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Abstract. Real market institutions, stock and commodity exchanges for exam-
ple, do not occur in isolation. Company stock is frequently listed on several stock
exchanges, allowing traders to potentially trade such stock in different markets.
While there has been extensive research into agent-based trading in individual
markets, there is little work on agents that trade in such multiple market scenarios.
Our work seeks to address this imbalance. Here we provide an initial analysis of
the behavior of trading agents that are free to move between a number ofparallel
markets, where markets are able to charge traders in a variety of ways.We show
the movement of traders between markets, sketch some adaptive strategies that
markets may use to adjust charges, evaluate the effectiveness of these strategies,
and give some results which show the effect of trader movement on properties of
the markets.
Key words: Continuous double auction, multiple markets.

1 Introduction

The market mechanisms known asauctions, are widely used to solve real-world re-
source allocation problems, and in structuring stock or futures exchanges like the New
York Stock Exchange (NYSE) and the Chicago Mercantile Exchange (CME). When well
designed [11], auctions achieve desirable economic outcomes like highallocative ef-
ficiencywhilst being easy to implement. Research on auctions originally interested
economists and mathematicians. They view auctions as gamesof incomplete infor-
mation and have successfully applied traditional analyticmethods from game theory
to some kinds of auctions [14, 28]. The high complexity of other auction types, espe-
cially double-sided auctions[4], however makes it difficult to go further in this direction
[13, 21] except in special cases such as thebuyer’s biddouble auction [10]. InDAs, both
competing sellers and buyers can make offers, in contrast tothe most common auction
mechanisms, such as the English auction, where only buyers can make offers, and this
greatly expands the space of possible trader strategies. Todeal with this complexity,
researchers turned to experimental approaches to analyse the most common varieties
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of the double auction, thecontinuous double auction(CDA) — in which any trader can
accept an offer and make a deal any time during the auction period — and theclearing
house(CH) auction — where deals may only be made at the end of the auction pe-
riod though offers may be continuously exchanged. For example, [24] showed that for
CDAs, even a handful of human traders can lead to high overall efficiency, and transac-
tion prices can quickly converge to the theoretical equilibrium.

With real trade increasingly contracted by automated “program traders”, experimen-
tal work has followed suit. [8] introduced thezero intelligencetrading strategy1 ZI-C

— which bids randomly but avoids making a loss — and showed that it generates high
efficiency solutions [8]. [3] then provided an adaptive trading strategy calledzero in-
telligence plus(ZIP), and showed that it outperformedZI-C, generating high efficiency
outcomes and converging to the equilibrium price. This led to the suggestion thatZIP

embodies the minimum intelligence required by traders. Subsequent work has led to
the development of further trading strategies, including that proposed by [20], and that
suggested by [7], the latter commonly being referred to asGD after its creators.

This work on trading strategies is only one facet of the research on auctions. The
results in [8] suggest that the structure of the auction mechanisms plays an important
role in determining the outcome of an auction, and this is further bourne out by the work
of [29] (which also points out that results hinge on both auction design and the mix of
trading strategies used). For example, if an auction isstrategy-proof, traders need not
bother to conceal their private values, and in such auctionscomplex trading agents are
not required.

Despite the variety of this work, it has one common theme — it all studies single
markets. In contrast, real market institutions, like the stock and commodity exchanges
mentioned above, do not occur in isolation. Company stock isfrequently listed on sev-
eral stock exchanges. Indian companies, for example, can belisted on both the National
Stock Exchange (NSE) and the Bombay Stock Exchange (BSE) [23]. US companies may
be listed on both theNYSE, NASDAQ and, in the case of larger firms, non-US markets
like the London Stock Exchange (LSE).

