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Abstract

In this paper some initial work towards a new
approach to qualitative reasoning under un-
certainty is presented. This method is not
only applicable to qualitative probabilistic
reasoning, as is the case with other methods,
but also allows the qualitative propagation
within networks of values based upon possi-
bility theory and Dempster-Shafer evidence
theory. The method is applied to two simple
networks from which a large class of directed
graphs may be constructed. The results of
this analysis are used to compare the quali-
tative behaviour of the three major quantita-
tive uncertainty handling formalisms, and to
demonstrate that the qualitative integration
of the formalisms is possible under certain as-
sumptions.

1 INTRODUCTION

In the past few years, the use of reasoning about qual-
itative changes in probability to deal with uncertainty
has become widely accepted, being applied to domains
such as planning [Wellman 1990b] and generating plau-
sible explanations [Henrion and Druzdzel 1990]. Such
a qualitative approach has certain advantages over
quantitative methods, not least among which is the
ability to model domains in which the relation between
variables is uncertain as a result of incomplete knowl-
edge, and domains in which numerical representations
are inappropriate.

The existence of the latter, as Wellman [1990a] points
out, is often due to the precision of numerical methods
which can, in certain circumstances, lead to knowledge
bases being applicable only in very narrow areas be-
cause of the interaction between values at a fine level
of detail. Since they view the world at a higher level of
abstraction, qualitative methods are immune to such
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problems; the small complications such interactions
cause simply have no effect at the coarse level of detail
with which qualitative methods are concerned.

The focus of the qualitative approach of Wellman and
Henrion and Druzdzel is assessing the impact of evi-
dence. That is assessing how the change in probabil-
ity of one event due to some piece of evidence affects
the probability of other events. For instance, taking
a patient’s temperature and finding that it is 38C is
evidence that increases the probability that she has a
fever, which in turn increases the probability that she
has measles.

Now, when using the qualitative method we reason
with a restricted set of values. Instead of using the full
range of real numbers we are only interested in whether
values are positive [+], negative [—], zero [0], or any
of the three [?7]. Thus we can determine that since
the probability of fever increases, the change in prob-
ability is [+], and use this to decide that the change
in probability of measles is also [+]. This is clearly
weaker information than that obtained by traditional
methods but may still be useful [Wellman 1990a], in
particular since qualitative results may be obtained in
situations where no numerical information may be de-

duced.

2 A NEW QUALITATIVE
APPROACH

This paper presents a new approach to reasoning about
qualitative changes. This work 1s drawn from the first
author’s thesis [Parsons 1993] in which may be found
a number of extensions to the work described here.
The motivation behind this work was to integrate dif-
ferent approaches to reasoning under uncertainty, in
particular probability, possibility [Zadeh 1978] [Dubois
and Prade 1988a], and evidence [Shafer 1976] [Smets
1988] theories. Thus, our qualitative approach differs
from that described above in that it is concerned with
changes in possibility values [Parsons 1992a] and belief
values [Parsons 1992b] as well as probability values. As
a result we need a general way of referring to values
that may be probabilities, possibilities or beliefs.



Definition 2.1: The certainty value of a variable X
taking value z, val(x), is either the probability of X
p(z), the possibility of X, TI(z), or the belief in X,
bel(z).

We set our work in the framework of singly connected
networks in which the nodes represent variables of in-
terest, and the edges represent explicit dependencies
between the variables. When the edges of such graphs
are quantified with conditional probability values they
are similar to those studied by Pearl [1988], when pos-
sibility values are used the graphs are similar to those
of Fonck and Straszecka [1991] and when belief values
are used the graphs are those studied by Smets [1991].

Each node in a graph represents a binary valued vari-
able. The probability values associated with a vari-
able X which has possible values  and - are p(x)
and p(—x), and the possibility values associated with
X are II(x) and TI(—z). Belief values may be assigned
to any subset of the values of X, so it is possible to
have up to three beliefs associated with X; bel({z}),
bel({—z}) and bel({x,—x}). For simplicity these will
be written as bel(z), bel(—z) and bel(x U —z). This
rather restrictive framework is loosened in [Parsons
1993] where non-binary values and multiply connected
are considered.

