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Abstract

We proposea formal treatmentof scenariosin
the context of a dialectical argumentation for-
malismfor qualitative reasoningabout uncertain
propositions.Our formalismextends prior work
in which arguments for and againstuncertain
propositionswerepresentedandcomparedin in-
teractionspacescalledAgoras. We now define
thenotionof ascenarioin thisframeworkanduse
it to definea setof qualitative uncertainty labels
for propositionsacrossa collectionof scenarios.
This work is intendedto leadto a formal theory
of scenariosandscenarioanalysis.

1 Introduction

In many domains, theabsenceof harddataor thepresence
of conflicting perceived interestsmakes reachingagree-
menton the quantification of uncertainty difficult. Argu-
mentationformalisms have beenproposedfor the quali-
tative representationof uncertainty in thesecircumstances
Krauseet al. (1995) andhave found application in intelli-
gentsystems,for example in medicalandsafetyanalysis
domains Carbogim, Robertson, & Lee(2000). In McBur-
ney & Parsons(2000), we proposeda formalismusingdi-
alecticalargumentationfor representing andresolvingthe
argumentsfor andagainstuncertainpropositions.Thisrep-
resentationwas grounded in specific theories of rational
human discourseandwascentered on anelectronicspace
for presentation of arguments,which we termedanAgora.
In subsequentwork McBurney & Parsons(2001b),we ex-
tendedthis formalismanddemonstratedthat it hadseveral
desirablepropertieswhenusedfor inferenceanddecision-
making. In this paper, we further extendthis framework to
enabledialecticalargumentation under andbetweenmulti-
plecircumstances,or scenarios.

The notion of scenario Schwartz (1991) has found
widespreadapplicationin businessforecasting,in public

policy determination, andin scientificdomains. An early
useof the methodsof scenarioanalysismay be seenin
nineteenth-century statistical mechanics,where research
sought to determine if thepropertiesof a physicalsystem,
suchas its entropy at a given time, depended on the sys-
tem’s initial state. Ludwig BoltzmannBoltzmann(1872)
tackledthis problem by comparing the given systemto a
collectionof alternative, imaginary systems,eachhaving
differentinitial conditions — i.e.,whatwe would now call
scenarios. By doing so, he could potentially assessthe
extent to which the systemproperty of interestwas inde-
pendentof the initial systemstate.JosiahW. GibbsGibbs
(1902) formalized theconcept of acollectionof alternative
systemswith his notion of ensemble, a termwealsouse.

Perhapsthemostimportant andcomplex recentapplication
of scenarioanalysishasbeenin thework of the Intergov-
ernmental Panelon ClimateChange(IPCC) McCarthyet
al. (2001), theUN agency taskedwith assessingthecurrent
and possiblefuture statesof the world’s ecosystem,and
with considering andrecommending appropriateenviron-
mentalregulatory policies.In this domain,scenarioanaly-
sishasbeenusedfor scientificmodeling andprediction, for
themodelingof socio-economicvariables andconditions,
andfor theassessmentof proposedregulatorypoliciesand
targets Carter& others(2001).

Despitetheir widespreaduse,however, thereappears to be
no formal theory of scenarios or scenarioanalysis. With-
out a formal theory, many questions remainwithout rig-
orous answers,e.g.,How shouldscenariosbeconstituted?
How many scenariosshouldbe considered?How should
individual scenariosbeanalysed?How should any differ-
encesin thelikelihood of occurrenceof different scenarios
be represented? How shouldtheir relative importance be
represented? How shouldreasoningbeundertakenacross
a collectionof scenarios,or multiple collections of scenar-
ios? In the absenceof a formal theoryof scenariosit is
difficult to assessthevalidity or reliability of any particu-
lar application of scenarioanalysis,for example, themany
analysesgeneratedby thework of theIPCCCarter& oth-
ers(2001). Moreover, becauseno computationaltheoryof



scenariosyet exists,applicationof scenarioanalysisin in-
telligentsystemsis limited.

The long-term aim of the researchreported hereis a rig-
orous, formal, computational theoryof scenarios.In this
paper, we take an initial steptowardsthis aim, by consid-
ering one type of scenario,thosebasedon dialecticalar-
gumentationsystems.In Section2, we review our model
for qualitative inferencein uncertaindomains, which uses
dialecticalargumentationto represent conflicting, ambigu-
ous or contestedinformation. Section3 definesour no-
tionsof scenarioandensemble, while Section4 considers
thequestionof whentwo scenariosmaybeconsidereddis-
tinct. Section5 thenconsiders how many observationswe
needto take for any debatein order to estimateits long
termposition; herewe prove whatwe believe to beanim-
portant theorem, Proposition 4, which saysthat the most
recentsnapshot of a debateis at leastasgood, in a precise
sense,asany combinationof earliersnapshots. In Section
6, we consider the theassignment of uncertainty labelsto
uncertain propositionson thebasisof their argumentation
statusin a collectionof scenarios. This is illustratedwith
an example in Section7 and the paperconcludeswith a
discussionof relatedwork in Section8.

