
On reasoning in networks with qualitative uncertaintySimon Parsons�and E. H. MamdaniDepartment of Electronic Engineering,Queen Mary and West�eld College,Mile End Road,London, E1 4NS, UK.AbstractIn this paper some initial work towards a newapproach to qualitative reasoning under un-certainty is presented. This method is notonly applicable to qualitative probabilisticreasoning, as is the case with other methods,but also allows the qualitative propagationwithin networks of values based upon possi-bility theory and Dempster-Shafer evidencetheory. The method is applied to two simplenetworks from which a large class of directedgraphs may be constructed. The results ofthis analysis are used to compare the quali-tative behaviour of the three major quantita-tive uncertainty handling formalisms, and todemonstrate that the qualitative integrationof the formalisms is possible under certain as-sumptions.1 INTRODUCTIONIn the past few years, the use of reasoning about qual-itative changes in probability to deal with uncertaintyhas become widely accepted, being applied to domainssuch as planning [Wellman1990b] and generating plau-sible explanations [Henrion and Druzdzel 1990]. Sucha qualitative approach has certain advantages overquantitative methods, not least among which is theability to model domains in which the relation betweenvariables is uncertain as a result of incomplete knowl-edge, and domains in which numerical representationsare inappropriate.The existence of the latter, as Wellman [1990a] pointsout, is often due to the precision of numerical methodswhich can, in certain circumstances, lead to knowledgebases being applicable only in very narrow areas be-cause of the interaction between values at a �ne levelof detail. Since they view the world at a higher level ofabstraction, qualitative methods are immune to such�Current address: Advanced Computation Laboratory,Imperial Cancer Research Fund, P. O. Box 123, Lincoln'sInn Fields, London, WC2A 3PX, UK.

problems; the small complications such interactionscause simply have no e�ect at the coarse level of detailwith which qualitative methods are concerned.The focus of the qualitative approach of Wellman andHenrion and Druzdzel is assessing the impact of evi-dence. That is assessing how the change in probabil-ity of one event due to some piece of evidence a�ectsthe probability of other events. For instance, takinga patient's temperature and �nding that it is 38C isevidence that increases the probability that she has afever, which in turn increases the probability that shehas measles.Now, when using the qualitative method we reasonwith a restricted set of values. Instead of using the fullrange of real numbers we are only interested in whethervalues are positive [+], negative [�], zero [0], or anyof the three [?]. Thus we can determine that sincethe probability of fever increases, the change in prob-ability is [+], and use this to decide that the changein probability of measles is also [+]. This is clearlyweaker information than that obtained by traditionalmethods but may still be useful [Wellman 1990a], inparticular since qualitative results may be obtained insituations where no numerical information may be de-duced.2 A NEW QUALITATIVEAPPROACHThis paper presents a new approach to reasoning aboutqualitative changes. This work is drawn from the �rstauthor's thesis [Parsons 1993] in which may be founda number of extensions to the work described here.The motivation behind this work was to integrate dif-ferent approaches to reasoning under uncertainty, inparticular probability, possibility [Zadeh 1978] [Duboisand Prade 1988a], and evidence [Shafer 1976] [Smets1988] theories. Thus, our qualitative approach di�ersfrom that described above in that it is concerned withchanges in possibility values [Parsons 1992a] and beliefvalues [Parsons 1992b] as well as probability values. Asa result we need a general way of referring to valuesthat may be probabilities, possibilities or beliefs.



