
Re�ning reasoning in qualitative probabilistic networksSimon Parsons�Advanced Computation LaboratoryImperial Cancer Research FundP.O. Box 123Lincoln's Inn FieldsLondon WC2A 3PX, UKAbstractIn recent years there has been a spate of pa-pers describing systems for probabilisitic rea-soning which do not use numerical probabil-ities. In some cases the simple set of val-ues used by these systems make it impossibleto predict how a probability will change orwhich hypothesis is most likely given certainevidence. This paper concentrates on suchsituations, and suggests a number of ways inwhich they may be resolved by re�ning therepresentation.1 INTRODUCTIONIn the past few years there has been considerable in-terest in qualitative approaches to reasoning underuncertainty|approaches which do not make use ofprecise numerical values of the type used by conven-tional probability theory. These approaches rangefrom systems of argumentation (Benferhat, Dubois, &Prade 1993; Darwiche 1993; Fox, Krause, & Ambler1992) to systems for nonmonotonic reasoning (Gold-szmidt 1992) and abstractions of precise quantitativesystems (Druzdzel & Henrion 1993; Wellman 1990).Qualitative abstractions of probabilistic networks, inparticular, have proved popular, �nding use in areasin which the full numerical formalism is neither nec-essary nor appropriate. Applications have been re-ported in explanation (Henrion & Druzdzel 1990), di-agnosis (Darwiche & Goldszmidt 1994; Henrion et al.1994), engineering design (Michelena 1991), and plan-ning (Wellman 1990).In qualitative probabilistic networks (QPNs), the fo-cus is rather di�erent from that of ordinary probabilis-tic systems. Whereas in probabilistic networks (Pearl�Current address: Department of Electronic Engineer-ing, Queen Mary and West�eld College, Mile End Road,London E1 4NS, UK

1988) the main goal is to establish the probabilities ofhypotheses when particular observations are made, inqualitative systems the main aim is to establish howvalues change rather than what the values are. Sincethe approach is qualitative, the size of the changesare not required. The only consideration is whether agiven change is positive, written as [+], negative [�],or zero [0]. In some cases it is not possible to resolvethe change with any precision so that its value remainsunknown, and it is written as [?]. Clearly this infor-mation is rather weak, but as the applications showit is su�cient for some tasks. Furthermore, reasoningwith qualitative probabilities is much more e�cientthan reasoning with precise probabilities, since compu-tation is quadratic in the size of the network (Druzdzel& Henrion 1993), rather than NP-hard (Cooper 1990).The popularity of qualitative probabilistic networksprompted work on abstractions of other uncertaintyhandling formalisms (Parsons 1995b; 1995a; Parsons &Mamdani 1993), providing what is essentially a gener-alisation of the approach provided by qualitative prob-abilistic networks (Wellman 1993) to what are termedqualitative certainty networks (QCNs). The approachuses techniques from qualitative reasoning (Bobrow1984) to determine the behaviour of the formalisms.Using this approach it is possible to propagate qual-itative probability, possibility (Dubois & Prade 1988;Zadeh 1978) and Dempster-Shafer belief (Shafer 1976)in a uniform way.There are two major problems with both qualitativeprobabilistic and certainty networks, which are relatedto their level of abstraction. The �rst is that theycannot always predict which of a pair of hypotheses ismost likely given certain evidence. The second is thatif a particular hypothesis is inuenced by two pieces ofevidence, one of which makes it more likely and one ofwhich makes it less likely, then if both are observed, itis not possible to tell what the change in probability ofthe hypothesis is. This paper gives a number of waysin which this problem may be tackled.