Onepossibleresponseto theseproposalsis that scenario
analysisis unnecessaryin an argumentationcontext, be-
causetheseframeworks have beendevelopedpreciselyto
represent conflicting or uncertain information, and to re-
solve any inconsistency in theresultingconclusions. Such
a view is mistaken. In a typical application, we are not
merelytrying to decidewhetherthepossibleargumentsfor
somegivenclaim are,on balance, strongeror weaker than
theargumentsagainst it; we arealsotrying to identify the
circumstances(theassumptionsandallowedrulesof infer-
ence)underwhichargumentsexist for or against theclaim,
andthecircumstances under which thoseargumentsfor it
are stronger than thoseagainstit. To do this rigorously,
we needto clearlydemarcatethe setsof possiblecircum-
stances— i.e., the scenarios — from oneanother andto
comparethem.

2 Dialectical Argumentation

In this sectionwe briefly summarize theAgoraframework
for the qualitative representation of uncertainty presented
in McBurney & Parsons (2000, 2001b). In this frame-
work, argumentsfor andagainstclaimsarearticulatedby
participants in an electronicspace,calledan Agora, with
claimsexpressedasformulae in a propositionallanguage.
By meansof definedlocutions, participants in the Agora
canvariously posit,assert,contest,justify, rebut, undercut,
qualifyandretractclaims,justashappensin realdiscourse.
For example,adebateparticipant

���
coulddemonstrateher

argument �����	��
 supporting a claim � , an argumentto
which shewas committed with strength� , by meansof

thelocution:
show arg(

� ��
 ����������� )).
Therulesgoverningtheuseof eachpermitted locutionare
expressedin termsof a formal dialogue-gamebetweenthe
participants Hamblin (1970). We assumethat the Agora
participantsbegin adebatewith asetof agreedfacts,or as-
sumptions, andan agreedsetof inference rules. Because
we want to model many forms of reasoning, theserules
neednot be deductive andmay themselves, in our Agora
formulation,bethesubjectof argument.

We demonstratedthe useof this framework for the rep-
resentationof uncertainty by defininga setof uncertainty
labelsassignedto claimsonthebasisof theargumentspre-
sentedfor andagainstthemin theAgora. Essentially, one
couldsaythatclaimshavemorecredibility (andhence less
uncertainty) the fewer and the weaker are the arguments
against them. While any setof labelscould besodefined,
we drew on earlier work in argumentationKrauseet al.
(1995) anddefinedthe set: � Accepted,Probable, Plausi-
ble, Supported,Open� , with theelementslistedin decreas-
ing orderof certainty. For example, a claim wasregarded
asProbable at a particular time if at leastoneconsistent
argument had beenpresentedfor it in the Agora by that
time, but no argumentsfor its negation (rebuttals)nor for
thenegationof any of its assumptions(undercuts)hadbeen
presentedby then.We defineda claim aswell-defendedat
agiventimeif therewasanargumentfor it at thattimeand
any rebuttalsor undercutshadthemselvesbeensubjectto
counter-rebuttalsor to undercuts. Acceptedclaimsat any
time weredefinedasthosewhicharewell-defendedat that
time.1

As argumentsfor andagainstapropositionarepresentedto
theAgora, thestatusof a propositionmay riseandfall: a
claim consideredProbable at onetime maybeonly Plau-
sible later, andthenbeAcceptedlateragain.We therefore
definedthe truth-valuation of a claim � at time � , denoted��� ����
 , to be � if � hadthelabelAcceptedat this time,oth-
erwiseit was � . Sucha valuationsummarizesthe knowl-
edgeof thecommunity of debateparticipants at thepartic-
ular time,sinceit incorporates,via thedefinitionsof thela-
bels,all theargumentsfor andagainst � articulatedto that
time. Consequently, assessingthe truth-status of a claim
at a particulartime canbeviewedastakinga snapshot of
anAgora debate.Of course,becausethesedefinitions are
time-dependent, andargumentsmay be articulatedin the
Agoraatany time,suchanassignment of uncertaintylabels
andtruth valuation mustbedefeasible.Claimsacceptedat
onetime maybeoverturnedat another, in thelight of new
informationlearntor argumentspresentedsubsequently.

In usingtheAgora framework to representuncertainty, at-

1Theselabelsareassignedon thebasisof theargumentspre-
sentedby all participantsin the Agora; thus, individual partici-
pantsmay not agreewith any label assignment,sincetheir own
argumentswill typically only bea subsetof thosepresented.



tentionwill focus on the truth valuationfunction over the
long-run.2 Thesequence� ��� ����
�� �"!#�$�&%'� ()( ( 
 mayor may
notconvergeas �*�,+ . Supposethatit doesconverge,and
denote its limit valueby �'- ����
 . What will thevalueof a
snapshot takenattime � , namely� � ����
 , tell usabout ��- �.��
 ?
Of course,sinceany finite snapshotrisks being overtaken
by subsequent informationor arguments,we cannot infer
with completeaccuracy from thefinite snapshotto the in-
finite value. However, we have shown McBurney & Par-
sons(2001b)that,under certainconditions,we canplacea
bound on the likelihoodthat suchan inference is in error.
Theconditionsessentiallyrequire that: (a) thesnapshot is
taken at a time after commencementsufficient for all the
argumentsusingthe initial information to have beenpre-
sented,and(b) thereis a boundontheprobability thatnew
information arisesfollowing the snapshot. This result is
provedasProposition7 of McBurney & Parsons(2001b),
whichwereproducehere. For this,wefirst needsomedef-
initions.

