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Abstract

To provide insight into patient-level disease dynamics from
data collected at irregular time intervals, this work extends
applications of semi-parametric clustering for temporal min-
ing. In the semi-parametric clustering framework, Marko-
vian models provide useful parametric assumptions for mod-
eling temporal dynamics, and a non-parametric method is
used to cluster the temporal abstractions instead of operat-
ing on the original data. Our contribution extends abstraction
to continuous-time Markov models and the clustering compo-
nent to the non-parametric Bayesian setting, which does not
require the number of clusters to be indicated a priori.

Introduction

To provide a better understanding of dynamic changes that
can occur during the course of a patient’s disease trajectory,
this work applies exploratory analysis methods to temporal
data. One major challenge posed by modeling patient level
data is that disease related observations are typically docu-
mented only during hospital or physician visits, resulting in
irregular time intervals. Also, a patient’s measurement se-
quence be short or can span over many years and the na-
ture of the observation scheme (e.g., fixed, random or self-
selected) can be unclear.

Rather than use the sequences of values directly, and
based on recent work outlining a framework for semi-
parametric clustering of time series data (Jebara 2007),
we build probabilistic models, abstractions, of these se-
quences using continuous-time models. Specifically, we ex-
tends temporal abstraction to multi-state hidden Markov
models, which are an instance of continuous-time hidden
Markov models (CT-HMMs).

In addition to abstraction with a continuous-time model,
we extend the clustering component to the non-parametric
Bayesian setting, allowing for the number of clusters to be
expressed as a function of the sample size. Determining the
number of clusters, k, is a challenge posed by many tradi-
tional clustering algorithms.
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Application to Data Driven Wellness

Temporal data can provide critical contextual information
to discover new knowledge relevant to health and wellness.
However, the accumulation of patient data has outpaced the
generation of effective methods for temporal analysis. Al-
though there is extensive work on approaches for modeling
patients in environments such as the ICU, these do not easily
translate to long durations, such as months or years. To this
end, we demonstrate a clustering method for the exploratory
analysis of longitudinal patient data that easily extends to
new data sets, and in contrast to discrete time approaches, is
more appropriate for modeling incomplete, irregular obser-
vation sequences that are common to patient data found in
electronic health records.

Temporal Representations

Regardless of the temporal mining task, the first step of an
algorithm is to transform, or abstract, the raw data into a
more concise representation, preserving as much of the in-
formation contained in the original sequence as possible.
The specific models we use are based on finite state con-
tinuous time Markov processes.

Markovian models are based on the underlying assump-
tion that the future state of a system, (Q;1, is independent
of all past states, given the current state ();. Hidden Markov
models (HMMs) are useful for representing phenomena that
care not directly observed, but for which a correlated vari-
able can provide sufficient information to make inferences
about the latent or hidden state’s value.

HMMs are defined by a triple, {A, B, 7} over a set of
discrete states and distinct observations. The matrix A repre-
sents the state transitions, or the probability of moving from
the current state, g;, to the next state, g;41. The model pa-
rameter B indicates the probability of an observation value
foreach g € Q.

Although discrete-time models are suitable in many cases,
there are two key limitations that have been noted (Saria
2007) and are directly relevant to the type of data typically
found in provider databases. First, if the underlying health
related phenomena that is being modeled progresses in indi-
viduals at different rates, the smallest granularity must be
used to express time steps for the entire system. Second,
when data is unavailable, intervening time slices must still
be represented.



Multi-state Markov Models

By default, all traditional HMMs, and dynamic Bayesian
networks more generally, make discrete-time assumptions.
A main distinguishing characteristic between DT and CT
HMMs is that in the discrete-time case, the Markov process
stays in a state ¢ for a time distributed according to F;(¢) and
in the continuous-time case the holding time is exponentially
distributed according to F;(t) = % where ¢; is the inten-
sity of the transitions, or the tendency to change state.

For a process variable X with a domain of of
1, T3, ...,Ly, Where n corresponds with the number of
states, the intuition is that the intensity, ¢;, no longer cor-
responds with the transition probability that is constant for
the length of a time slice, but rather an ‘instantaneous prob-
ability’ of leaving state x; and the intensity of g; ; gives the
‘instantaneous probability’ of transitioning from z; to x;.
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Figure 1: Multi-state Markov Model

The specific instance of CT-HMMs we use for temporal
abstraction are hidden multi-state Markov models (MSMs).
A 4 state MSM is shown in Figure 1, with the intensity ma-
trix () that represents the instantaneous behavior of the pro-
cess X. The states are ordered progressively to reflect stages
in a disease trajectory. MSMs are not well known outside
epidemiology and biostatistics, where they have applied for
chronic disease modeling at the population level and have
hidden and semi-Markovian extensions (Jackson 2011).

Non-parametric Bayesian Clustering

A main challenge posed by many traditional clustering al-
gorithms is selecting the number of components. Using a
Dirichlet process (DP) Gaussian mixture model for non-
parametric Bayesian clustering, we group patients by dis-
ease dynamics using the abstractions of their raw measure-
ment sequences.