De�nition 2.1: The certainty value of a variable Xtaking value x, val(x), is either the probability of X,p(x), the possibility of X, �(x), or the belief in X,bel(x).We set our work in the framework of singly connectednetworks in which the nodes represent variables of in-terest, and the edges represent explicit dependenciesbetween the variables. When the edges of such graphsare quanti�ed with conditional probability values theyare similar to those studied by Pearl [1988], when pos-sibility values are used the graphs are similar to thoseof Fonck and Straszecka [1991] and when belief valuesare used the graphs are those studied by Smets [1991].Each node in a graph represents a binary valued vari-able. The probability values associated with a vari-able X which has possible values x and :x are p(x)and p(:x), and the possibility values associated withX are �(x) and �(:x). Belief values may be assignedto any subset of the values of X, so it is possible tohave up to three beliefs associated with X; bel(fxg),bel(f:xg) and bel(fx;:xg). For simplicity these willbe written as bel(x), bel(:x) and bel(x [ :x). Thisrather restrictive framework is loosened in [Parsons1993] where non-binary values and multiply connectedare considered.Wellman [1990a, 1990b] and Henrion and Druzdzel[1990] base their work upon the premise that a suitableinterpretation of \a positively in
uences c" is that:p(c j a) � p(c j :a) (1)This seems reasonable, but it is a premise; there areother ways of encoding the information that seemequally intuitively acceptable, for instance p(c j a) >p(c) and p(c j a) > p(:c j a) [Dubois and Prade 1991].Since our aim was to provide a method that was suit-able for integrating formalismswe wanted to start from�rst principles thus minimising the number of neces-sary assumptions. As a result, a di�erent approachwas adopted as described below.Given a link joining nodes A and C as in Figure 1,we are interested in the way in which a change in thevalue of a, say, expressed in a particular formalism, in-
uences the value of c. Note that the arrow between Aand C does not necessarily indicate a causal relation-ship between them, rather it suggests that propagationof qualitative changes will be from A to C.�
�� �
��-A CFigure 1: A simple networkWe can then model the impact of evidence that a�ectsthe value of A in terms of the change in certainty valueof a and :a, relative to their value before the evidencewas known, and use knowledge about the way that

a change in, say, val(a) a�ects val(c) to propagatethe e�ect of the evidence. We de�ne the followingrelationships that describe how the value of a variableX changes when the value of a variable Y is alteredby new evidence:De�nition 2.2: The certainty value of a variable Xtaking value x is said to follow the certainty valueof variable Y taking value y, val(x) follows val(y),if val(x) increases when val(y) increases, and val(x)decreases when val(y) decreases.De�nition 2.3: The certainty value of a variable Xtaking value x is said to vary inversely with the cer-tainty value of variable Y taking value y, val(x) variesinversely with val(y), if val(x) decreases when val(y)increases, and val(x) increases when val(y) decreases.De�nition 2.4: The certainty value of a variable Xtaking value x is said to be independent of the cer-tainty value of variable Y taking value y, val(x) isindependent of val(y), if val(x) does not change asval(y) increases and decreases.The way in which the variation of val(x) with val(y)is determined is by establishing the qualitative valueof the derivative @val(x)n@val(y) that relates them. Ifthe derivative is known, it is a simple matter to cal-culate the change in val(x) from the change in val(y).Thus to determine the change at C in Figure 1 wehave: �val(c) = �val(a) 
 �@val(c)@val(a) � (2a)��val(:a) 
 � @val(c)@val(:a)��val(:c) = �val(a) 
 �@val(:c)@val(a) � (2b)��val(:a) 
 � @val(:c)@val(:a)�where [x] is [+] if x is positive, [0] if x is zero and [�] ifx is negative, and � and 