Such multiple markets for the same goods induce complex interactions. The sim-
plest example of this is the work ofarbitrageurswho exploit price differences between
markets to buy low in one and sell high in another, thus evening the prices between
markets. In addition, futures exchanges make it possible for dealers in a particular com-
modity to offset their risks by trading options — commitments to buy or sell at a future
date at a certain price — in that commodity, and provide further opportunities for arbi-
trage. More complex dynamics occur when markets compete, aswhen theNSE opened
and proceeded to claim much of the trade volume from the established BSE [23], or
when the newly created Singapore International Monetary Exchange (SIMEX) did the
same to Japanese markets for index futures on Nikkei 225 [22]in the late 1980s. These
changes took place over a long period of time, but inter-market dynamics can have much

1 In a recent paper [25], one of the authors of [8] reveals that they came up with this simple
strategy in the face of demands from students whom they had challenged tocreate automated
strategies, saying that “Our motivation for theZI-C strategy was part jest: it was sure to lose
to the student strategies, but we could still save face with such an obviouslysimple and silly
strategy”.
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shorter timescales, as was the case in the flow between theCME and theNYSE during
the global stock market crash of 1987 [15]. This kind of interaction between markets
has not been widely studied, least of all using automated traders.

The work described in this paper starts to address this imbalance between exper-
imental work and what happens in the real world, providing ananalysis of scenarios
in which trading agents choose between a number of parallel markets, while the mar-
kets simultaeously decide how to profit from the traders. In common with much work
in computational economics [5], the strategies used both bytraders to choose between
markets, and markets to decide how to charge traders, are very simple — the idea is that
using more sophisticated strategies might obscure our viewof what is happening in the
complex setting of double auction markets.

2 Background

To experiment with multiple markets, we used a variant of theJava Auction Simulator
API (JASA)2. JASA provides the ability to run continuous double auctions populated by
traders that use a variety of trading strategies, and has been used for a variety of work
in analysing auctions, for example [17, 19]. Auctions inJASA follow the usual pattern
for work on automated trading agents, running for a number oftradingdays, with each
day being broken up into a series ofrounds. A round is an opportunity for agents to
make offers to buy or sell3, and we distinguish different days because at the end of a
day, agents have their inventories replenished. As a result, every buyer can buy goods
every day, and every seller can sell every day. Days are not identical because agents are
aware of what happened the previous day. Thus it is possible for traders to learn, over
the course of several days, the optimal way to trade.

We run a number ofJASA markets simultaneously, allowing traders to move be-
tween markets at the end of a day. In practice this means that traders need a decision
mechanism that picks which market to trade in, and we have implemented several —
these are discussed below. Using this approach, agents are not only learning how best to
make offers, which they will have to do anew for each market, but they are also learning
which market is best for them. Of course, which market is bestwill depend partly on
the properties of different markets, but also on which otheragents are in those markets.

We allow markets to levy charges on traders, as real markets do. In doing this, our
work has a different focus from the other work on market mechanisms we have men-
tioned. That work is focused on how the performance of traders helps achieve economic
goals like high efficiency [8] and trading near equilibrium [3], or how traders compete
amongst themselves to achieve high profits [27]. In contrast, we are interested in com-
petition betweenmarkets, and what the movement of traders is when they are faced
with a variety of markets.

2 http://sourceforge.net/projects/jasa/
3 Offers to buy are also calledbids, and offers to sell are also calledasks. Both are calledshouts.
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3 Experimental Setup

The experiments we carried out explore how traders move between markets of different
properties and what effect their movement has on the profits of those markets.

3.1 Traders

Our traders have two tasks. One is to decide how to make offers. The mechanism they
use to do this is theirtrading strategy. The other task is to choose market to make
offers in. The mechanism for doing this is theirmarket selection strategy. The trading
strategies are:

– ZI-C: [8] which picks offers randomly but ensures the trader doesn’t make a loss.
– GD: [7] which estimates the probability of an offer being accepted from the distribu-

tion of past offers, and chooses the offer which maximises its expected utility.

