types of offers in a particuletiau, A € A:

B = {r,w} (4)

where:r C R is a set of roles for which the player bide; is a set of real-valued
weights, one weight corresponding to each of the roles (& weight of 0 means that
the player is not interested in making an offer for the cqroesling role); andf (p),
p C P, is the mechanism by which perceptual data is used to detenmandw. To
date, we have defined two different types of auctions withis framework — asimple
auction [5] and aombinatorialauction [3].

In the simple auction, we consider each player as a “sell&dse offer consists of
a statement that it is willing to undertake a single role aale that is based on its
temporal perception. The specificc B at timet is:

by = {r,w} (5)

where the role- andw are singletons. Note that there is only one role in the offfés,
is what makes this a simple auction. The auctioneer colldttke offers from each of
the three players on the team needing roles (i.e., everyaepethe goalie) and then
uses a matching strate@y to make the matches.

In acombinatorial auctionan agent’s offer consists of a set of roles and the value
the agent is prepared to accept for any of the roles. So inas&,@n offer consists of:

by = {(ro,71,72), (W0, W1, W2)} (6)

wherer; andw; are singletons. Using different combinations of weighteved the
agent to bid for different combinations of roles, and thikesathe auction combinato-
rial [1].

4 The Simulation Environment: RePast

RePastREcursive Porous Agent Simulation Todlkit3] was developed by the Univer-
sity of Chicago’s Social Science Group. This tool is a sofenfeamework for creating

agent-based simulations using the Java langudgprovides a library of classes for
creating, running, displaying and collecting data from gerg-based simulation. In ad-
dition, RePast can take snapshots of running simulatiodserate Quicktime movies
of simulations.

2 RePast requires version Java 1.4 or greater.



RePast envisions a simulation as a state machine whosdsstatestituted by the
collective states of all its components. These componambe divided up intinfras-
tructure andrepresentationThe infrastructure is the various mechanisms that run the
simulation, display and collect data and so forth. The regméation is what the simula-
tion modeler constructs, i.e., the simulation model itseffe state of the infrastructure
is then the state of the display, the state of the data calecbjects, etc. The state of
the representation is the state of what is being modeledguhent values of all the
agents’ variables, the current value of the space or spacedich they operate, as
well as the state of any other representation objects @ggregate quasi-independent
“institution” objects). The history of the simulation as aftsvare phenomenon is the
history of both these states, while the history of the sitioitaas a simulation is the
history of the representational states. In RePast, anygetsatio the states of the infras-
tructural components and the representational compoweots through a Schedule
object which emulates the passage of time as sequéinkalas in ticks of a clock.

RePast allows a user to build a simulation as a state machwagch all the changes
to the state machine occur through a schedule. This procideisy and extensibility
both for the simulation writer/user as well as the softwagsigner seeking to extend
the toolkit.

5 SimRob: our Simulated Approach to a RoboCup Game

In order to model a RoboCup soccer game in RePast, we neefirte tee agents, the
environment and the state machine that RePast will exetetch scheduled tick.

5.1 Agent parameters

In order to simulate the RoboCup Legged-League field enwient, we define four
robots per team and a ball. Each one of the robotic agentsiciased with an array
containing the values that define their perception and iwa@Ebn —

(xa Y, ¢7 dballa dgoalsa dopp57 dmatesa bbalh bgoalsa bOppS7 bmates) (7)

where:(z, y) are the 2D coordinates of the robot on the fieldis region of orientation
of the robot; d,.; is the distance from the robot to the ball,...s is the distance
from the robot to each goal,,;,, is an array containing the distance from the robot to
each opponent, and,,.;.s iS an array containing the distance from the robot to each
teammate. The values above are correct, meaning that wateapriet them as correctly
calculated, as long as they are really detected by the piwoegystem on the agent.
The agent also contains a set of Boolean variables thatdietewhether the ball,
goal, opponents or teammates have been seen or not. Thaee gamprise the second
half of equation (7) and indicate if the ball has been detkbiethe player §p.1;), if
each goal has been detected by the playgy.(;), if each opponent has been detected
nearby b,,ps) and if each teammate has been detected neaghyd).

3 The field itself is broken down into the sard¢ x 14 grid that we use for localization on the
AIBOs.
4 The 360 of orientation are divided into eight 5ections, numbered 0 through 7.



5.2 Simulation skeleton

We use RePast in order to simulate the development of a gathethvei agents. The

simulation is run for the period of time that we desire. Whiea $cheduler of RePast
reaches that time, it stops. We will callntimethe amount of time that the simulation
is executed. At the beginning of the simulation, we define Bments (per team) and a
ball in the field. Each of the agents is defined as explainedalinyy means of an array
as in equation (7).

The simulation run in RePast can be divided into the follaysteps: (1) generation
of the agent parameters, (2) definition of the amount of sherfermation among the
agents, (3) definition of bidding policies for the agentg, définition of the auction
policies, and (5) game development.