 denote qualitative additionand multiplication respectively:� [+] [0] [�] [?][+] [+] [+] [?] [?][0] [+] [0] [�] [?][�] [?] [�] [�] [?][?] [?] [?] [?] [?]
 [+] [0] [�] [?][+] [+] [0] [�] [?][0] [0] [0] [0] [0][�] [�] [0] [+] [?][?] [?] [0] [?] [?]We can express this as a matrix calculation (after Far-



reny and Prade [1989]):� �val(c)�val(:c) � = 24 h @val(c)@val(a)i h @val(c)@val(:a) ih@val(:c)@val(a) i h @val(:c)@val(:a) i35 (3)
 � �val(a)�val(:a) �Clearly val(c) follows val(a) when @val(c)n@val(a) =[+], val(c) varies inversely with val(a) when@val(c)n@val(a) = [�] and is independent of val(a)when @val(c)n@val(a) = [0].3 QUALITATIVE CHANGES INSIMPLE NETWORKSApplying probability theory to the example of Figure1, so that val(x) becomes p(x) in (2) and (3), and re-ferring to the directed link joining A and C as A! C,we have the following simple result which agrees withthe assumption (1) made by Wellman as a basis forhis qualitative probabilistic networks when conditionalvalues are taken as constant, as they are throughoutthis work:Theorem 3.1: The relation between p(x) and p(y)for the link A ! C is such that p(x) follows p(y) i�p(x j y) > p(x j :y), p(x) varies inversely with p(y)i� p(x j y) < p(x j :y) and p(x) is independent ofp(y) i� p(x j y) = p(x j :y) for all for all x 2 fc;:cg,y 2 fa;:ag.Proof: Probability theory tells us that p(c) = p(a)p(c j a) + p(:a)p(c j :a) and p(a) = 1 � p(:a) sothat p(c) = p(a)[p(c j a) � p(c j :a)] + p(cj:a) and[@val(c)n@val(a)] = [p(cja)� p(cj:a)]. Similar rea-soning about the way that p(c) varies with p(:a) andp(:c) varies with p(a) and p(:a) gives the result.2By convention [Pearl 1988] two nodes A and C are notconnected in a probabilistic network if p(a j c) = p(a j:c). In addition, since p(a) and p(:a) are related byp(a) = 1� p(:a), we can say that if p(c) follows p(a),then p(:c) varies inversely with p(a) and follows p(:a).The assumption that conditional probabilities are con-stant does not seem to cause problems when propagat-ing changes in singly connected networks as discussedhere. However, the assumption does become problem-atic when handling multiply connected networks [Par-sons 1993].Applying possibility theory to the network of Figure1, and writing �(x) for val(x) in (2) and (3), we canestablish a relationship between �(a) and �(c). Un-fortunately, unlike the analogous expression for prob-ability theory, this involves the non-conditional value�(a). This complicates the situation since the exactform of the qualitative relationship between �(a) and�(c) depends upon whether �(a) is increasing or de-creasing. We have:

Theorem 3.2: The relation between �(x) and �(y),for all x 2 fc;:cg, y 2 fa;:ag, for the link A ! C issuch that �(x) follows �(y) if min��(x j y);�(y)� >min��(x j :y);�(:y)� and �(y) < �(x j y). Ifmin��(x j y);�(y)� � min��(x j :y);�(:y)� and�(y) < �(x j y) then �(x) may follow �(y) up if�(y) is increasing, and if min��(x j y);�(y)� > min��(x j :y);�(:y)� and �(y) � �(x j y) then �(x)may follow �(y) down if �(y) is decreasing. Other-wise �(x) is independent of �(y).Proof: Possibility theory gives �(c) = sup�min��(c ja);�(a)�;min��(c j :a);�(:a)��. This may not bedi�erentiated, but consider how a small change in �(a)will a�ect �(c). If �(a) is the value that determines�(c), any change in �(a) will be re
ected in �(c). Thismust happen when min��(c j a);�(a)� > min��(c j:a);�(:a)� and �(a) < �(c j a). If �(a) is increas-ing and the second condition does not hold, it maybecome true at some point, and so the increase maybe re
ected in �(c). Similar reasoning may be appliedwhen �(a) is decreasing and the �rst condition is ini-tially false. Thus we can write down the conditionsrelating �(c) and �(a), while those relating �(c) and�(:a) as well as those relating �(:c) and �(a) and�(:a) may be obtained the same way.2To formalise this we can say that [@val(c)n@val(a)] =["] if �(x) may follow �(y) up and [@val(c)n@val(a)] =[#] if �(x) may follow �(y) down while extending 
 togive:
 [+] [0] [�] [?] ["] [#][+] [+] [0] [�] [?] [+; 0] [0][0] [0] [0] [0] [0] [0] [0][�] [�] [0] [+] [?] [0] [�; 0][?] [?] [0] [?] [?] [+; 0] [�; 0]where [+; 0] indicates a value that is either zero orpositive. Normalisation, the possibilistic equivalent ofp(a) = 1�p(:a), ensures that max��(a);�(:a)� = 1.Thus at least one of �(a) and �(:a) is 1, and at mostone of �(a) and �(:a) may change, so �(x) changeswhen either �(y) or �(:y) changes.Writing bel(x) for val(x) in (2) and (3), and usingDempster's rule of combination [Shafer 1976] to com-bine beliefs in the network of Figure 1, we have:Theorem 3.3: The relation between bel(x) and bel(y)for the link A ! C is such that bel(x) follows bel(y)i� bel(x j y) > bel(x j y [ :y), bel(x) varies inverselywith bel(y) i� bel(x j y) < bel(x j y [ :y) and bel(x)is independent of bel(y) i� bel(x j y) = bel(x j y [ :y)for all x 2 fc; cg, y 2 fa; ag.Proof : By Dempster's rule bel(c) = Pa�fa;:agm(a)bel(c j a). Now, from Shafer [1976] m(a) = bel(a),m(:a) = bel(:a) and m(a[:a) = 1�bel(a)�bel(:a).Thus @bel(c)n@bel(a) = bel(c j a)�bel(c j a[:a). Sim-



ilar reasoning about the way that bel(c) varies withbel(:a) and bel(:c) varies with bel(a) and bel(:a)gives the result.2Note that bel(c) is the belief in hypothesis c given allthe available evidence, while bel(c j a[:a) is the beliefinduced on c by the marginalisation on fc[:cg of thejoint belief on the space fc [ :cg � fa [ :ag. Thusbel(c) follows bel(a) if c is more likely to occur given athan given the whole frame. Other results are possiblewhen alternative rules of combination, such as Smets'disjunctive rule [Smets 1991], are used.The results presented in this section allow the propa-gation of changes in value from A to C given condi-tionals of the form val(c j a). It is possible to derivesimilar results for propagation from C to A [Parsons1993] which say, for instance, that if p(c) follows p(a),then p(a) follows p(c).4 A COMPARISON OF THETHREE FORMALISMSIt is instructive to compare the qualitative behavioursof the simple link of Figure 1 when the conditionalvalues that determine its behaviour are expressed us-ing probability, possibility and evidence theories. Thiscomparison exposes the di�erences in approach takenby the qualitative formalisms, providing some basis forchoosing between them as methods of knowledge rep-resentation.One way of representing the possible behaviours thata link may encode, is to specify the possible values of�val(:a), �val(c) and �val(:c) for given values of�val(a). Thus for probability theory we have:p(a) = 1 If �p(a) = [0] Then �p(:a) = [0]If �p(a) = [�] Then �p(:a) = [+]p(a) 6= 1 If �p(a) = [+] Then �p(:a) = [�]If �p(a) = [0] Then �p(:a) = [0]If �p(a) = [�] Then �p(:a) = [+]For any value of p(a), either [@p(c)n@p(a)] = [+], or[@p(c)n@p(a)] = [�], and:p(c) = 1 If �p(c) = [0] Then �p(:c) = [0]If �p(c) = [�] Then �p(:c) = [+]p(c) 6= 1 If �p(c) = [+] Then �p(:c) = [�]If �p(c) = [0] Then �p(:c) = [0]If �p(c) = [�] Then �p(:c) = [+]The criterion on which the choice of probability theoryis most likely to depend, is whether or not it is ap-propriate that [@val(x)n@val(:x)] = [�] in every casesince it is possible to model this in other formalisms,and impossible to avoid it in probability theory.In possibility theory we have:�(a) = 1 If ��(a) = [0] Then ��(:a) = [?]If ��(a) = [�] Then ��(:a) = [+; 0]

�(a) 6= 1 If ��(a) = [+] Then ��(:a) = [0;�]If ��(a) = [0] Then ��(:a) = [0]If ��(a) = [�] Then ��(:a) = [0]For any �(a), either [@�(c)n@�(a)] = [0] or[@�(c)n@�(a)] = [+] while:�(c) = 1 If ��(c) = [0] Then ��(:c) = [?]If ��(c) = [�] Then ��(:c) = [+; 0]�(c) 6= 1 If ��(c) = [+] Then ��(:c) = [0;�]If ��(c) = [0] Then ��(:c) = [0]If ��(c) = [�] Then ��(:c) = [0]where ��(x) = [?] is taken to mean ��(x) = [+], [0]or [�]. Thus possibility theory can represent a widerrange of behaviours than probability theory.However, possibility theory has one major limitationthat is not shared by probability theory, and that is thefact that it does not have an inverting link. If val(a)increases, it is only possible to