2 BASIC NOTIONSBoth QPNs and QCNs are built around the notion ofinuences between variables represented by nodes in agraph. In this section we introduce the basic notionsbehind both, and show how, in the binary case, theyare equivalent so that the results given later in the pa-per hold equally for both approaches. The descriptionof a QPN is that given by Druzdzel and Henrion (1993)and is marginally adapted to �t in with the notation ofQCNs. Formally, a QPN is a pair G = (V;Q), where Vis a set of variables or nodes in the graph, denoted bycapital letters, and Q is a set of qualitative relationsamong the variables. There are two types of qualita-tive relations in Q, inuences and synergies, but herewe are only interested in inuences. These de�ne thesign of the direct inuence between variables and cor-respond to arcs in a probabilistic network.De�nition 1 (qualitative inuence) We say thatA positively inuences C, written S[+](A;C), i� forall values a1 > a2, c0, and X, which is the set of allof C's predecessors other than A:p(c � c0 ja1; X) � p(c � c0 ja2; X)where ai and cj are the possible values of A and C.This de�nition expresses the fact that increasing thevalue of A makes higher values of C more probable.Negative qualitative inuence, S[�], and zero qualita-tive inuence, S[0], are de�ned analogously by substi-tuting � and = respectively for �. To allow beliefpropagation it is necessary to propagate qualitativechanges in value in both directions. This is made pos-sible by the following theorem (Milgrom 1981):Theorem 2 (symmetry of inuences) S[�](A;C)implies S[�](C;A).The impact of evidence on a given node can be calcu-lated by taking the sign of the change in probabilityat the evidence node and multiplying it by the signof every link in the sequence of links that connect itto the node of interest. To see how this works, con-sider the example in Figure 1 which is an adaptationof fragment of the car diagnosis network of Henrion etal. (1994). If we observe that the radio is dead, sothat the probability of the radio being ok decreases,p(radio ok) = [�], and we want to know the impact ofthis on the state of the battery we calculate the e�ectas [�]
 [+]
 [+]. With the de�nition of sign multipli-cation in Table 1 this gives a change in p(battery good)of [�]. If we also observed that the lights were not ok,and wanted to assess the impact of both pieces of ev-idence on the probability that the battery was good,we would establish the two individual e�ects and sum
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batteryoldbatterygood batteryokradiook lightsokbatterychargingalternatorok[�] [+][+] [+][+][+]Figure 1: Part of a car diagnosis networkthem using � (Table 2). QCNs are very similar, themain di�erences being that they are abstractions ofpossibilistic and Dempster-Shafer belief networks asTable 1: Sign multiplication.
 [+] [0] [�] [?][+] [+] [0] [�] [?][0] [0] [0] [0] [0][�] [�] [0] [+] [?][?] [?] [0] [?] [?]Table 2: Sign addition.� [+] [0] [�] [?][+] [+] [+] [?] [?][0] [+] [0] [�] [?][�] [?] [�] [�] [?][?] [?] [?] [?] [?]well as probabilistic networks, and that, in general,the qualitative inuences between variables need morethan one sign to de�ne them. Formally, a QCN is apair G = (V;Q), where V is a set of variables or nodesin the graph, once again represented by a capital let-ter, and Q is a set of sets of qualitative relations amongthe values of the variables. The qualitative relationsare based upon the derivatives that relate the di�er-ent values of the variables together. In the case of aprobabilistic QCN we have:De�nition 3 (qualitative derivative) The qualita-tive derivative � dp(c1)dp(a1)� relating the probability of C tak-ing value c1 to the probability of A taking value a1 hasthe value [+], if, for all a2 and X:p(c1 ja1; X) � p(c1 ja2; X)Derivatives with values [�] and [0] are de�ned by re-placing � with � and =. The similarity of De�ni-tions 1 and 3 means that it is no surprise to �nd thatthe propagation of qualitative changes in the value of