Wellman [1990a, 1990b] and Henrion and Druzdzel
[1990] base their work upon the premise that a suitable
interpretation of “a positively influences ¢” 1s that:

ple [ a) = ple|—a) (1)

This seems reasonable, but 1t is a premise; there are
other ways of encoding the information that seem
equally intuitively acceptable, for instance p(c | a) >
p(c) and p(c | a) > p(—ec | a) [Dubois and Prade 1991].
Since our aim was to provide a method that was suit-
able for integrating formalisms we wanted to start from
first principles thus minimising the number of neces-
sary assumptions. As a result, a different approach
was adopted as described below.

Given a link joining nodes A4 and C' as in Figure 1,
we are interested in the way in which a change in the
value of a, say, expressed in a particular formalism, in-
fluences the value of ¢. Note that the arrow between A
and C' does not necessarily indicate a causal relation-
ship between them, rather it suggests that propagation
of qualitative changes will be from A to C'.
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Figure 1: A simple network

We can then model the impact of evidence that affects
the value of A in terms of the change in certainty value
of a and —a, relative to their value before the evidence
was known, and use knowledge about the way that

a change in, say, val(a) affects wval(c) to propagate
the effect of the evidence. We define the following
relationships that describe how the value of a variable
X changes when the value of a variable Y is altered
by new evidence:

Definition 2.2: The certainty value of a variable X
taking value z is said to follow the certainty value
of variable ¥ taking value y, wval(z) follows val(y),
if val(z) increases when val(y) increases, and val(x)
decreases when val(y) decreases.

Definition 2.3: The certainty value of a variable X
taking value x is said to vary inversely with the cer-
tainty value of variable Y taking value y, val(x) varies
inversely with val(y), if val(z) decreases when val(y)
increases, and val(z) increases when val(y) decreases.

Definition 2.4: The certainty value of a variable X
taking value z is said to be independent of the cer-
tainty value of variable YV taking value y, val(z) is
independent of val(y), if val(z) does not change as
val(y) increases and decreases.

The way in which the variation of val(z) with val(y)
is determined is by establishing the qualitative value
of the derivative dval(x)\0val(y) that relates them. If
the derivative is known, it is a simple matter to cal-
culate the change in val(z) from the change in val(y).
Thus to determine the change at C' in Figure 1 we
have:

Aval(c) = Aval(a) ® [SZZZZ((Z))] (2a)
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where [#] is [+] if @ is positive, [0] if # is zero and [—] if
x 18 negative, and ¢ and ® denote qualitative addition
and multiplication respectively:
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We can express this as a matrix calculation (after Far-



reny and Prade [1989]):

[ Awal(c) ] _ [252552” {6(22%(—2)} 3)
Aval(—c) [aavvaall(@c))} |:6'Ual(—|c)i|

o | amaten ]

dval(-a)

Clearly val(c) follows val(a) when dval(c)\dval(a) =
[4+], wal(c) varies inversely with wal(a) when
Jval(e)\Oval(a) = [-] and is independent of wal(a)
when dval(c)\dval(a) = [0].

3 QUALITATIVE CHANGES IN
SIMPLE NETWORKS

Applying probability theory to the example of Figure
1, so that val(x) becomes p(z) in (2) and (3), and re-
ferring to the directed link joining A and C'as A — C|
we have the following simple result which agrees with
the assumption (1) made by Wellman as a basis for
his qualitative probabilistic networks when conditional
values are taken as constant, as they are throughout
this work:

Theorem 3.1: The relation between p(z) and p(y)
for the link A — C' is such that p(x) follows p(y) iff

p(z | y) > plz | -y), p(x) varies inversely with p(y)
iff p(z | y) < p(x | -y) and p(x) is independent of
p(y) iff p(x | y) = p(z | —y) for all for all z € {¢, -},
y € {a, na}.

Proof: Probability theory tells us that p(¢) = p(a)
ple | a) + p(—a)p(c | —a) and p(a) = 1 — p(—a) so
that p(c) = p(a)lple | @) — ple | ~a)] + p(clne) and
[Oval(c)\Oval(a)] = [p(cla) — p(c|-a)]. Similar rea-
soning about the way that p(c) varies with p(—a) and
p(—c) varies with p(a) and p(—a) gives the result.0

By convention [Pearl 1988] two nodes A and C' are not
connected in a probabilistic network if p(a | ¢) = p(a |

=¢). In addition, since p(a) and p(—a) are related by
p( y=1—p(— ) we can say that if p(e) follows p(a),
then p(—c) varies inversely with p(a) and follows p(—a).
The assumption that conditional probabilities are con-
stant does not seem to cause problems when propagat-
ing changes in singly connected networks as discussed
here. However, the assumption does become problem-
atic when handling multiply connected networks [Par-

sons 1993].