have val(c) decreasing ifval(:a) decreases and val(c) follows it. This restrictsthe representation to the situation in which val(a) 6= 1and increases to 1 and this may be inappropriate.Evidence theory is the least restricted of the three.Here we have:bel(a) = 1 If �bel(a) = [0] Then �bel(:a) = [?]If �bel(a) = [�] Then �bel(:a) = [?]bel(a) 6= 1 If �bel(a) = [+] Then �bel(:a) = [?]If �bel(a) = [0] Then �bel(:a) = [?]If �bel(a) = [�] Then �bel(:a) = [?]For any bel(a), [@bel(c)n@bel(a)] = [+], [0], or [�],while:bel(c) = 1 If �bel(c) = [0] Then �bel(:c) = [?]If �bel(c) = [�] Then �bel(:c) = [?]bel(c) 6= 1 If �bel(c) = [+] Then �bel(:c) = [?]If �bel(c) = [0] Then �bel(:c) = [?]If �bel(c) = [�] Then �bel(:c) = [?]so that there are no restrictions on the changes.The purpose of this comparison is not to suggest thatone formalism is the best in every situation. Instead,it is intended as some indication of which formalism isbest for a particular situation. If a permissive formal-ism is required, then evidence theory may be the bestchoice, while probability might be better when a morerestrictive formalism is needed.5 QUALITATIVE CHANGES INMORE COMPLEX NETWORKSThe analysis carried out in Section 3 allows us to pre-dict how qualitative changes in certainty value willbe propagated in a simple link between two nodes.Now, the change at C depends only on the changeat A, and di�erential calculus tells us that @zn@x =@zn@y � @yn@x so the behaviours of such links maybe composed. Thus we can predict how qualitativechanges are propagated in any network, quanti�ed by



probabilities, possibilities or beliefs where every nodehas a single parent.�
�� �
���
��ZZZZZZ~ ������=B CDFigure 2: A more complex networkWe now extend these results to enable us to cope withnetworks in which nodes may have more than one par-ent. To do this we consider the qualitative e�ect oftwo converging links such as those in Figure 2. Sincewe are only dealing with singly connected networks, Band C are independent and the overall e�ect at D isdetermined by:� �val(d)�val(:d) � = 24 h@val(d)@val(b) i h @val(d)@val(:b)ih@val(:d)@val(b) i h@val(:d)@val(:b) i35
 � �val(b)�val(:b) � (4)� 24 h@val(d)@val(c) i h @val(d)@val(:c)ih@val(:d)@val(c) i h@val(:d)@val(:c) i35
 � �val(c)�val(:c) �There are two ways of tackling the network of Figure 2in probability theory. We can either base our calcula-tion on probabilities of the form p(d j b) which impliesthe simplifying assumption that the e�ect of B on Dis independent of the e�ect of C (and vice versa), orwe can use the proper joint probabilities of the threeevents B, C, andD, using values of the form p(d j b; c).In the �rst case we assume that the e�ects of B andC on D are completely independent of one anotherso that the variation of D with B (and D with C) isjust as described by Theorem 3.1, the joint e�ect beingestablished by using (4) to obtain:[�p(d)] = �@p(d)@p(b) �
 [�p(b)]� � @p(d)@p(:b)�
 [�p(:b)]� �@p(d)@p(c) �
 [�p(c)]� � @p(d)@p(:c)�
 [�p(:c)]which gives the same results as the expression givenby Wellman [1990a] for evaluating the same situa-tion. With the other approach, writing the networkas B&C ! D, we have:Theorem 5.1: The relation between p(z) and p(x)for the link B&C ! D is determined by:�@p(z)@p(x)� = [p(z j x; y) + p(z j :x;:y)

� p(z j x;:y)� p(z j :x; y)]� [p(z j x;:y)� p(z j :x;:y)]for all x 2 fb;:bg, yfc;:cg and z 2 fd;:dg.Proof: We have p(d) = Pb2fb;:bgc2fc;:cg p(b; c; d) =Pb2fb;:bgc2fc;:cg p(b; c)p(d j b; c). Since B and C areindependent, p(b; c) = p(b)p(c). Using p(x) = 1 �p(:x) and di�erentiating we �nd that [@p(d)n@p(b)] =p(c)�p(d j b; c)�p(d j :b; c)�+p(:c)�p(d j b;:c)�p(d j:b;:c)� = p(c)��p(d j b; c) + p(d j :b;:c)� � �(p(d jb;:c) + p(d j :b; c)�	 + �(p(d j b;:c)� p(d j :b;:c)�.From this, and similar results for the variation of p(d)with p(:b), p(c) and p(:c), and the way p(:d) changeswith p(b), p(:b), p(c) and p(:c), the result follows.2Thus the way in which for instance p(d) is dependentupon p(b) is itself dependent upon a term just like thesynergy condition introduced by Wellman, and apply-ing (4) we get an expression which has a similar be-haviour to that given by Wellman for a synergetic re-lation. In possibility theory we have a similar resultto that for the simple link:Theorem 5.2: The relation between �(x), �(y) and�(z), for all x 2 fb;:bg, y 2 fc;:cg, z 2 fd;:dg forthe link B&C ! D is such that:(1) �(z) follows �(x) i� �(x; y; z) > sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) < min��(z j x; y);�(y)), or �(x;:y; z) > sup��(x; y; z);�(:x; y; z);�(:x;:y; z)� and �(x) < min��(z j x;:y);�(:y)�.