Definition 1: We write /1032 for thestatement:“The func-
tion �4� ����
 convergesto a finite limit as �5�6+ .” We also
write 7 ��8 2 for thestatement:“New informationrelevant to
� becomesknown to anAgoraparticipantaftertime � .”
In general,atany time 9 , wedonotknow whethernew evi-
dencewill becomeavailableto Agoraparticipantsata later
time � or not. Consequently, thevariables 7 ��8 2 , for � not in
thepast,represent uncertain events. Also uncertain for the
samereasonarestatementsconcerningthefuturevaluesof� � ����
 for any � . Becausetheseeventsareuncertain, we as-
sumetheexistenceof aprobability function over them,i.e.,
a real-valuedmeasure functionmapping suchstatementsto: ��� � ; whichsatisfiestheaxiomsof probability.

Definition 2: <>='�?(@
 is a probability function defined over
statementsof theform 7 ��8 2 andstatementsconcerning the
valuesof �$� ����
 , for anyformula � .

Proposition 1: [Proposition 7 of McBurney & Parsons
(2001b)]Let � bea formulaandsupposethatall arguments
pertaining to � andusingtheinformation availableat com-
mencement are articulated by participants by sometime
9BAC� . Supposefurther that ����D ����
E!F� for some�HGJIC9 .
Also, assumethat <>='�K7 � D 8 2 
ML�N , for some NPO : �Q� �R; .
Thenthefollowing inequalities hold:

<>='�K/10 25S�TVU � - �.��
W!#�>� ����D ����
�!X�Y
ZI[�]\^N)(
<>='�K/10 25S�TVU � - �.��
W!_�B� ����D ����
�!X�Y
ZL`NY( a

Like thestandard(Neyman-Pearson)proceduresfor statis-
tical hypothesistesting,this proposition providesus with
someconfidencein our useof finite snapshotsto make in-
ferencesabout the long-run truth-valuation function for a

2Strictly, we areassumingthroughout that time in the Agora
is discrete,andcanberepresentedby a countably-infiniteset.

debate.While suchinference is not deductively valid, at
leastits likelihood of error may be bounded.3 In the sec-
tionsbelow, we will becomparing theresultsof debatesin
morethanoneAgora. We therefore assumethat we have
a singleprobability function <>= definedacrossall therel-
evantstatements.We will alsoindex symbols with super-
scripts( b , c , etc) to denote the Agora to which they refer.
We next definetheconceptof Scenario.

3 Scenarios and Ensembles

Theframework we have just outlinedprovidesa meansto
represent thediverseargumentsthat maybe derived from
a givensetof assumptions, by meansof a given setof in-
ference rules(deductive or otherwise). If we wereto start
with a different setof assumptions, and/or permit the use
of different inferencerules,theargumentspresentedin the
Agoracouldwell bedifferent. As a result,theuncertainty
labelsandtruth values assignedto formulaecouldalsobe
different, both when taken at finite snapshotsand in the
limit. Eachcollection of alternative setsof assumptions
andinferenceruleswe call a scenario, which we defineas
follows:

Definition 3: A Scenariofor a givendomainconsistsof
a set of assumptions and a set of inferencerules, with
which participants are equippedat the commencement of
an Agora debate over propositions in that domain. We de-
notescenariosfor a givendomain by d�b4�?dZc$�)( ( ( , etc. For
each scenario, d

�
, an Agora debate undertaken with the

assumptions andinferencerulesof thatscenario, is saidto
betheassociatedAgora, denoted �

�
. We assumeonly one

debate is conductedin association with anyscenario.

Becausewe wish to reasonacrossmultiple scenarios,we
alsodefine:

Definition 4: An Ensembled is a finite collection of dis-
tinct Scenarios �)dEb�� ( ()(R�?d G � relating to a commondo-
main. We assumethat, associatedwith each scenario
d
�

Oed , is a real-number, f
�

O : �Q� �R; , called its sce-
nario weight. We call gfh!i�KfQb���f�c$� ()( (R��f G 
 theensemble
weightsvectorof d .