Generation of the agent parametebs this first step, we obtain the parameters of each
of the agents in the field. The localization of the robot isregped with the coordinates
(z,y) in a 2D field. Itis constructed to give a “realistic” sequen€gositions during a
soccer game and works by moving the agent one cell forwarddmgtid model every
time a movement is made. The ball localization is updatedralicg to the game devel-
opment. We add a parameter to the behavior of the balbce. This variable defines
the number of cells that the ball moves back when a wall iOnte the coordinates of
the ball are obtained, we can calculate the distance to thedpa;. In order to calcu-
late the distance to the goal,..s, we retrieve the coordinates of the agent in the field.
Finally, we can calculate the distances to the oppon&pis and the mates,,qzes.

Amount of information shared by the agertsorder to simplify information sharing
and make the scenario relatively tractable, we have adap¢efbllowing strategy for
information sharing between agents. We build a boolease télait contains the percep-
tion datap; at timet and two columns for each of the possilil@r 0 values of each
variable. The tool allows the user to select, via the booleaiables, which of the per-
ceptsp; € P are going to be shared by the agents in the field. Hence, if4bedoes
not want the agents to share any info all the variables inab&twill be 0, 1 if we
want all the data to be shared between the agents, any ottdirtation of values will
generate a partial-collaboration among the agents.

When the collaborative approach is selected, some commasures can be calcu-
lated from the shared information among the users. In this thie tool allows the user
to use three more measures when the perceptions shared abde define them:

— mingoal is a boolean variable that is true when the agent is the orsestido the
goal. This variable can be defined when the agents share iiabheal,;,.;; among
them.

— mazxopp is a boolean variable that is true when the agent is fartivesy from the
opponents in the field. This variable can be defined when thrtaghareé,,,, ;.

— maxball is a boolean variable that is true when the agent is farttvessy rom the
ball. This value can be defined when the variabylg, is shared among the agents.



Defining a bidding policy for the agent$he simulation makes it possible to define
which offer should be made by an agent depending on the péoegata that agent
has. The amount of information shared or not shared (elesmgnte P) defines a
set of values that can be represented in a table with two lplessoolean values, 0,
when perception is false, 1 when perception is true. The ceerassociate a certain
role to each of the possible entries of the table. Hence,doh simulation tick of the
game development, the agent’s bid will be the role assatiayethe user to the set of
perceptions gathered by the agent at that simulation tick.

Defining an auction policy for the auctione@he auction is responsible for distributing
the roles between the agents on the field. The behavior ofutt@aeer can be defined
by a boolean table whose entries are the different possittmations of true and

false values of the perception variabjgs= P. Depending on the collaboration policy,
those variables will come from the agent itself or from anyhe agents of the team
if it is a shared parameter. The simulation makes it possibtiefine each entry in the
table as a suitable situation for the role to be assigned bima simple auction, the

auctioneer will try to assign the role in the bid dependinglanset of perceptions. In
a combinatorial auction, the auctioneer will try to assigoteof the roles in the bid in

decreasing order of weights. The auctioneer will go throtighdifferent roles in the

bid until one of the roles in the array is assigned to the ggaaaning that the bid is

won.

Game DevelopmentOnce the agent-roles are defined, we have to actually sienhiat
joint task to be developed by the agents. As stated beforegiouis that of simulating
a soccer game. The game model is very simple. Each role haseagsaph that will
output a certain behavior depending on the perceptionggediby the agent:

— PA BEHAVIOR: If the agent sees the goal and the ball, then, kick it, otisaturn
to look for the ball without loosing track of the goal.

— OS BeHAVIOR: If the ball is seen, the agent kicks it.

— DS BEHAVIOR: If the ball is seen, the agent follows it in order to avoidttha
agent from the opponent team scores.

The output of the state graphs of each role may generate dhe @llowing methods:

t ur n() : the robot turns (changes angle of view region 0..7) to laoiplerceptions;

ki ck() : the coordinates of the ball change according to the hinsitg and robot’s
coordinates; anflol | owbal | () : agent is assigned a position that is as close to the
ball as its closest teammate.

Finally, if a goal is scored, the robots are sent back to tihdial positions and the
ball randomly changes location. Then, the three step (petens generation, auction
policy and game development) simulation is run again. Wesickem that a goal is scored
when its coordinates are inside a predefined square arouhd gwal coordinates.

6 Experiments

This section describes our experimental work to date. Thgdtarted to explore the
range of possible auctions and their effect on the cooridinaif a team, as measured



Table 1. Non-collaborative simple auction

Ball seenOpponent segMate seefRole
0 0 DS
DS
DS
DS
DS
DS
oS
oS
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N == =]
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Table 2. Matching policy between roles and perceptions.

Ball seenOpponent seeMate seen Role
0 PA
PA
PA
PA
PA
PA
0s,DS
0s,DS

il il lelieol el e]

Rk ook rlolo
Rl ok ok ok

by their performance in simulated games. We have experdemith four very simple
types of coordination.

6.1 Non-collaborative simple auction

This approach defines a team of agents that don't share angpiEm data. Hence,
each one relies on the information that it gathers indepethdef the others. The offers
made by the agents follow the policy in Table 1. This shows Wehave defined the
agent to offer to be OS when both ball and opponent are seamyliiother case, our
agent will offer to be DS. The matching policy that we havemdiis represented by
Table 2. This is very simple and just associates a fixed roéath of the possible sets
of perceptions.