The market selection strategies are:

– Tr: the trader randomly picks a market; and
– Tǫ: the trader treats the choice of market as ann-armed bandit problem which it

solves using anǫ-greedy exploration policy [26]. ATǫ trader chooses what it esti-
mates to be the best market, in terms of daily trading profit, with probability1 − ǫ,
and randomly chooses one of the remaining markets otherwise. ǫ may remain con-
stant or be variable over time, depending upon the value of the parameterα [26]. If α

is 1,ǫ remains constant, while ifα takes any value in(0, 1), ǫ will reduce over time.
– Tτ : the trader uses the softmax exploration policy [26]. ATτ trader does not treat all

markets other than the best exactly the same. If it does not choose the best market,
it weights the choice of remaining market so that it is more likely to choose better
markets. The parameterτ in the softmax strategy controls the relative importance of
the weights a trader assigns markets, and similarly toǫ, it may be fixed or have a
variable value that is controlled byα.

Thus all our traders use simple reinforcement learning to decide which market to trade
in4, basing their choice on the expected profit suggested by prior experience, and mak-
ing no use of any other information that may be available about the markets. As men-
tioned above, we deliberately chose this simple decision mechanism in order to make
the comparison between markets as clear as possible.

3.2 Markets

While we can set up markets to charge traders in a variety of ways, we have concen-
trated on charging traders a proportion of the surplus on a transaction in which they are
involved — that is a proportion of the difference between what the buyer bids and the
seller asks (we refer to this as a “profit charge”). We focus onthis because it mirrors the
case of the competition between theNSE and theBSE [23] where theBSE, had a much
higher charge on transactions than the new market.
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Fig. 1. Baseline experiments. GD traders, (a) and (b) with random market selection, (c) and (d)
with Tǫ market selection (ǫ = 0.1, α = 1).M0.2: dashed line with solid dots;M0.4: solid line;
M0.6: dashed line;M0.8: dotted line.

We experimented with four basic charging mechanisms, one that imposed fixed
charges, and three simple mechanisms for adapting charges:

– Fixed charging rates, typically 20%, 40%, 60% and 80% of thesurplus on a transac-
tion.

– Pricecutting (PC): since traders will, all else being equal, prefer markets with lower
charges, a pricecutting market will reduce its charge untilit is 80% of the charge of
the lowest charging market.

– Bait and switch (B& S): the market cuts its charge until it captures 30% of the traders,
then slowly increases its charge (adjusting its charge downward again if its market
share drops below 30%).

4 Though we have results, not presented here, which suggest that more complex forms of rein-
forcement learning, like the Roth-Erev approach [20] do not perform significantly differently.
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Fig. 2. Robustness experiments. (a) and (b) showZI-C traders, and (c) and (d) show a mixture of
GD andZI-C traders, all traders useTǫ market selection (ǫ = 0.1, α = 1). M0.2: dashed line with
solid dots;M0.4: solid line;M0.6: dashed line;M0.8: dotted line.

– Lure or learn fast5 (LL ): a version of theZIP strategy, suitably adapted for markets.
The market adjusts its charge to be just lower than that of themarket that is the most
profitable. If it is the most profitable market, it raises its charge slightly.

As with our choice of the mechanism used by traders to choose which market to trade
in, our choice of market strategies was driven by the desire to first establish the relative
performance of simple charging policies, and thus the basicstructure of the problem of
competing markets, before trying more complex policies.

Each of the experiments is setup in the following way. The experiment is run for
beween 100 and 400 trading days, with every day being split into 10 rounds, each of
which is 1 second long. The markets are populated by 100 traders, evenly split between
buyers and sellers, and initially evenly split between markets. Each trader is permitted to
buy or sell at most one unit of goods per day, and each trader has a private value for that

5 The name is intended as a play on Bowling’s “win or learn fast” [1]. We initiallycalled this
strategy “zero intelligence” but found we confused it with zero intelligencetraders.
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good which is drawn from a uniform distribution between $50 and $150. Private values
are constant across all the trading days. For most of the experiments, all markets were
continuous double auctions, though the very last experiments we discuss in the paper
also used clearing house auctions (we will identify these experiments clearly when we
discuss them).