We do not assumethe weightssumto unity acrossthe j
scenarios,although they maydoso.Theweightsmayvary
with time, but, if so, we assumethat their assignment to
scenariosis independent of thedialecticalstatusof claims
in thecorresponding debates.This assumptionis madebe-
causetheassignment of weights to scenariosshouldbeon
thebasisof characteristicsof thescenariosthemselves,not
onthebasisof argumentswhichensueor don’t ensuein the

3Onemayobjectthatwecanneverknow thevalueof k . While
this is true,participantsin a debateareoftenquitewilling to pro-
vide subjective estimatesfor suchprobability bounds. Scientists,
for example,will oftenestimatethechancethatnew information
will emergein futurewhich will overturnanestablishedtheory.



associatedAgoradebates.

What interpretationwe give to the weightsdepends upon
the meanings we give to the logical language, to the sce-
nariosand to argumentsfor claims in the corresponding
Agora debates. For example, the assumptions andclaims
may representobjectsin the physicalworld, and the in-
ference rulesphysicalmanipulationsof theseobjects,such
asactualconstruction of new objectsfrom existing ones.
Scenarios can thus be interpretedas different setsof re-
sourcing assumptions, with claimsbeingwell-defendedin
an Agora debatewhenthe objectsthey representareable
to be constructedwith the assumedresources. In this in-
terpretation, the weightsattachedto scenarios may be the
relativecostsorbenefitsof differentresources,or theirlike-
lihoods of occurrence.A secondinterpretationcould arise
wherethe scenarios represent alternative setsof rules of
procedurefor interaction betweena group of participants,
for example,in a legal domainor in automatednegotiation.
Herethe rulesof inferencemay represent different allow-
ablemodes of reasoning, suchasreasoning by analogyor
from authority. The weightsmay representthe extent of
complianceof eachscenariowith somesetof principlesof
rationaldiscourse, suchas thoseof Hitchcock(1991), or
with somenormativeeconomic or political theory. Finally,
a third interpretationwould have thescenariosasdifferent
descriptionsof someuncertaindomain, for examplediffer-
ent scientific theories, with propositionsbeingstatements
about thedomain, andtheinferencerulesrepresenting dif-
ferentcausalmechanisms.Thescenarioweightscouldbe
relative likelihoods of occurrence,or valuationsof relative
importanceor utility. Thisthird interpretation is theonewe
will considerin this paper.

4 Comparing Scenarios

4.1 Comparing two long-run debates

Our definition of an Ensemblesaysthat the scenariosin-
cludedmustbedistinct. We require this so thatwhenag-
gregating acrossscenarioswe do not engage in “double-
counting” of separatescenarioswhich arereally thesame.
Whenaretwoscenariosthesame?Obviously, wemaycon-
siderthemto bethesamewhenthey have identicalsetsof
assumptions andinference rules. But two scenarios iden-
tical in this fashionmayresultin very differentAgorade-
bates,asdifferentargumentsmaybepresentedin each,or
the sameargumentsmay be presented at different times.
It is not clear, therefore, that identicalscenarioswill lead
to identicalassignmentsof truth-labels,evenover thelong-
run;weshow that,undercertainconditions,they will doso.
Throughout thissectiond>b anddlc will betwo scenariosof
interest,and �mb and �nc theirassociatedAgora debates.

Proposition2: Let � bea claim. Supposethat dnb and dlc
are identical scenarios,i.e., they haveidentical setsof as-

sumptions and identical setsof inferencerules. Suppose
that in the corresponding Agora debates,�hb and �oc , all
possiblearguments basedon the initial assumptions and
usingthe inferencerules are eventually articulated. Sup-
posefurther that no new informationis presentedto either
debate following commencement.Then,thelong-run truth
statusof � in each debateis thesame.
Outline of Proof: Giventhepremises,theonlywaythetwo
debateswill potentially differwill bein theorderthatargu-
mentsarearticulated.But if all argumentsareeventually
articulated, thenaftersomefinite timenofurtherarguments
will be presented in eitherdebate. The definitions of the
truth valuation functionsin McBurney & Parsons(2001b)
depend only the argumentswhich have beenpresented at
any time,andnot their order of presentation. Theproposi-
tion follows. a
If we relax the assumptionthat no new information ar-
rivesin eitherdebateour conclusionacquiresa probabilis-
tic qualification. While this does not guaranteethat two
identicalscenarios always leadto identical long-run truth
assignments,it doesbound the likelihood that suchis not
thecase.

Proposition3: Let � , dpb and dlc be as before. Suppose
there exist upperbounds N

�
O : �Q� � ; for theprobability that

new informationarrives after commencementin debate q ,
i.e., that <>='��7

�r 8 2 
ZLsN
�
, for q�!t�$�&% . Thenwehave:

<>='� � b- �.��
1! � c- ����
u
lIC�]\^N b \vN c (
Outline of Proof: By thepreviousresult,thetwo long-run
assignmentsof truth to � areonly different if oneor other
debatereceivesnew information. Theprobability that this
occurs is lessthanor equalto thesumof theprobabilities
that eitherdebatereceivesnew informationlessthe prob-
ability that they bothdo. This lattereventhasprobability
greaterthanor equalto zero,andtheinequality follows by
algebraic manipulation. a
4.2 A decision rule for scenario comparison

We now provideadecisionrule for determining if two sce-
narios dEb and dZc are the same. This decisionrule clas-
sifiesscenarios into two classes,labeleddistinct andnon-
distinct. The rule proposedfor determination of distinct-
nessof scenariosusestwo criteria(in orderof application):
(a)whetheror notthetwo scenarioshaveidenticalassump-
tions and inferencerules; (b) in the casewhere they do,
whetherornoteitherscenariois judgedtohaveahighprob-
ability of receiving new information.