variables is once again performed using 
 and �. If wewrite the qualitative value of the change in probabilityof variable A taking value a1 as [�p(a1)] then:[�p(c1)] = hdp(c1)dp(a1)i
 [�p(a1)]and the overall e�ect of multiple changes is calculatedusing �. Now, a link in a QCN is normally speci�ed bya number of qualitative values|one for each relevantderivative, which means one for every pair of values,one from each variable, of the two variables joined bythe link|while, as stated above a link in a QPN iscompletely speci�ed by a single value. This meansthat despite their similarities the two methods di�erin their representation of the same information. How-ever, when we have a binary probabilistic link, thingsare rather simpler. In this case, the condition on thederivative relating p(c) to p(a) being [+] is:p(c j a;X) � p(c j :a;X)which means that if � dp(c)dp(a)� = [+] it is necessarily thecase that � dp(c)dp(:a) � = [�] and, furthermore the rela-tion between p(c) and p(:c) makes it necessary that�dp(:c)dp(a) � = [�] and � dp(:c)dp(:a)� = [+]. These derivativesexpress exactly the same as a positive qualitative in-uence between binary valued A and C (if a > :a andc > :c)|as a becomes more probable, c becomes moreprobable as well. It is also the case that in this binarycase � dp(c)dp(a)� = �dp(a)dp(c) � so that links are symmetric.The upshot of this is that binary probabilistic QCNsare equivalent to binary QPNs, and their links can besummarised by a single qualitative value which is thequalitative derivative relating the \true" values of thelinks that the node connects. Thus, by investigatingbinary probabilistic QCNs we simultaneously developresults applicable to work involving QPNs, and thisis what will be undertaken in the rest of this paper,refering to both systems simultaneously as QP/CNs.Consider the QP/CN in Figure 2 which gives some in-formation about illness and employment. If I becomeill it is more likely than before that I will lose my joband more likely that I will have to go to hospital. Inaddition, if it is discovered that I am not quali�ed, itbecomes more likely that I will lose my job. However,regular exercise makes it more likely that I will be �t,and staying �t makes it less likely that I will end up inhospital. Consider further that it is known that I amill. Propagating the e�ect of this information in ourQP/CN tells us that both ending up in hospital and los-ing my job become more likely since both hypotheseshave value [+]. Thus it is not clear which is most likely.Distinguishing which of these competing hypotheses ismore likely is the �rst problem that we will address

����������������SSSSw[+]not quali�ed ������������/SSSSw����/ ����/stay �tilllose job hospitalexercise [+][+] [+] [�]Figure 2: Some recent events (I).in this paper. Also consider what happens if I bothbecome ill and exercise|the �rst makes hospital morelikely, the second makes it less likely. Propagation ofthe e�ects of both these peices of information in theQP/CN yields a value of [?] for the change in probabil-ity of the hypothesis so that we cannot say how it willchange. This problem of competing inuences is thesecond point we will address.3 DISTINGUISHING TRUTHThe problem that we face is one of over-abstraction,and it is one well known in qualitative physics. One ofthe methods used to handle it is the use of landmarks(Bobrow 1984), that is distinguishing important valuesof variables and calculating changes relative to them.Currently QP/CNs handle links that cause a change inthe descendant when the parent changes. If we dis-tinguish 1 and 0, which are the obvious landmarks forprobability theory, we can also distinguish increases to1, decreases to 0, and links in which the change in thedescendent is to a value of 1 or 0. More formally wedenote an increase to 1 as ["], a decrease to zero as[#], and introduce a new kind of qualitative inuencebased on the absolute value of the conditionals:De�nition 4 (categorical inuence) We say thatA positively categorically inuences C, written S[++](A;C), i� for all X, p(c ja;X) = 1.which it is easy to see will ensure that p(c j a) = 1so that whenever p(a) increases to 1, p(c) increasesto 1. We can similarly de�ne an negative categor-ical inuence S[��](A;C) which ensures that when-ever p(a) increases to 1, p(c) decreases to 0 by makingp(c j a;X) = 0. Clearly neither of these types of in-uence is symmetric since, for instance, the fact thatp(c) is 1 whenever p(a) is 1 does not mean that p(a) is1 whenever p(c) is 1. Thus a categorical inuence be-tween A and C does not imply a categorical inuencebetween C and A. In order to propagate values with