4 Results

The results of our experiments are given in Figures 1 to 6 and Tables 1 and 2. These all
show values averaged over 100 runs of each experiment.

4.1 Fixed charge markets

The first set of experiments explore the properties of markets with fixed charges. These
are the results in Figures 1 to 4.

Figures 1 provides some baseline results. Figures 1(a) and 1(b) show that traders
that pick markets randomly have no discernable pattern of movement between markets,
just as we would expect. As a result, the market with the highest charges makes the
most profit. In contrast, Figure 1(c) and 1(d), when traders pick markets based on their
personal profits, they move towards the market with lowest fixed costs. While markets
with high charges make initial windfall profits, the trend isfor the lower charging market
to gain greater cumulative profit as the number of trading days increases.

Figure 2 and Figure 3 show the insensitivity of the results weobtain to the choice of
bidding strategy and the choice of market selection strategy. Figures 2(a)–2(d) show that
results are robust against the ability of traders to make sensible trades since broadly the
same results are observed when some or all of the traders maketheir bidding decisions
randomly usingZI-C rather than using the sophisticatedGD strategy. Figures 3(a)–3(d)
test the sensitivity of the results to the kind of learning used in the market selection.
Decreasingǫ over time (Figures 3(a) and 3(b)) does not seem to have much effect, but
switching to the softmax strategy (Figures 3(c) and 3(d)) reduces the attractiveness of
the lowest charging market since some traders can still makereasonable profits in higher
charging markets, and so will pick them relatively often.

Finally, Figure 4 tests the effect of allowing populations of traders to learn for dif-
ferent lengths of time. As we can see from Figures 4(a)–4(d),the results obtained so far
are very sensitive to the length of time agents have to learn about the markets. When
as few as 10% of traders start learning afresh every day, simulating traders leaving
and entering the system of markets (4(c) and 4(d)), the lowest charging market might
still capture most of the traders, but it captures less of them, and the remaining mar-
kets attract enough traders to have the same profit profile as when there is no learning
(Figures 1(a) and 1(b)).

Thus, for the fixed charge markets — which is all we used in these initial experi-
ments — provided that there is no turnover of traders, it is a winning strategy to undercut
the charges of the other markets.
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Fig. 3. Learning experiments. GD traders, (a) and (b) withTǫ traders (ǫ = 1, α = 0.95), (c) and
(d) with Tτ traders (τ = 1, α = 0.95). M0.2: dashed line with solid dots;M0.4: solid line;M0.6:
dashed line;M0.8: dotted line.

4.2 Other approaches to market charging

While the experiments described above give us some idea of theinterplay between
trader movement, market charging and overall market performance, it is perhaps more
interesting to examine how the different adaptive chargingstrategies work in compe-
tition against one another. To explore this, we carried out aseries of mixed market
experiments along the lines of the trading strategy work of [27]. For each of the three
adaptive charging strategies — pricecutting (PC), bait-and-switch (B& S) and lure-or-
learn (LL ) — we ran an experiment in which all but one market used that strategy and
the remaining market used another strategy, carrying out one such “one-to-many” ex-
periment for each of the other strategies. In other words, wetested every “one-to-many”
combination. For all these experiments, we measured the cumulative profit of a market
using the charging strategies, and ran the markets alongside the same null market as
before.
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Fig. 4. Population experiments. GD traders, all traders useTǫ market selection (ǫ = 0.1, α = 1).
In (a) and (b), all traders learn continuously through the experiment. In (c) and (d), 10% of the
traders re-start learning every day.M0.2: dashed line with solid dots;M0.4: solid line; M0.6:
dashed line;M0.8: dotted line.