Case 1: d bxw!ed c . Concludethat the two scenarios are
distinct.

Case 2A: dEbn!yd�c and <>='�K7zbr 8 2 
R�u<>='�K7zbr 8 2 
 both small.
In this case,thelikelihood of new informationarising



in eitherscenariois smallandProposition3 allowsus
to infer that � b- ����
h! � c- ����
 with high probability.
Conclude thatthetwo scenariosarenon-distinct.

Case 2B: dEb ! dZc and one or both of
<>='�K7zbr 8 2 
{�u<>='��7|br 8 2 
 large. In thiscase,thelikelihood
of new information arising in at least one scenario
is large, and thus, Proposition 3, it is unlikely that� b- �.��
�! � c- ����
 . Conclude thatthetwo scenariosare
distinct.4

In the first case,where the two scenarioshave different
premisesand/orinference rules,we classify themasdis-
tinct. Two suchdistinctscenarios,of course,mayresultin
the sameargumentsbeingpresented in both scenarios af-
ter somefinite time. In theothertwo cases(Cases2A and
2B), wheretheunderlyingassumptionsandinferencerules
arethe samein the two scenarios,Proposition 2 saysthat
the long run truth assignmentsfor � in the corresponding
Agoradebates,if they exist, will be identical,providedno
new information is presented in eitherAgora debatefol-
lowing commencement. If new information is presented,
thenProposition3 providesabound for theprobability that
the long-run truth assignmentsare the same,in termsof
theprobabilities of new informationbeingreceived. In the
case(Case2A) whentheseprobabilitiesarebelievedto be
small, the two long-run truth assignmentsaremost likely
identical,andwe canclassify the two scenariosasbeing
thesame.In theothercase(Case2B), whereoneor both
probabilitiesarelarge,weclassifythetwo scenariosasnot
thesame.

Note that, although underCases2A and2B we aremak-
ing inferencesabout thelongruntruthassignments, � b- ����

and� c- ����
 , theseinferencesarebasedonly onthepremises
andinferencerulesusedandassessmentsof theprobability
of new informationbeingreceived aftercommencement of
theassociatedAgora debates.Theseinferences,andhence
this classification,do not depend on theprogressor status
of the debatesthemselves. In otherwords, our classifica-
tion of scenarios is not basedon theoutput of thedebates
conductedunder thescenarios.

5 Observing Agora debates

What may we feasibly observe about an Agora debate?
Firstly, we couldtake a snapshotat a particularfinite time
aftercommencement.Or, secondly, we couldtake a num-
ber of suchsnapshots.Or, thirdly, we could examine the
actualargumentsusedin a debatefrom commencementup
to a particulartime. In thefirst subsectionbelow, we show
that taking themostrecentsnapshotis at leastasgoodan
indicator of the long run statusof a debateas any other

4Note that the meaningsof “small” and“lar ge” may be do-
maindependent.

combinationof earliersnapshots.In otherwords,we need
only takeonesnapshotto captureall theinformationavail-
ablein adebate. In thesecondsubsectionweconsiderhow
wemaycompareasnapshot fromonedebatewith thatfrom
another. Thethird approach— considering thearguments
themselves — we leave for another occasion.As before,
wedenote thelong-runtruthstatusof a formula � in debate
q , if this limit exists,by � �- ����
]![}�~�� �.� - � �� ����
 . Thesub-
sectionswhich follow will discussfinite estimatorsof this
long-runvalue, estimatorswe denoteby ��

�- �.��
 .
5.1 Observing a debate

Supposethatwe have multiple snapshotsof a debate,i.e.,
for a debate� we have a sequence of observationsof the
truth-statusof � : � b �.��
{� � c �.��
{�)( ()()� �4� ����
 . Thesevalues
areall eitherzeroor one,andeachis an estimatefor the
long-run truth status� - ����
 of � . Givensuchmultiple es-
timates, there are a number of ways we could combine
themto producea singleestimateof � - �.��
 , for example:
(a) The mean, which is thesumof theobserved snapshot
values,divided by � ; (b) An ���H� -trimmed mean, which
is the meancalculatedafter first ranking the observations
in ascending order andthendeleting � % of the observa-
tions at the lower end and � % at the upper end Huber
(1981). For instance,we may deletethoseat the begin-
ning of the sequence,on an assumptionthat early values
of � � ����
 will oscillateasall therelevantargumentsarepre-
sentedto theAgora;(c) the mode, themostcommonvalue,
i.e., whichever of � or � appears mostfrequently in the �
observations;etc.