The Dirichlet process is a measure on measures that is
characterized by two parameters: a base distribution Gy,
from which samples are drawn, and a positive scaling pa-
rameter «, which is more intuitively described as a ‘split-
ting’ criteria and is associated with the probability of form-
ing a new cluster. For a sample, GG, drawn from the base
distribution Gy, if G ~ DP(Gy, «) then for any set of par-
titions A, U Ay U ... A} of A:

(G(Ay), ... G(AR)) ~ Dir(aGo(Ay), ..., aGo(Ar))

In the the Dirichlet process mixture model, the DP is used
as nonparametric prior in a hierarchical Bayesian model,
where G can be partitioned according to the value of the
parameters. To compute the model likelihoods and posterior
distribution of the clusters we used a mean variational in-
ference for the infinite Gaussian mixture model instead of
Gibbs sampling using (Pedregosa 2011).

Data and Methods

We apply our clustering approach to two de-identified data
sets, which reflect patients with variable observation dura-
tions, measurement granularities, and levels of incomplete-
ness associated with their record. The first consists of a stan-
dard lab test for hepatitis, platelet counts. The gold standard
for diagnosing the final stage of chronic liver disease is by
biopsy, but the cost and invasive has created a need for alter-
natives.

Our second data set is from a large urban hospital, and in-
dicates the presence or absence of glucose tests for patients.
Typically, a single incident of a lab test may corresponds
with an one-day visit or stay, or one that does not require on-
going glucose monitoring. However, a series of contiguous
testing patterns likely correspond to a patient with diabetes
that is being actively monitored.

We estimated n, the number of states for the models using
anon-parametric Bayesian density estimator. Since the num-
ber of states and the continuous nature of the model should
not be too large, the upper-bound on the number for density
estimation was set to a maximum of five. Platelet count val-
ues were used directly for estimating the number of states.
The glucose testing data was processed before state estima-
tion. Creating a new vector, we set the observation value
to the number of days contiguous tests were ordered. For
example, and measurement sequence of [1,0,0,0,1,1,1,1]
would consist of two observations, 1 and 4.

Initial values for the each patients intensity matrix were
obtained by using a naive estimation provided by counting
the total number of transition pairs for the entire population,
and estimating their probability of occurrence. Although not
all patients were able to have model parameters output by
the abstraction method, initial population level estimates al-
lowed more observations to converge using the parameter
estimation methods than the same naive initialization as-
sumption at the patient level.

Using a 4-state multi-state Markov model, each patient’s
parameters are calculated using likelihood estimations based
on the time and values in their observation sequences. The
parameter, or abstraction, used as input to clustering is the
matrix (), representing the instantaneous behavior of the
process X, as an nxn matrix.

Results

To validate the results of clustering platelet count values
for the hepatitis data set, we used grading and staging data
from liver biopsies. Figure 2 show the result from the clus-
tering with the highest highest purity (0.61%) and obtained
using continuous-time HMM abstraction paired with non-
parametric Bayesian clustering. Cluster purity obtained us-



ing spectral clustering, was notably lower, reporting a high
of 0.40. Cluster membership is visualized in relation to high-
est biopsy grading, and reported by percent of the total for
each grade (n = 468). A grading of four indicates cirrho-
sis of the liver or advance scarring. In addition to grading,
biopsy activity is commonly used to stage liver disease and
visualized in Figure 2. using the fill variation for each pie.
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Figure 2: Hepatitis Clusters by Biopsy Staging and Activity

External data for validating our glucose data set cluster-
ing was not available and intrinsic measures based on cluster
silhouettes were used to assess cluster quality. The results
of CT-HMM abstraction paired with non-parametric Bate-
sian clustering paired is reported in terms of average sil-
houette is shown in 1. Spectral clustering was also paired
with CT-HMMs. Although the average silhouette value was
overall lower (0.10), one large cluster had a average silhou-
ette higher that that on the max for non-parametric Bayesian
clustering.

Table 1: Cluster Silhouettes

Cluster | Members | Average Silhouette
Ch 153 -0.04956

Co 269 0.9416

Cs 132 0.1151

Cy 114 -0.3712

Cs 337 -0.5460

Compared with discrete-time HMM abstraction for the
same data set, in previous work (Tamang 2011) we reported
over 80 percent of patients with a good (0.60 or above) sil-
houettes value. In comparison, continuous-time HMM ab-
straction report just over half of patients with a good silhou-
ette value (54 percent).

Conclusions

We demonstrate a new method to model patient disease
dynamics with two key features. First, we use continuous-

time (CT) HMM abstraction, which avoids some of the lim-
itations of discrete-time approaches when a dynamic pro-
cess evolves at different time granulations, and when obser-
vations are irregularly sampled and missing not at random.
Second, non-parametric Bayesian clustering methods avoid
the problem of identifying the number of clusters a priori,
inferring the appropriate number of mixture component as a
function of the sample size.

Specifically, we apply hidden multi-State models, an in-
stance of continuous-time HMM models used by biosta-
tistican for disease modeling. Although we were unable to
match the intrinsic clustering quality achieved in previous
work using discrete-time HMMs abstraction with glucose
test data, performance was comparable. However, on a hep-
atitis data we externally validate their effectiveness. We also
assess the performance of pairing temporal abstraction with
a non-parametric Bayesian clustering. It conveniently elimi-
nates the need to estimate k, and performed better that spec-
tral clustering on the hepatitis data set.

Our continued work will focus on more rigorous, and al-
ternative methods for cluster evaluation. Silhouette values
are limited in their ability to assess quality and there may
be more suitable, or additional methods to evaluate clusters.
Also, in terms of external validation for our hepatitis data
set, our clusters are not categorical, but rather ordinal and
accounting for the relations between clusters may also pro-
vide additional insights into the performance our techniques.
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