(2) �(z) may follow �(x) up i� �(x; y; z) � sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) <min��(z j x; y);�(y)), or �(x;:y; z) � sup��(x; y;z);�(:x; y; z);�(:x;:y; z)� and �(x) < min��(z jx;:y);�(:y)�.(3) �(z) may follow �(x) down i� �(x; y; z) >sup��(:x; y; z);�(x;:y; z);�(:x;:y; z)� and �(x) �min��(z j x; y);�(y)), or �(x;:y; z) > sup��(x; y;z);�(:x; y; z);�(:x;:y; z)� and �(x) � min��(z jx;:y);�(:y)�.(4) Otherwise �(z) is independent of �(x).Proof: As for Theorem 3.2, the result may be de-termined directly from �(d) = supx2fx;:xg;y2fy;:yg�(x; y; z) and �(x; y; z) = �(z j x; y)�(x)�(y).2When we use belief values we may take the relationshipbetween B, C and D to be determined by one set ofconditional beliefs of the form bel(d j b; c), or by twosets of conditional beliefs of the form bel(djb). Forconditionals of the form bel(d j b; c) we have:Theorem 5.3: The relation between bel(z) and bel(x)for the link B&C ! D is determined by:�@bel(z)@bel(x)� = [bel(z j x; y) � bel(z j x [ :x; y)]� [bel(z j x;:y)� bel(z j x[ :x;:y)]



� [bel(z j x; y[:y)�bel(z j x[:x; y[:y)]For all x 2 fb;:bg, y 2 fc;:cg, z 2 fd;:dg.Proof: By Dempster's rule of combination, bel(d) =Pb�fb;:bg;c�fc;:cgm(b)m(c)bel(djb; c). Now, m(x) =bel(x), m(:x) = bel(:x) and m(x [ :x) = 1 �bel(x)�bel(:x), so that [@bel(d)n@bel(b)] = [(bel(d j b; c) �bel(d j b[:b; c)]� [(bel(d j b;:c)�bel(d j b[:b;:c)]�[(bel(d j b; c[:c)�bel(d j b[:b; c[:c). From this, andsimilar results for the variation of bel(d) with bel(:b),bel(c) and bel(:c), and the way bel(:d) changes withbel(b), bel(:b), bel(c) and bel(:c) the result follows.2Thus bel(d) follows bel(b) i� bel(d j b; c) > bel(d jb[:b; c), bel(d j b;:c) > bel(d j b[:b;:c), and bel(d jb; c [ :c) > bel(d j b [ :b; c [ :c). For conditionals ofthe form bel(d j b) we obtain:Theorem 5.4: For the link B&C ! D, bel(z) followsbel(x) if bel(z j x) � bel(zjx[:x) and is indeterminateotherwise for all x 2 fb;:bg, y 2 fc;:cg, z 2 fd;:dg.Proof : Dempster's rule of combination tells usthat bel(d) = Pb�fb;:bg;c�fc;:cg;b_c�d bel(djb)m(b)bel(djc)m(c). As a result, [@bel(d)n@bel(b)] = [(bel(d jb)�bel(d j b[:b)]�bel(dj:c)�1+bel(c)+bel(:c)�m(c)�+bel(dj:c)�1+bel(c)+bel(:c)�m(:c)�+bel(djc)�1+bel(c) + bel(:c)�m(c [:c)�	+ bel(dj:b)�m(c)bel(d jc) +m(:c)bel(d j :c) +m(c [:c)bel(djc[ :c)). Sincem(x) � 1 for all x, [@bel(d)n@bel(b)] = [+] if bel(d jb) � bel(djb [ :b) and [?] otherwise. From this, andsimilar results for the variation of bel(d) with bel(:b),bel(c) and bel(:c), and the way bel(:d) changes withbel(b), bel(:b), bel(c) and bel(:c) the result follows.2Thus the formalisms again exhibit di�erences in be-haviour across the same network.The expressions derived in this section are those ob-tained by using the precise theory of each formalism.This is important since it ensures the correctness ofthe integration introduced in Section 6. However, forreasoning using single formalisms, it may provde ad-vantageous to extend the simpler apporach adopted byWellman [1990a] to possibility and evidence theories.Finally a word on the scope of the reasoning that wecan perform as a result of our analysis. The di�erentialcalculus tells us that �z = �x � [@zn@x]+�y � [@zn@y],provided that x is not a function of y. Thus we canclearly use the results derived above to propagate qual-itative changes in probability, possibility and belieffunctions through any singly connected network.6 INTEGRATION THROUGHQUALITATIVE CHANGEThe work described in this paper so far has extendedqualitative reasoning about uncertainty handling for-malisms to cover possibility and belief values as wellas probability values. Not only is this useful in it-self in providing a means of reasoning according to the