However, eachtruth-valuation��� is definedin termsof the
argumentspresentedto theAgoraupto time � , so,in some
sense,eachobservation summarizesall theinformationrel-
evantto � up to andincluding thetime theobservationwas
made.Weshouldthereforeexpectthefinal observation, ���
to containthe mostinformation,andso to be the bestes-
timator (in somesense)of the long-run value, ��- .5 This
is indeedthe case,as the following theoremshows. For
simplicity, we omit � from thenotation.

Proposition4: Let � b � � c �)( ()(R� � � bea sequenceof � snap-
shotvaluesconcerning � takenfroma debate � . Suppose
thelimit � - ![}�~�� �$� - �4� exists.Let ��4� betheestimator
of � - usingonly thefinal observationin such a sequence.
Further, let ����� be any estimatorof � - basedon these�
observations which convergesto a finite limit as �s��+ .
Then:

}�~���$� -^<>='������4� \ � - ��L#���� �� \ � - � 
�!X�$(
Proof. We prove this by contradiction. If theresultdoes
nothold, thentheremustexist NEAP� suchthat:

}�~���$� -^<>=�������4� \ � - ��A#���� �� \ � - � 
*!_N
5Notethatthefinalobservationis itself an ����� -trimmedmean.



Then, theremust be infinitely many j suchthat ���� G�\� - ��AX������G \ � - � . Sincethesequenceof final values��� is
a sequence of zerosor ones,andit convergesto ��- , then
for eachof thesej , we haveoneof two cases:

[ ��- !t� :] By thestrict inequality, wemusthave �� G !x� .

[ ��- !x� :] Likewise,wemusthave �� G !#�
But this happensfor infinitely many values j , which con-
tradictstheassumptionthat ��� convergesto � - . a
Thisresultshowsthatthefinal observationof asequenceof
snapshots is at leastasgood, in the long run, asany other
convergent estimatorof � - basedon this sequence. We
therefore needonly considerthe most recentsnapshotin
any assessmentof thetruthstatusof aclaim in adebate.

5.2 Comparing two debates

We now consider the comparison of two Agora debates,
undertaken underdifferent scenarios,by meansof finite
snapshots of eachat a particulartime � after commence-
ment. Eachsnapshot,�

�� ����
 , will give usanassessmentof
the long-term truth-statusof a claim � in eachdebate�

�
,

for q�!�����% . That is, we set ��
�- ����
]! � �� �.��
 . Proposition1

tells usthatwe canbound theprobability of errorin infer-
ring from thefinite estimate��

�- �.��
 to thetrueinfinite limit
value � �- �.��
 . Canwe alsobound the probability of error
wheninferring from acomparisonof thefinite values?The
next propositionprovidessuchbounds.

Proposition 5: Let � be a formula, and let ��b��u��c be
two Agora debates associatedwith scenariosd>b��Hd�c re-
spectively. Supposethat, in debate �

�
( qo!��$�&% ), all ar-

guments pertainingto � and usingthe informationavail-
able at commencementare articulated by participants by
sometime 9 � A�� . Supposefurther that there is a time
j�I�� S � �K9 b �&9 c 
 , such that � bG �.��
|! � cG �.��
 . Also, as-
sumethat there exist N b �uN c O : �Q� �R; , possibledependenton
j , such thateach <>='�K7

�
G 8 2 
ZL`N � . Thenthefollowingfour

inequalities hold:

1. <>='�K/10Bb2 S�T�U /10�c2 S�TVU � b- �.��
1! � c- ����
l�� bG ����
�! � cG ����
�
�I��]\^N b \vN c (
2. <>='�K/10Bb2 S�T�U /10�c2 S�TVU � b- �.��
 w! � c- ����
l�� bG ����
�! � cG ����
�
�LeN b"� N c (
3. <>='�K/10Bb2 S�T�U /10�c2 S�TVU � b- �.��
1! � c- ����
l�� bG ����
 w! � cG ����
�
�LeN b"� N c (
4. <>='�K/10Bb2 S�T�U /10�c2 S�TVU � b- �.��
 w! � c- ����
l�� bG ����
 w! � cG ����
�
�I��]\^N b \vN c (

Proof. Argumentssimilar to Proposition 3. a
Usingsimultaneousfinite snapshotsof two debatestomake
aninferenceaboutthelong-run truth-statusof a formula is

aprocessproneto error. Thisresultsaysthat,undercertain
circumstances,we can bound the probability of sucher-
rors.The“certaincircumstances”relateto thetimingof the
snapshots — which mustbe long enough into the two de-
batesfor all theargumentsbasedon theinitial information
to have beenpresented— andto the probabilities of new
informationbeingpresentedto eachdebatesubsequent to
thesnapshotsbeingtaken. As onewould expect,theerror
boundsarefunctionsof theseprobabilities.6

In proving this result,we have not assumedthat theevent
of new informationbeingpresented to oneAgora debate
is independentof new informationbeingpresentedto the
other. If we wereableto makesuchanassumption, ourer-
ror boundswould be tighter, with the product N b N c added
to the right-hand side of the first and fourth inequalities
andsubtractedfrom the secondand third. Independence
of thesetwo eventsis a function of how “distinct” arethe
two scenarios. Scenarios in the samedomain which are
very similar arelikely to experiencenew informationcon-
currently; participantsin thecorrespondingdebatesarealso
likely to makesimilarassessmentsof therelevanceof such
new information.