Applying possibility theory to the network of Figure
1, and writing TI(x) for val(z) in (2) and (3), we can
establish a relationship between II(a) and TI(c). Un-
fortunately, unlike the analogous expression for prob-
ability theory, this involves the non-conditional value
I(a). This complicates the situation since the exact
form of the qualitative relatlonshlp between TI(a) and

TI(c) depends upon whether II(a) is increasing or de-
creasing. We have:

Theorem 3.2: The relation between II(z) and TI(y),
for all @ € {c,—c}, y € {a,na}, for the link A — C'is
such that I1(z) follows II(y) if min(Il(z | y),1(y)) >
min(Il(z | —y),(=y)) and [(y) < I(z | y). If
min(Il(z | y),11(y)) < min(ll(z | —y),1(-y)) and
MM(y) < Iz | y) then TI(x) may follow II(y) up if
I1(y) is increasing, and if min(Il(z | y),I1(y)) > min
(Il(z | ~y),I(=y)) and [(y) > I(z | y) then Il(z)
may follow T(y) down if TI(y) is decreasing. Other-
wise II(xz) is independent of TI(y).

Proof: Possibility theory gives II(c) = sup[min (H(c |
a),H(a)),min(ﬂ'(c | —wz),H(—'a))]. This may not be
differentiated, but consider how a small change in TI(a)
will affect TI(¢). If TI(a) is the value that determines
TI(c), any change in TI(a) will be reflected in TI(c). This
must happen when min(Il(c | a),Il(a)) > min(Il(c |
—a),I1(=a)) and [(a) < (e | a). If [I(a) is increas-
ing and the second condition does not hold, it may
become true at some point, and so the increase may
be reflected in TI(¢). Similar reasoning may be applied
when TI(a) is decreasing and the first condition is ini-
tially false. Thus we can write down the conditions
relating TI(¢) and TI(a), while those relating TI(¢) and
TI(—a) as well as those relating II(—¢) and TI(a) and
TI(—a) may be obtained the same way.O

To formalise this we can say that [Gval(c)\dval(a)
[1]if T (2) may follow II(y) up and [Gval(c)\Oval(a)
[{] if TI(z) may follow TI(y) down while extending ® to
give:

[
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where [+, 0] indicates a value that is either zero or
positive. Normalisation, the possibilistic equivalent of
p(a) = 1 —p(—a), ensures that maa:(l_[(a), H(—wz)) =1
Thus at least one of II(a) and TI(—a) is 1, and at most
one of TI(a) and TI(—a) may change, so II(x) changes
when either TI(y) or TI(—y) changes.

Writing bel(z) for val(z) in (2) and (3), and using
Dempster’s rule of combination [Shafer 1976] to com-
bine beliefs in the network of Figure 1, we have:

Theorem 3.3: The relation between bel(z) and bel(y)
for the link A — C' is such that bel(z) follows bel(y)
iff bel(z | y) > bel(x | y U —y), bel(x) varies inversely
with bel(y) iff bel(z | y) < bel(x | y U—y) and bel(x)
is independent of bel(y) iff bel(z | y) = bel(z | y U —y)
for all € {c, ¢}, y € {a,a}.

Proof : By Dempster’s rule bel(c) = ZaC{a,—'a} m(a)
bel(c | a). Now, from Shafer [1976] m(a) = bel(a),
m(—a) = bel(—a) and m(aU—a) = 1 —bel(a) —bel(—a).
Thus dbel(c)\dbel(a) = bel(c | a)—bel(c | aUna). Sim-



ilar reasoning about the way that bel(c) varies with
bel(—a) and bel(—c) varies with bel(a) and bel(—a)
gives the result.O

Note that bel(c) is the belief in hypothesis ¢ given all
the available evidence, while bel(¢ | aU—a) is the belief
induced on ¢ by the marginalisation on {¢U=c¢} of the
joint belief on the space {¢ U =c} x {a U —a}. Thus
bel(c) follows bel(a) if ¢ is more likely to occur given a
than given the whole frame. Other results are possible
when alternative rules of combination, such as Smets’
disjunctive rule [Smets 1991], are used.