precise rules of probability, possibility and Dempster-Shafer theory when there is incomplete numerical in-formation, but it can also provide a way of integratingthe di�erent formalisms.Consider the following medical example. The networkof Figure 3 encodes the medical information that jointtrauma (T ) leads to loose knee bodies (K), and thatthese and arthritis (A) cause pain (P ). The incidenceof arthritis is in
uenced by dislocation (D) of the jointin question and by the patient su�ering from Sjorgen'ssyndrome (S) . Sjorgen's syndrome a�ects the inci-dence of vasculitis (V ), and vasculitis leads to vas-culitic lesions (L). �
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�JJJĴSSSSwT D SK A VLPFigure 3: A network representing medical knowledgeThe strengths of these in
uences are given as proba-bilities:p(k j t) = 0:6 p(v j s) = 0:1p(k j :t) = 0:2 p(v j :s) = 0:3p(a j d; s) = 0:9 p(a j :d; s) = 0:6p(a j d;:s) = 0:6 p(a j :d;:s) = 0:4beliefs: bel(p j k; a) = 0:9bel(p j k;:a) = 0:7bel(p j :k; a) = 0:7bel(p j k [ :k; a) = 0:6bel(p j k; a [ :a) = 0:7bel(:p j :k;:a) = 0:5bel(:p j :k; a[ :a) = 0:4All other conditional beliefs are zeroand possibilities:�(l j v) = 1 �(l j :v) = 1�(:l j v) = 0:1 �(:l j :v) = 0:1We can integrate this information allowing us to sayhow our belief in the patient in question being in pain,



and the possibility that the patient has vasculitic le-sions, vary when we have new evidence that she issu�ering from Sjorgen's syndrome. From the new ev-idence we have �p(s) = [+], �p(:s) = [�] , �p(t) =[0], �p(:t) = [0], �p(d) = [0] and �p(:d) = [0]. Sincea change of [0] can never become a change of [+] or [�]we can ignore the latter changes. Now, from Theorem3.1 and Theorem 5.1 we know that:�@p(v)@p(s) � = [�] � @p(v)@p(:s)� = [+]�@p(a)@p(s) � = [+] � @p(a)@p(:s)� = [�]so that �p(a) = [+], and �p(v) = [�] from which wecan deduce that �p(:a) = [�] and �p(:v) = [+].To continue our reasoning we need to establish thechange in belief of a and the change in possibility ofl. To do this we make the monotonicity assumption[Parsons 1993] that if the probability of a hypothesisincreases then both the possibility of that hypothesisand the belief in it do not decrease. As well as beingintuitively acceptable, this assumption is the weakestsensible relation between values expressed in di�erentformalisms, and is compatible both with the principleof consistency between probability and possibility val-ues laid down by Zadeh [1978] and the natural exten-sion of this principle to belief, necessity [Dubois andPrade 1988b], and plausibility values.The assumption also says that if the probability de-creases then the possibility and belief do not increase,and so we can say that �bel(a) = [+; 0], �bel(:a) =[�; 0], ��(v) = [�; 0] and ��(:v) = [+; 0]. Now weapply Theorem 5.3 to �nd that:�@bel(p)@bel(a)� = [+] � @bel(p)@bel(:a)� = [0]�@bel(:p)@bel(a) � = [�] �@bel(:p)@bel(:a)� = [+]Since we are initially ignorant about the possibility ofvasculitis, we have �(v) = �(:v) = 1, so that Theo-rem 3.2 gives:� @�(l)@�(v) � = [0] � @�(l)@�(:v)� = [0]�@�(:l)@�(v) � = [0] � @�(:l)@�(:v)� = [0]Hence we can tell that �bel(p) = [+; 0], bel(:p) =[�; 0] and ��(v) = ��(:v) = [0]. The result of thenew evidence is that belief in the patient's pain may in-crease, while the possibility of the patient having vas-culitic lesions is una�ected. Thus we can use numeri-cal values and qualitative relationships from di�erentuncertainty handling formalisms to reason about thechange in the belief of some event given informationabout the probability of a second event, and can in-fer whether the possibility of a third event also varies.As a result reasoning about qualitative change allowssome integration between formalisms.