6 Reasoning across Scenarios

Scenarioanalysis is typically usedto answeroneor more
questions aboutanapplication domain. Usersmaywish to
know whethersomeproposition � is true under any sce-
narioat all, e.g.,Is � possible?If it is possible,they may
wishto thenknow theproportionof scenariosin whichthis
is thecase,e.g.,Howlikely is � ? Indeed, in theextreme all
scenarioswill be considered in orderto answerthe ques-
tion, Is � inevitable? Guidedby thesequestions, we now
defineasetof qualitativelabelstoexpressthetruthstatusof
aclaim � acrossmultiple,distinctscenarios. To dothis,we
assumethroughout this sectionthat we have an ensemble
d�!J� dlb��?d�c�� ()( (R�Hd G � , eachd

�
with anassociatedAgora

debate�
�
, andwith associatedscenarioweight f

�
. We as-

sume � is someuncertain propositionandwe denote the
truth valuation of � in Agoradebate�

�
at time � by � �� ����
 ,

for q�!t�$�)( ()(R�Hj .

Definition 5: Givenanensembled anda proposition � , we
define theEnsemblesupportfor � at time � by

jz � �.��
*!
¡ G��¢

b f
� � �� ����
¡ G��¢
b f

� (
6One could also view eachsequenceas arising from a ran-

dom process, and so view the comparisonproblemas a test of
an hypothesis that the two sequencesaregovernedby the same
probability distribution. Becausethe form of the distributionsis
not specified,the appropriate testwould be nonparametric, e.g.,
theKolmogorov-Smirnov two-sampletestGibbons(1985). How-
ever, the asymptotic theoryfor even thesetestsrequiresthat the
underlyingdistributionsbe continuousandthat the two samples
bedrawn independently. Neitherassumptionis appropriatehere.



Givena fixedrealnumber N3OM�.������(@£$
 , we now definevar-
iousclassesof support, asfollows:

� is said to be Inevitable at time � precisely when
j  � ����
_!¤��( This classof propositions is denoted
��¥ 8 � .

� is saidto be �)���Q�?�5\PN{
 %-Certain at time � precisely
when j  � ����
�I¦�]\^NY( This classis denoted � b&§�¨ 8 � .

� is said to be Probable at time � precisely when
j  � ����
MIe�Q( £ . Thisclassis denoted�B© 8 � .

� is saidto be �Y�$��N %-Possible at time � preciselywhen
j  � ����
MIeNY( Thisclassis denoted� ¨ 8 � .

� is saidto beOpen attime � if it is awell-formedformula
of thelogical languageover which Agora debatesare
conducted.Thisclassis denoted��ª 8 � .

Following from thesedefinitions,we have aninclusion hi-
erarchy on theseclassesof propositions:

Proposition6: For a fixed NEO^�.������(@£$
 andtime � ,
��¥ 8 �1« � b{§V¨ 8 �1« � © 8 ��« � ¨ 8 ��« �nª 8 � ( a
We canthenassignqualitative labelsto any proposition �
according to which of thesesetsit belongs to. Note that
in any oneAgora debate,argumentsmaybepresented for
both � andfor ¬�� , and,indeed,it is possiblefor bothpropo-
sitionsto be well-defendedin the samedebatesimultane-
ously.7 Thus it is not necessarilythe case,in this frame-
work, that thereis any complementaritybetweenthe un-
certaintylabelassignedto a proposition � andthelabelas-
signedto its negation; both propositionsmay be assigned
Probable, for example,or both75%-Certain, depending on
theargumentswhichsupport them.

7 Example

Given spacelimitations, our example is very simplified,
andreally only illustratesthe concept of assigninguncer-
taintylabelsacrossanensembleof scenarios.8 Weconsider
the situation facing an intending operator of global mo-
bile satellite-basedtelecommunications services(GMSS)
in 1990 McBurney & Parsons(2002). Demandfor these

7This is essentiallybecauseeachclaim may be defendedby
argumentswhich do not attackeachother. An interestingques-
tion is under whatcircumstancestheEnsembleSupportfunction
satisfiestheaxiomsof probability . We conjecturethatthis is soif
the attackrelationshipbetweenarguments only permitsrebuttals
and not undercuts, therebyensuringthat every argumentwhich
attacksa claim is alsoanargumentfor its negation.