For all of these experiments we ran four charging markets. Each only made charges
on profits, and each had a different initial charge (each experiment had one market each
with a 20%, 40%, 60% or 80% charge). After the first day, each market then changed
its charge using whichever of the three adaptive strategiesit had been assigned. In each
experiment we also provided a fifth “null” market which made no charges and executed
no trades — the idea of this was to allow traders that were unable to trade profitably
with a mechanism for not trading. For all of these experiments, we used traders that
made bids usingGD, selected markets using anǫ-greedy policy (ǫ = 0.1 andα = 1),
and continued learning for all 400 days.

Table 1 gives the results of “one-to-many” experiments, giving the cumulative prof-
its of the “one” market against the best performing “many” market for each combination
of the adaptive markets. The table also indicates which profit is the greater at 90% con-
fidence (as determined by a t-test). “>” means the “one” market is better than the best
“many” market at 90% confidence and “<” means the best “many” market is better. The
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Table 1. Results of one-to-many experiments. For each experiment, the table gives the cumulative
profit of the “one” strategy followed by the cumulative profit of the bestof the “many”, and an
indication of whether the “one” is greater or less than the “many” at the 90%confidence level
(determined by a t-test).

Many PC Many B& S Many LL

1-PC Profit 0.8 – 84.1 6502.2 – 6043.6
stdev. 7.5 – 105.6 1527.1 – 2159.7

relationship < >

1-B& S Profit 82.0 – 0.7 6545.7 – 5743.8
stdev. 56.7 – 6.8 2325.0 – 1581.8

relationship > >

1-LL Profit 2289.6 – 0.8 1773.5 – 166.9
stdev. 1118.9 – 8.5 633.0 – 264.8

relationship > >

day by day results for these experiments are not included here for want of space, but
may be found in [18]. Table 1 indicates that one price-cutting market is effective against
many lure-or-learn markets (the daily results show that it does this by capturing more
traders). In such a case, both types of market generate good profits. However, when all
the markets are price-cutters, they get into a price war and drive their charges down to
zero.

The bait-and-switch strategy was envisaged as a more sophisticated version ofPC,
one that exploited its market share by increasing charges ontraders it had attracted
through low charges. The results in Table 1 suggest thatB& S achieves this intention,
outperformingPC both when one bait-and-switch takes on multiple price-cutters, and
when a single price-cutter competes against multiple bait-and-switch markets. However,
as is the case withPC, when all the markets useB& S, they may end up cutting charges in
a futile attempt to increase market share and hence do not make much profit. Something
similar happens when there are many bait-and-switch markets running against a single
lure-or-learn market.

The lure-or-learn strategy, designed to get out of price wars by increasing charges
when it can, performs well against bothPC andB& S markets when it is in the minority.
When there is only one price-cutter or bait-and-switch against manyLL markets, the
PC andB& S markets may outperform theLL markets. However, even when this is the
case, the daily results reveal thatLL can still make more profit than the other market
strategies in the short run (before 200 days have elapsed).

The results in Table 1 are cumulative over the entire 400 daysof the experiment.
Since the early days of the experiment often contain a lot of noise from the initial
exploration of the traders, it is interesting to also look atthe profits over the just the
later stages of the experiments, when trader movement has settled down. Such results
are presented in Table 2. These results suggest that when it is in the majority, the lure-
or-learn strategy is clearly outperformed by both a single price-cutter and a single bait-
and-switch market. This result just reinforces what we could already see in Table 1, and
overall none of the relationships change between Table 1 andTable 2 — our results are
robust against the initial noise as traders settle down.
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Table 2. Results of one-to-many experiments over the latter days of the run. For each experiment,
the table gives the cumulative profit of the “one” strategy over the last 100 days of the experiment
followed by the cumulative profit of the best of the “many” and an indication of whether the
“one” is greater or less pthan the “many” at the 90% confidence level (determined by a t-test).