The results presented in this section allow the propa-
gation of changes in value from A to C' given condi-
tionals of the form wval(c | a). Tt is possible to derive
similar results for propagation from C' to A [Parsons
1993] which say, for instance, that if p(c) follows p(a),
then p(a) follows p(c).

4 A COMPARISON OF THE
THREE FORMALISMS

It is instructive to compare the qualitative behaviours
of the simple link of Figure 1 when the conditional
values that determine i1ts behaviour are expressed us-
ing probability, possibility and evidence theories. This
comparison exposes the differences in approach taken
by the qualitative formalisms, providing some basis for
choosing between them as methods of knowledge rep-
resentation.

One way of representing the possible behaviours that
a link may encode, is to specify the possible values of
Awval(—a), Aval(c) and Aval(—c) for given values of
Awal(a). Thus for probability theory we have:

pla) =1 If Ap(a) =[0] Then Ap(-a) = [0]
Ap(a) =[] Then Ap(-a) = [+]
pla) #1 If Ap(a) = [+] Then Ap(—a) =[]
If Ap(a) =[0] Then Ap(—a) = [0]
If Ap(a) =[=] Then Ap(—a) = [+]
For any value of p(a), either [Op(c)\dp(a)] = [+], or
[Op(c)\dp(a)] =[], and:
p(e) =1 TIf Ap(e) =[0] Then Ap(—ec) = [0]
If Ap(c) =[=] Then Ap(—c) = [+]
ple) #1 If Ap(e) = [+] Then Ap(—e) =[]
If Ap(¢) =[0] Then Ap(—ec) = [0]
If Ap(c) =[=] Then Ap(—c) = [+]

The criterion on which the choice of probability theory
1s most likely to depend, is whether or not it is ap-
propriate that [Jval(z)\dval(—x)] = [—] in every case
since it is possible to model this in other formalisms,
and impossible to avoid it in probability theory.

In possibility theory we have:

M(a) =1 If All(a) = [0]
If All(a) = [-]

Then ATI(-a)
Then ATI(-a)

[7]
[+, 0]

MM(a) #1 If ATl(a) = [+] Then AIl(-a) = [0, —]
If ATI(a) =[0] Then ATl(—a) = [0]
If ATI(a) =[] Then ATl(—a) = [0]
For any TI(a), either [OTI(c)\OM(a)] = [0] or
[OT1(c)\OTI(a)] = [+] while:
IM(c) =1 TIf All(¢) =[0] Then AIl(=¢) = [?]
If ATl(¢) = [=] Then AIl(—¢) = [+, 0]
M(c) #1 TIf ATI(¢c) = [+] Then AIl(=¢) = [0, —]
If ATl(¢) = [0] Then ATI(=¢) = [0]
If ATl(¢) = [~] Then ATI(=¢) = [0]

where ATI(z) = [7] is taken to mean All(z) = [+], [0]
or [—]. Thus possibility theory can represent a wider
range of behaviours than probability theory.

However, possibility theory has one major limitation
that is not shared by probability theory, and that 1s the
fact that it does not have an inverting link. If val(a)
increases, it is only possible to have val(¢) decreasing if
val(—a) decreases and val(ec) follows it. This restricts
the representation to the situation in which val(a) # 1
and increases to 1 and this may be inappropriate.

Evidence theory is the least restricted of the three.
Here we have:

bel(a) =1 TIf Abel(a) =[0] Then Abel(—a) = [7]
If Abel(a) =[—] Then Abel(—a) = [7]

bel(a) 1 TIf Abel(a) =[+] Then Abel(—a) = [7]
If Abel(a) =1[0] Then Abel(—a) = [7]

If Abel(a) =[=] Then Abel(—a) = [7]

F(;lr.lany bel(a), [Obel(c)\Dbel(a)] = [+], [0], or [-],
bel(c) =1 Tf Abel(c) =[0] Then Abel(—e) = [7]
If Abel(c) =[=] Then Abel(—e) = [7]

bel(c) #1 TIf Abel(c) = [+] Then Abel(—e) = [7]
If Abel(c) =1[0] Then Abel(—e) = [7]

If Abel(c) =[=] Then Abel(—e) = [7]

so that there are no restrictions on the changes.