7 DISCUSSIONThere is an important di�erence between the approachto qualitative reasoning under uncertainty describedhere, and that of Wellman [1990a, b]. Despite theirname, Wellman's Qualitative Probabilistic Networksdo not describe the qualitative behaviour of probabilis-tic networks exactly. In particular, some dependenciesbetween variables are ignored in favour of simplicity,and synergy relations are sometimes introduced to rep-resent them where it is considered to be important.In our approach, since it is based directly upon thevarious formalisms, the qualitative changes predictedare exactly those of the quantitative methods. Thishas been demonstrated in [Parsons and Sa�otti 1993]which analyses the representation of a real problem ina number of di�erent qualitative and quantitative for-malisms. In this analysis we make qualitative predic-tions about the impact of evidence of faults in an elec-tricity distribution network and compare these withthe real quantitative changes. In every case, for proba-bility, possibility and belief values, the qualitative pre-dictions were correct. This veri�cation is a good in-dication of the validity of the approach, and suggeststhat it will be useful in situations where incompleteinformation prevents the application of quantitativemethods.Our qualitative method also provides a means of in-tegrating uncertainty handling formalisms on a purelysyntactic basis. For any hypothesis x about which wehave uncertain information expressed, say in proba-bility theory and possibility theory, we can make theintuitively reasonable assumption that if p(x) increases�(x) does not decrease, and thus translate from proba-bility to possibility without worrying what probabilityor possibility actually mean.As a result any desired semantics may be attachedto the values, a feature which �nesses the problem ofthe acceptability of the semantics which must be facedby other, semantically based, schemes for integration(eg. [Baldwin 1991]). The only problem with switch-ing semantics would be that some combination rulesmight no longer apply, Dempster's rule in the case ofBaldwin's voting model semantics, which would entaila re-derivation of the appropriate propagation condi-tions. Since the qualitative approach does not a priori,rule out any combination scheme, this is not a majordi�culty.Finally, there is one important way that this methodmight be improved. The main disadvantage of anyqualitative system is that there is no distinction be-tween small values and large values, so 0:001 is qualita-tively the same as 100; 000. As a result we cannot dis-tinguish between evidence that induces small changesin the certainty of a hypothesis and evidence that in-duces large changes. This problem has been recognisedfor some time, and there is now a large body of workon order of magnitude reasoning (for example [Raiman



1986], [Parsons and Dohnal 1992]) which attempts toautomate reasoning of the form it \If A is bigger thanB and B is bigger than C then A is bigger than C".The applications to our system are obvious, and weintend to do some work on this in the near future.8 SUMMARYThis paper has introduced a new method for qualita-tive reasoning under uncertainty which is equally ap-plicable to all uncertainty handling techniques. Allthat need be done to �nd the qualitative relation be-tween two values is to write down the analytical ex-pression relating them and take the derivative of thisexpression with respect to one of the values. This factwas illustrated by results from the qualitative analysisof the simplest possible reasoning networks in each ofthe three most widely used formalisms.Having established the qualitative behaviours of prob-ability, possibility and evidence theories, the di�er-ences between these behaviours were discussed at somelength, before knowledge of this behaviour was used toestablish a form of qualitative integration between for-malisms. In this integration numerical and qualitativedata expressed in all three formalisms was used to helpderive the change in belief of one node in a directedgraph and the possibility of another from knowledgeof a change in the probability of a third, related, node.AcknowledgementsThe work of the �rst author was partially supportedby a grant from ESPRIT Basic Research Action 3085DRUMS, and he is endebted to all of his colleagues onthe project for their help and advice.Special thanks are due to Mirko Dohnal, DidierDubois, John Fox, Frank Klawonn, Paul Krause,Rudolf Kruse, Henri Prade, Alessandro Sa�otti andPhilippe Smets for uncomplaining help and construc-tive criticism. The anonymous referees also made anumber of useful comments.ReferencesBaldwin, J. F. (1991) The Management of Fuzzy andProbabilistic Uncertainties for Knowledge Based Sys-tems, in Encyclopaedia of Arti�cial Intelligence (2ndEdition), John Wiley & Sons, New York.Dubois, D. and Prade, H. (1991) Conditional objectsand non-monotonic reasoning, Proceedings of the 2ndInternational Conference on Principles of KnowledgeRepresentation and Reasoning, Morgan Kaufmann.Cambridge, MA.Dubois, D. and Prade, H. (1988a) Possibility Theory:An Approach to Computerised Processing of Uncer-tainty, Plenum Press, New York.Dubois, D. and Prade, H. (1988b) Modelling uncer-
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