Many PC Many B& S Many LL

1-PC Profit 0 – 7.2 1727.5 – 1475.3
stdev. 0 – 33.5 438.8 – 610.6

relationship < >

1-B& S Profit 5.9 – 0 2048.0 – 1397.7
stdev. 40.2 – 0 829.3 – 432.1

relationship > >

1-LL Profit 206.1 – 0 147.2 – 70.2
stdev. 173.4 – 0 54.4 – 227.6

relationship > >

4.3 Equilibrium in multiple markets

The experiments that we have described so far were intended to assess how traders move
between multiple markets that compete to attract traders, and how competition between
markets unfolds in terms of the profits made by each market. However, there is another
aspect that is of interest — the effect of this competition between markets on the usual
economic measures by which we assess markets, measures suchas allocative efficiency
and proximity to theoretical equilibrium. We therefore examined these measures using
the same experimental setup as in the “one-to-many” experiments, although we only
used homogeneous mechanisms for choosing market charges (all were LL ) and carried
out the experiments for bothCDA andCH markets. The results are given in Figures 5
and 6, the former being the results when all markets areCDAs, and the latter being the
results when all the markets areCHs.

The results show that trader movement (Figures 5(a) and Figure 6(a)) between the
different markets has settled down to some extent by around the 100th day of trading. At
this point traders are still moving — this is a result of the market selection mechanism
which still chooses one of the non-optimal markets 10% of thetime (sinceǫ is 0.1) —
but the average number of traders that move in each market on each day has reduced to
an approximately constant level.

Equilibrium price is also still changing by day 100, and continues to change
throughout the experiments. Figures 5(b) and Figure 6(b), which plot thechangein
equilibrium price each day, make this clear — there is a non-zero change every day
in every market. However, some pattern does emerge. The change in equilibrium price
has flattened off for each market by around day 300. Not only has the change stopped
changing on average (though it still fluctuates from day to day), but the size of the
change has stratified by market — a couple of the markets have an equilibrium price
that is changing very little, while others have an equilibrium price that is changing a lot.
This seems to be because in the latter kind of market, tradersare sparse, and the suppply
and demand curves scarcely overlap [2]. In such a market, themovement of traders can
have a big effect on the profitable trades, and hence the equilibrium price.
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(d) Global coefficient of convergence

Fig. 5. The performance of markets over time.GD traders in multipleCDA markets that useLL

to set charges on trader profits. All plots show average value, and plots(c) and (d) show standard
deviation also.

In addition to figures for individual markets, we measured the figures for all the
markets combined — these provide the “global” results in Figures 5(c), Figure 5(d),
Figures 6(c) and Figure 6(d). Global efficiency measures theratio of the actual profit
achieved by the traders as against the profit that theory sayswould be achieved were all
the traders operating in a single market. The global cofficient of convergence is theRMS

difference between the equilibrium prices in the individual markets and the equilibrium
price that theory says would hold were all the trader in a single market. As the figures
show, these values settle down to approximately constant values after between 100 and
200 days (despite the continuing change in equilibrium prices).

Both the global efficiency and the coefficient of convergenceimprove over time —
efficiency rises while the cooefficient of convergence drops, indicating that trading is
closer to the theoretical equilibrium. The results in [16] suggest that the rise in effi-
ciency occurs because the charges imposed by markets displace extra-marginal traders,
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(d) Global coefficient of convergence

Fig. 6. The performance of markets over time.GD traders in multipleCH markets that useLL to
set charges on trader profits. All plots show average value, and plots (c) and (d) show standard
deviation also.

and thus remove the possibility of inefficient trades. The fact that trades involving extra-
marginal traders will tend to occur further from the equilibrium price than trades involv-
ing intra-marginal traders explains the fall in the coefficient of convergence.

While the final values for the coefficient of convergence compare well with the val-
ues obtained in work on single markets, efficiency looks low compared with the values
obtained in single markets. We believe that this is explained by trader movement (which,
as we recall, continues throughout the experiment). Tradermovement means that the
distribution of trader private values in a given market changes every trading day. As a
result, traders have to keep relearning optimal offers6, and this continual learning re-

6 All traders are affected by this. Traders that move are clearly in a different environment, while
traders that do not move will typically have to cope with a market from whichsome traders
have removed themselves, or a market that has new traders to cope with.
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duces efficiency when compared with measurements obtained on single markets where
the distribution of private values is held constant from dayto day.