The purpose of this comparison is not to suggest that
one formalism is the best in every situation. Instead,
it is intended as some indication of which formalism is
best for a particular situation. If a permissive formal-
ism 18 required, then evidence theory may be the best
choice, while probability might be better when a more
restrictive formalism is needed.

5 QUALITATIVE CHANGES IN
MORE COMPLEX NETWORKS

The analysis carried out in Section 3 allows us to pre-
dict how qualitative changes in certainty value will
be propagated in a simple link between two nodes.
Now, the change at C depends only on the change
at A, and differential calculus tells us that 9z\0x =
0z\0y - Oy\dz so the behaviours of such links may
be composed. Thus we can predict how qualitative
changes are propagated in any network, quantified by



probabilities, possibilities or beliefs where every node
has a single parent.

D
Figure 2: A more complex network

We now extend these results to enable us to cope with
networks in which nodes may have more than one par-
ent. To do this we consider the qualitative effect of
two converging links such as those in Figure 2. Since
we are only dealing with singly connected networks, B
and C are independent and the overall effect at D is
determined by:
|:6val i|
dval(b

[ Aval(d) ] {awl }

Aval(~d) %
[&Z‘fﬁb ] o

|

|

dval(d
dval( —|b
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dval(d dval(d
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(’h/al —|c
S {(’Mal ﬂd } dval(=d) }
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Awal(c)
® [Aval(—'c)]

There are two ways of tackling the network of Figure 2
in probability theory. We can either base our calcula-
tion on probabilities of the form p(d | b) which implies
the simplifying assumption that the effect of B on D
is independent of the effect of C' (and vice versa), or
we can use the proper joint probabilities of the three
events B, C', and D, using values of the form p(d | b, ¢).

In the first case we assume that the effects of B and
C on D are completely independent of one another
so that the variation of D with B (and D with ') is
just as described by Theorem 3.1, the joint effect being
established by using (4) to obtain:

avia] = |40 o (e |71 @ 1an)

o o8] o pten e | A0 @ 1ape)

which gives the same results as the expression given
by Wellman [1990a] for evaluating the same situa-
tion. With the other approach, writing the network
as B&C' — D, we have:

Theorem 5.1: The relation between p(z) and p(x)
for the link B&C' — D is determined by:

op(z)] s
|| = b ) 0t )

—p(z | —u:,y)]
—p(z | —e, y)]

=z |2, 7y)
@ p(z ]2,y
for all € {b, b}, y{e,—c} and z € {d, ~d}.

Proof: We have p(d) = Zbe{b,—'b}ce{c,—'c} p(b,c,d) =
Zbe{b,—'b}ce{c,—'c} p(b,c)p(d | b,¢). Since B and C are
independent, p(b,¢) = p(b)p(c). Using p(z) = 1 —
p(—z) and differentiating we find that [Op(d)\dp(b)] =
p(e)[p(d [ b, ¢) = p(d | =b, )] +p(=e) [p(d | b, ~¢) = p(d |
=b,=c)] = ple){[p(d | b, c) + p(d | =b,=e)] — [(p(d |
b,=c) + p(d | =b c]}+[ (d | b,=c) = p(d | =b,~c)].
From this, and similar results for the variation of p(d)
with p(ﬁb), p(c) and p(—c), and the way p(—d) changes
with p(b), p(=b), p(c) and p(—¢), the result follows.O

Thus the way in which for instance p(d) is dependent
upon p(b) is itself dependent upon a term just like the
synergy condition introduced by Wellman, and apply-
ing (4) we get an expression which has a similar be-
haviour to that given by Wellman for a synergetic re-
lation. In possibility theory we have a similar result
to that for the simple link:

Theorem 5.2: The relation between II(z), II(y) and
TI(z), for all # € {b,2b}, y € {e,~c}, z € {d,—d} for
the link B&C' — D is such that:

(1) 11(z) follows Il(z) iff H(x,y,2) > sup[l(—z,y, 2),
(z,—y, 2), (=2, ~y, 2)] and [I(z) < min(l(z | z,y),
(y)), or I(z,~y,z) > sup[ll(z,y,z2),(-z,y,z2),
(—x, —y, 2)] and H(x) < min(I(z | 2, —y), O(-y)).
(2) TI(z) may follow II(z) up iff TI(x,y,z) < sup
[(~z,y,2), 0(z,~y, 2), (-2, ~y, )] and H(z) <
min(Il(z | z,y),1(y)), or M(z,~y,2) < sup[l(z,y,
2), =z, y, 2), [(~z, ~y, z)] and H(z) < min(I1(z |
z, 7y, H(_'y))'
(3) TI(z2) may follow I(x) down iff M(x,y,2) >
sup[l_[(—'x, y, 2), Mz, ny, z), (—x, —y, z)] and TI(z) >
mm(H(z | #,y),(y)), or M(x,—y,2z) > sup[l_[(x,y,
z), M(—x, y, z), H(—x, —y, z)] and TI(z) > mm(H(z |
z, =), 1(=y)).
(4) Otherwise TI(z) is independent of TI(x).
Proof: As for Theorem 3.2, the result may be de-
termined directly from II(d) = supe{e -2}yeiy,y}
M(x,y,2) and Iz, y, z) = (2 | 2, y)I(z)TI(y).0
When we use belief values we may take the relationship
between B, (' and D to be determined by one set of
conditional beliefs of the form bel(d | b,¢), or by two
sets of conditional beliefs of the form bel(d|b). TFor
conditionals of the form bel(d | b, ¢) we have:

Theorem 5.3: The relation between bel(z) and bel(x)
for the link B&C' — D is determined by:

[SZZ%;))] = [bel(z | @, y) — bel(z | © Uz, y)]

@ [bel(z | ®,~y) — bel(z | x U -z, y)]



@ [bel(z | x,yU—y)—bel(z | zU-z, yUy)]
For all @ € {b,=b}, y € {¢,—c}, z € {d,~d}.

Proof: By Dempster’s rule of combination, bel(d)
Zbg{b,—'b},cg{c,—'c} m(bym(e)bel(d|b, c). Now, m(x)
bel(x), m(—z) = bel(—x) and m(z U —z) = 1 —bel(x)
—bel(—x), so that [Obel(d)\Obel(b)] = [(bel(d | b,¢) —
bel(d | bU=b, )@ [(bel(d | b, —e) —bel(d | bU—b,—¢)] B
[(bel(d | b, cU—e)—bel(d | bU—b, cU~c). From this, and
similar results for the variation of bel(d) with bel(—b),
bel(c) and bel(—e), and the way bel(—d) changes with
bel(b), bel(—b), bel(c) and bel(—c¢) the result follows.D

Thus bel(d) follows bel(b) iff bel(d | b,¢) > bel(d |
bU=b, ), bel(d | b,—e) > bel(d | bU—=b, =), and bel(d |
byeU—e) > bel(d | bU=b,cU=c). For conditionals of
the form bel(d | b) we obtain:

Theorem 5.4: For the link B&C' — D, bel(z) follows
bel(x) if bel(z | ) > bel(z|x U—z) and is indeterminate
otherwise for all € {b, b}, y € {c,~c}, z € {d, ~d}.

Proof : Dempster’s rule of combination tells us
that bel(d) = 3 pc(s-0) cClerme) bvend bel(dlb)m(b)
bel(d|c)m(c). As a result, [Obel(d)\Obel(b)] = [(bel(d |
b)—bel(d | bU=b)]{bel(d|-c) [1+bel(c)+bel(=c)—m(c)]
+bel(d|=ec) [L4bel(c) +bel(—e) —m(=c)] +bel(d|c) [1+
bel(c) + bel(—c) — m(c U=c)]} + bel(d|=b) [m(c)bel(d |
¢) + m(—e)bel(d | ~¢) + m(e U=e)bel(d]c U —e)). Since
m(x) < 1 for all z, [0bel(d)\Obel(b)] = [+] if bel(d |
b) > bel(d|bU —b) and [?] otherwise. From this, and
similar results for the variation of bel(d) with bel(—b),
bel(c) and bel(—e), and the way bel(—d) changes with
bel(b), bel(—b), bel(c) and bel(—c¢) the result follows.D

Thus the formalisms again exhibit differences in be-
haviour across the same network.