6.2 Non-collaborative combinatorial auction

In this case there is still no sharing of perception, but tltertow contains a vector
defining the agent’s role preferences For our experimemtfiave defined two different
bidding policies. Theoffensivepolicy, defined in Table 3, represents a team with an
attacking approach, always looking for the goal and aimigcore. The other policy



Table 3. Non-collaborative combinatorial auction

Ball seenOpponent segMate seen Role
0 0 0 |[0S,.7.DS,2,PA 1]
0 0 1 [0S,.7,DS,.2,PA,.1]
0 1 0 [0S,.7,DS,.2,PA, 1]
0 1 1 |[0S,.7,.DS,.2,PA, 1]
1 0 0 [0S,.7,DS,.2,PA,.1]
1 0 1 |[0S,.7,DS,.2,PA, 1]
1 1 0 |[0S,.7.DS,2,PA 1]
1 1 1 |[0S,.7,DS,.2,PA, 1]

Table 4. Collaborative simple auction

Ball seenOpp seefMate seefMinGoallMaxOpgMaxBall{Role
0 0 0 0 0 0 |[DS]
0 0 0 0 0 1 |[DS]
1 1 1 1 1 1 [[09]

is more defensive. This one assigns the array of roles [[335,72,PA,.1] to each of the
agents. The matching table is the same as before.

6.3 Collaborative simple auction

In this case, the agents share all the perception data. Hehea defining the bids, we
can also share the three variables related to the minimurmamndnum distances to the
ball, opponents and goal. The table defining the biddingcgad huge. In Table 4 we
show a few lines to give the sense of it, but it is deliberasatyilar to the policy for the
non-collaborative auction to give a reasonable comparltren no elements are seen
by any of the agents, the agent bids for the role DS. When thiagyis seen and the
distances are minimum, the agents bid to be OS. The matcbiigy s also the same
as for the non-collaborative examples.

6.4 Collaborative combinatorial auction

Here the bidding table (Table 5) is similar to the previoug,dbut contains a vec-
tor of bids and weights instead of only one role, and this eeix like that for the
non-collaborative combinatorial auction. Again we ranemments with an attacking
bidding policy and a defensive bidding policy, and the maighable is the one used in
the previous examples.



Table 5. Collaborative combinatorial auction

Ball seenOpp seefMate seefMinGoalMaxOppgMaxBall Role
0 0 0 0 0 0 [0S,.7,DS,.2,PA,.1]
0 0 0 0 0 1 [0S,.7,DS,.2,PA,.1]
1 1 1 1 1 1 |[0S,.7,DS,2,PA. 1]

Table 6. Results

unique not unique
offensivddefensivgoffensivedefensive

bid bid bid bid

noncollab simple 16 - 16 -

noncollab comb| 33 43 30 47

collab simple 40 - 67 -

collab comb 49 37 78 67

6.5 Results

Teams using each of the types of coordination describedeatiosiuding separate of-
fensive and defensive techniques in the combinatoriai@rictvere run in simulation

against the same, simple, opponent in order to evaluateftbetieeness of the col-

laboration policy. The opposing team moved randomly arainedfield, but was not

intended as serious opposition, rather it was intended asealihe against which all
mechanisms could be judged equally. For each coordinatechamism, we ran two
sets of experiments. In one, the “unique” experiments, wdarthe auctioneer assign
unique roles to agents. In the “not unique” experimentsatineioneer was allowed to
assign duplicate roles. The average number of goals scoreghth of the different

kinds of collaboration are given in Table 6, and plots of tbalg scored over time for a
sample game are given in Figures 1 and 2.

In the non unique approach, collaborative teams score aldwmsle the number
of goals of the non-collaborative teams. In the unique rgpraach, differences in
the score of the games between the collaborative and ndaiboohtive approaches for
both simple and combinational auctions are not so marked.i$hlue to the fact that
our matching policy is very demanding and since we do notatkepeated roles, the
auctioneer often ends up distributing roles randomly. tfeoto prove this last assertion,
we defined a parameter called ratio in the simulation. Thie iatassociated to the
acceptance of the bids made by an agent. The higher the tfagionore times its bid
has been accepted. In the not uniqueness experiments, a@abtvery low ratios,
meaning that the agents almost never won a bid, and so, the ware distributed
randomly.
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Fig. 1. Goals scored over the course of a game — unique matchingypolic

7 Conclusions and Future work

This paper has described our preliminary work in explorimguse of auction mecha-
nisms to coordinate players on a RoboCup team. While thi& iganly just beginning,
we believe that the results demonstrate the potential ofpipeoach to capture a wide
range of types of coordination, and to be able to demongtrateeffectiveness through
simulation. In addition, this approach makes it simple tplese more complex, and po-
tentially more flexible, kinds of role allocation than haweeh previously used in the
legged-league, for example [2, 15].

Our future work is to build on this foundation, exploring ader range of possible
auctions through simulation, and moving towards usingiliegrtechniques to automat-
ically explore the space of auctions. We further intend tpleament the most effective
bidding and matching policies on our legged-league team.
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