5 Related work

In our experiments, market performance depends on the mix ofmarket strategies being
considered. This suggests that, as is the case for trading strategies [27], it may be hard
to find a dominant strategy for deciding market charges, though such a conclusion must
wait until market strategies have been investigated further. This is particularly important
since the strategies that we have considered were, quite intentionally, about the simplest
we could imagine (starting with simple strategies seemed a good way to understand the
problem we are considering).

As mentioned above, there has been little work on the problemof choosing between
multiple markets. Our work is similar to [12], but differs inthat our work assesses
the impact of different market charges while [12] is concerned with the information
available to traders. [12] is also concerned with markets that are spatially separated, so
that traders’ access to trading partners is limited by theirlocation. This is similar to the
concern of [6]. In comparison, our traders are able to find anypartner, but the mobility
of traders means that they can be separated temporally rather than spatially.

Our work also has similarities to that of [9]. In the latter, shoppers choose between
different merchants, and the merchants set prices that depend on the prices set by other
merchants. While some of the results obtained in [9], especially the price wars induced
by myopic price-setting, look similar to some of ours, the scenario we are considering
is considerably more complex. For one thing, the traders in our scenario — the analogs
of the buyers in [9] — learn rather than making the same marketchoice at every trading
opportunity. Secondly, and more importantly, the markets in [9] have prices set by the
merchants, while in our case the prices are determined by thetraders. As a result, when
traders pick a market in our scenario, they do not know for sure if they will even be
able to trade, much less what prices good will change hands at. From the perspective
of the markets, it is possible to attract many traders who, because of their value for the
commodity being traded, do not end up trading. We are in the process of investigating
the effect of these subtleties.

6 Conclusions

This paper has described some of our initial work examining the dynamics of trading
when agents can choose between different markets. While we are wary of drawing too
many conclusions from our results, because we are still at anearly stage in our inves-
tigation, we can distinguish some broad trends. These show that, even when they are
limited in their ability to make good trades and limited in their learning about markets,
traders will gravitate to the lowest charging markets rather quickly, and, as a result, mar-
kets with lower charges generate higher profits. However, the advantages of low charges
are somewhat brittle. The advantages evaporate, for example, when not all traders are
experienced, and it appears that the best charging strategies are both adaptive and, like
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the simple “lure or learn” and “bait-and-switch” strategies that we introduce, quick to
increase charges when they can. Clearly there are many otherpossible charging strate-
gies, and it remains to be seen whether these conclusions hold when other strategies are
tested. (See [16] for more on this topic.) Our results also suggest that while splitting
traders across multiple markets tends to mean that the overall system takes much longer
to reach equilibrium, even if the equilibrium state that is eventually reached is not so
different from that which would be reached by a single large market.

Our future, and, indeed, current, work is aimed at further untangling the behavior
of competing markets. First, we want to ensure the robustness of the results we present
here, and so are repeating the experiments (a) over longer periods, to be sure that what
we have is indicative of performance in the steady state, when all start-up effects are
removed, (b) with different market rules, for example withCH as well asCDA, and (c)
with traders with different mixtures of trading and market selection strategies. Second,
we want to try to optimise the simple adaptive strategies — the behavior of each is
determined by some simple parameters (for example the market share that the bait-and-
switch market looks to capture), and it seems likely that suitable adjustment of these
parameters can improve performance. Third, we aim to investigate additional market
strategies with the aim of discovering one that is dominant,moving from the “one-
to-many” analysis performed here to the kind of evolutionary game theoretic analysis
used in [29]. Finally, we want to examine the effect of different market topologies on
our results, rather like [6].
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