The expressions derived in this section are those ob-
tained by using the precise theory of each formalism.
This is important since i1t ensures the correctness of
the integration introduced in Section 6. However, for
reasoning using single formalisms, it may provde ad-
vantageous to extend the simpler apporach adopted by
Wellman [1990a] to possibility and evidence theories.

Finally a word on the scope of the reasoning that we
can perform as a result of our analysis. The differential
calculus tells us that Az = Ax-[02\0x]+ Ay [02\0y],
provided that x is not a function of y. Thus we can
clearly use the results derived above to propagate qual-
itative changes in probability, possibility and belief
functions through any singly connected network.

6 INTEGRATION THROUGH
QUALITATIVE CHANGE

The work described in this paper so far has extended
qualitative reasoning about uncertainty handling for-
malisms to cover possibility and belief values as well
as probability values. Not only is this useful in it-
self in providing a means of reasoning according to the

precise rules of probability, possibility and Dempster-
Shafer theory when there is incomplete numerical in-
formation, but it can also provide a way of integrating
the different formalisms.

Consider the following medical example. The network
of Figure 3 encodes the medical information that joint
trauma (7') leads to loose knee bodies (K), and that
these and arthritis (A) cause pain (P). The incidence
of arthritis is influenced by dislocation (D) of the joint
in question and by the patient suffering from Sjorgen’s
syndrome (S) . Sjorgen’s syndrome affects the inci-
dence of vasculitis (V'), and vasculitis leads to vas-
culitic lesions (L).

Figure 3: A network representing medical knowledge

The strengths of these influences are given as proba-
bilities:

pk | ) = 06 pv]s) = 0.1
p(k | —t) = 0.2 pv|-s) = 03
pla | d,s) = 09 pla|—d,s) = 0.6
pla|d,—s) = 06 pla|-d,—s) = 0.4
beliefs
bel(p | k, a) = 0.9
bel(p | k, —a) = 0.7
bel(p | -k, a) = 0.7
bel(p | kU -k, a) = 06
bel(p | k,a U —a) = 0.7
bel(—p | =k, —a) = 05
bel(-p | ~k,aU-a) = 04
All other conditional beliefs are zero
and possibilities:
I | v) = 1 I | —v) = 1
=l |v)y = 01 I~l|-w) = 0.1

We can integrate this information allowing us to say
how our belief in the patient in question being in pain,



and the possibility that the patient has vasculitic le-
sions, vary when we have new evidence that she 1is
suffering from Sjorgen’s syndrome. From the new ev-
idence we have Ap(s) = [+], Ap(=s) =[], Ap(t) =
[0], Ap(—t) = [0], Ap(d) = [0] and Ap(—d) = [0]. Since
a change of [0] can never become a change of [+] or [—]
we can ignore the latter changes. Now, from Theorem
3.1 and Theorem 5.1 we know that:

o] g [ 2] gy

ap(s)] Ip(-s)
3]0 (3]

so that Ap(a) = [+], and Ap(v) = [=] from which we
can deduce that Ap(—a) = [—] and Ap(—w) = [+].

To continue our reasoning we need to establish the
change in belief of @ and the change in possibility of
[. To do this we make the monotonicity assumption
[Parsons 1993] that if the probability of a hypothesis
increases then both the possibility of that hypothesis
and the belief in it do not decrease. As well as being
intuitively acceptable, this assumption is the weakest
sensible relation between values expressed in different
formalisms, and 1s compatible both with the principle
of consistency between probability and possibility val-
ues laid down by Zadeh [1978] and the natural exten-
sion of this principle to belief, necessity [Dubois and
Prade 1988b], and plausibility values.