8In particular, wedonot illustratetheworkingof theargumen-
tation apparatusover time within the Agora debateundereach
scenario,sincethis is presentedin McBurney & Parsons(2001b).

serviceswaspredicted to depend heavily on the extent to
which terrestrialmobile communications serviceswould
expand, both in termsof customer numbersandthe geo-
graphic areaundercoverage. Onecould imaginea num-
ber of scenarios for the future,under eachof which there
wouldbeargumentsfor andagainst theclaim thatdemand
for GMSS would be large. We consideran ensembleof
threescenarios,whichcanreadilybeseento bedistinct:

Scenario 1: Terrestrial mobile services expand rapidly
and customers wish to usetheir phone everywhere,
both inside and outsideterrestrialcoverage. Argu-
ment:Large numbersof terrestrialcustomers leadsto
highdemandfor GMSSoutsideterrestrialcoverage.

Scenario 2: Terrestrial mobile services expand rapidly
andcustomersarehappy with theterrestrialcoverage,
not wishing to useit outside. Argument: Large ge-
ographic coveragefor terrestrialservicesleadsto low
demand for GMSS,asmostof theworldhascoverage.

Scenario 3: Terrestrialmobileservicesdonotexpand, but
customers wish to usetheir phone everywhere,both
inside and outsideterrestrialcoverage. Argument:
Smallgeographicterrestrialcoveragemeanshigh de-
mandfor GMSS.

Recallthatscenarioweightsareassignedindependentlyof
the argumentsunder eachscenario;assumethis ensemble
hasaweightsvector of thelikelihoods �.�Q(@­'�u��(®­�����( ¯�
 . Sup-
pose N°!±�Q( ��£ . Let � be the claim: “GMSS experiences
high demand.” There arewell-defendedargumentsfor �
in Scenarios1 and3, whichhave respective weightsof ��(®­
and ��( ¯ . Thus we can say that � is £ %-Possible. Since
�.�Q(@­ � ��( ¯�
�²'�K��(®­ � �Q(@­ � ��( ¯�
³!´��(@£4µ , we canalsocon-
cludethat � is probable, but not that it is µ�£�¶ -Certainor
Inevitable. We have thusassignedan uncertainty label to
the proposition � , on the basisof its argumentationstatus
within eachscenarioandtaking into account theassumed
relativeweightsof eachscenario.

8 Discussion

Despitetheir widespread use, there is as yet no formal,
computational theory of scenariosand scenarioanalysis.
In this paper, we have commencedwork on sucha theory
for scenarios whichdescribedebatesoveruncertainpropo-
sitions. In our formalism a scenariois a setof specified
premisesand inference rules,which participantsto a de-
bateuseto engage in argument. We have presented a rule
for determining whethertwo suchscenarios aredistinctor
not, basedonly on their respective premisesandinference
rules,andon estimatesof theprobability thateachdebate
will receive new informationin the future. We have also
shown that,whenusingfinite snapshotsof a debate to es-
timatethe long-run truth statusof a proposition, it is suf-



ficient to usethe most recentsnapshot; this is at leastas
good(in a precisesense)as usingearlier snapshots. We
thendefineda setof qualitative uncertainty labelsfor the
truth statusof claimswhendebateshave beenconducted
under multiple, distinct scenarios. Theselabelsprovide a
meansto aggregateacrossthe scenarios in a formal man-
ner. Assigningweightsto thescenarios— for example, to
represent their relative probabilities of occurrence— en-
ablesthe aggregate-level labelsto be usedto predict the
truth-statusof claimsin theworld beyond thedebates.

The work presentedhereis novel. The closestwork we
havefound usedcellularautomatato defineamathematical
theoryof computer simulationsBarrett& Reidys(1999),
but this work hasnot yet consideredinferencefrom a col-
lection of simulations. Our useof multiple simultaneous
debates(scenarios) is conceptually similar to otherwork in
AI usingmultiplepossibleworlds.Forexample,in theEnts
model of beliefof Paris& Vencovská(1993),anagent’sbe-
lief in a claim is determinedby imagining possibleworlds
in which theclaim is decided,eithertrueor false,andthen
belief in the claim is setequalto the proportionof possi-
ble worlds in which it is true. In this model, the possible
worldsareassumedequi-probable. This is alsoa featureof
themodel of Bacchuset al. (1996), which assignsdegrees
of belief to propositionson the basisof the proportion of
possibleworlds in which thereis evidencefor them. In
contrast, our approachallows scenarios (possibleworlds)
to beweighteddifferentially. Moreover, our approachpro-
videsamechanismfor decidingthetruth-statusof proposi-
tionswithin in eachscenario,thatof McBurney & Parsons
(2001b). Within AI, scenarios have alsobeenused,e.g.,
asalternative possibleexplanations in probabilistic causal
influence modelsHenrion & Druzdzel (1991).

Onecriticism of the framework above is thepossiblesen-
sitivity of conclusionsto theparticularweightsassignedto
scenarios. In future work we will seekto formalize the
processof assigningensemble weights,andto extendthis
overall approach beyond argumentation contexts. Poten-
tial applicationswill theninclude intelligentsystemsto aid
decision-making in environmentaldomains McBurney &
Parsons(2001a),andassessmentof scenarioanalysisin the
climatechange arena.
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