The assumption also says that if the probability de-
creases then the possibility and belief do not increase,
and so we can say that Abel(a) = [+, 0], Abel(—a) =
[, 0], All(v) = [—,0] and AII(-w) = [+,0]. Now we
apply Theorem 5.3 to find that:

(D] g [l ] g

Obel(a) dbel(—a
dbel(-p)] dbel(—p) | _
[ dbel(a) ] = [3bel(—|a)] =

Since we are initially ignorant about the possibility of
vasculitis, we have TI(v) = TI(—v) = 1, so that Theo-
rem 3.2 gives:

ol (! ol (!
) =1 [y =0
Ol (! (-

[aﬂ( )]:[0] [8 ( )] (0]

(v) OMl(—w)
Hence we can tell that Abel(p) = [+,0], bel(—p) =
[—, 0] and ATI(v) = AII(—v) = [0]. The result of the
new evidence is that belief in the patient’s pain may in-
crease, while the possibility of the patient having vas-
culitic lesions is unaffected. Thus we can use numeri-
cal values and qualitative relationships from different
uncertainty handling formalisms to reason about the
change in the belief of some event given information
about the probability of a second event, and can in-
fer whether the possibility of a third event also varies.
As a result reasoning about qualitative change allows
some integration between formalisms.

7 DISCUSSION

There is an important difference between the approach
to qualitative reasoning under uncertainty described
here, and that of Wellman [1990a, b]. Despite their
name, Wellman’s Qualitative Probabilistic Networks
do not describe the qualitative behaviour of probabilis-
tic networks exactly. In particular, some dependencies
between variables are ignored in favour of simplicity,
and synergy relations are sometimes introduced to rep-
resent them where it is considered to be important.

In our approach, since it is based directly upon the
various formalisms, the qualitative changes predicted
are exactly those of the quantitative methods. This
has been demonstrated in [Parsons and Saffiotti 1993]
which analyses the representation of a real problem in
a number of different qualitative and quantitative for-
malisms. In this analysis we make qualitative predic-
tions about the impact of evidence of faults in an elec-
tricity distribution network and compare these with
the real quantitative changes. In every case, for proba-
bility, possibility and belief values, the qualitative pre-
dictions were correct. This verification is a good in-
dication of the validity of the approach, and suggests
that it will be useful in situations where incomplete
information prevents the application of quantitative
methods.

Our qualitative method also provides a means of in-
tegrating uncertainty handling formalisms on a purely
syntactic basis. For any hypothesis  about which we
have uncertain information expressed, say in proba-
bility theory and possibility theory, we can make the
intuitively reasonable assumption that if p(z) increases
TI(x) does not decrease, and thus translate from proba-
bility to possibility without worrying what probability
or possibility actually mean.

As a result any desired semantics may be attached
to the values, a feature which finesses the problem of
the acceptability of the semantics which must be faced
by other, semantically based, schemes for integration
(eg. [Baldwin 1991]). The only problem with switch-
ing semantics would be that some combination rules
might no longer apply, Dempster’s rule in the case of
Baldwin’s voting model semantics, which would entail
a re-derivation of the appropriate propagation condi-
tions. Since the qualitative approach does not a priori,
rule out any combination scheme, this is not a major

difficulty.

Finally, there is one important way that this method
might be improved. The main disadvantage of any
qualitative system is that there is no distinction be-
tween small values and large values; so 0.001 is qualita-
tively the same as 100,000. As a result we cannot dis-
tinguish between evidence that induces small changes
in the certainty of a hypothesis and evidence that in-
duces large changes. This problem has been recognised
for some time, and there 1s now a large body of work
on order of magnitude reasoning (for example [Raiman



1986], [Parsons and Dohnal 1992]) which attempts to
automate reasoning of the form it “If A is bigger than
B and B is bigger than C' then A is bigger than C”.
The applications to our system are obvious, and we
intend to do some work on this in the near future.

8 SUMMARY

This paper has introduced a new method for qualita-
tive reasoning under uncertainty which is equally ap-
plicable to all uncertainty handling techniques. All
that need be done to find the qualitative relation be-
tween two values is to write down the analytical ex-
pression relating them and take the derivative of this
expression with respect to one of the values. This fact
was illustrated by results from the qualitative analysis
of the simplest possible reasoning networks in each of
the three most widely used formalisms.

Having established the qualitative behaviours of prob-
ability, possibility and evidence theories, the differ-
ences between these behaviours were discussed at some
length, before knowledge of this behaviour was used to
establish a form of qualitative integration between for-
malisms. In this integration numerical and qualitative
data expressed in all three formalisms was used to help
derive the change in belief of one node in a directed
graph and the possibility of another from knowledge
of a change in the probability of a third, related, node.
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