����������������SSSSw[+]not quali�ed ������������/SSSSw����/ ����/stay �tilllose job hospitalexercise [+][++] [+] [�]Figure 3: Some recent events (II).the new inuences we need to extend the de�nition of
 to that in Table 3.Table 3: New sign multiplication.
 [++] [+] [0] [�] [��] [?]["] ["] [+] [0] [�] [#] [?][+] [+] [+] [0] [�] [�] [?][0] [0] [0] [0] [0] [0] [0][�] [�] [�] [0] [+] [+] [?][#] [�] [�] [0] [+] [+] [?][?] [?] [?] [0] [?] [?] [?]This is su�cient to solve the problem of competing hy-potheses in the special case that one of the hypothesesis connected to an observed event by a chain of cat-egorical inuences. For example, consider Figure 3in which the representation of my recent history is up-dated to make it more realistic. Here, when it is knownthat I am ill, we �nd that �p(hospital) = [+], while�p(lose job) = ["], so that we know that it is at leastas likely that I will lose my job as it is that I will haveto go to hospital.To combine categorical and qualitative inuences, weneed to de�ne a new version of �. Initially it mightseem as though we have 16 possible cases to consider|every possible combination of the two types of inu-ence. However, two are ruled out by the restrictiveprobability distribution that comes with a categoricalinuence:Property 5 (restricted representation) If there isan inuence S[++] (A;C) then there can be no inuenceS[��](X;C) and vice-versa.Proof: For S[++](A;C) we require p(c j a;X) = 1and thus p(c j a; x) = 1. For S[��](X;C) we requirep(c j x;A) = 0 and thus p(c j x; a) = 0. These re-quirements are clearly contradictory, and so the twoinuences may not occur together.2

����������������SSSSw[+]not quali�ed ������������/SSSSw����/ ����/stay �tilllose job hospitalexercise [+][+] [++] [�]Figure 4: Some recent events (III)As a result there is no way that changes to 1 and 0 canconict since the inuences that cause them cannota�ect the same node. This reduces the possible casesof conict between the inuences, and all the legalcombinations of induced change in the probability ofa node are given in Table 4. With this table we cansolve the problem of conicting inuences. Considerthe version of recent events according to my mother(Figure 4) who believes that as soon as I became ill, itwas inevitable that I would end up in hospital. Thus,for her, knowing that I was ill immediately outweighedall the hard work I had put in taking exercise, and�p(hospital) = ["].However, landmarks do not solve every problem. Itis easy to imagine real situations in which conictingevidence will cause a problem for QP/CNs which arefree of categorical inuences. In qualitative reasoningcircles the realised inadequacy of landmarks led to thedevelopment of `order of magnitude' techniques, andthese are what we propose to apply next.Table 4: New sign addition� ["] [+] [0] [�] [#] [?]["] ["] ["] ["] ["] [?][+] ["] [+] [+] [?] [#] [?][0] ["] [+] [0] [�] [#] [?][�] ["] [?] [�] [�] [#] [?][#] [#] [#] [#] [#] [?][?] [?] [?] [?] [?] [?] [?]4 RELATIVE MAGNITUDESThe problem of conicting evidence is precisely thesort of problem that order of magnitude systems suchas ROM[K] (Dague 1993) were designed to overcome.ROM[K] is based on the idea that the order of magni-tude of two quantities, Q1 and Q2, is usually expressedin terms of their relative sizes. Within ROM[K] thereare four possible ways of expressing this relation: Q1



(A1) A � A (A9) A � 1! [A] = [+](A2) A � B ! B � A (A10) A� B $ B � (B + A)(A3) A � B;B � C ! A � C (A11) A� B;B � C ! A� C(A4) A � B ! B � A (A12) A � B; [C] = [A]! (A+ C) � (B +C)(A5) A � B;B � C ! A � C (A13) A � B; [C] = [A]! (A+ C) � (B +C)(A6) A � B ! A � B (A14) A � (A+ A)(A7) A � B ! C:A � C:B (A15) A 6' B $ (A �B) � A or (B �A) � B(A8) A � B ! C:A � C:B (P35) A 6' B ! C:A 6' C:B(P3) A� B ! C:A� C:B (P36) A 6' B;C � A! C � (A �B)(P26) A � B ! B � A (P38) A 6' B;C � A;D � B ! C 6' DFigure 5: Some of the axioms and properties of ROM[K]is negligible wrt Q2, Q1 � Q2, Q1 is distant from Q2,Q1 6' Q2, Q1 is comparable to Q2, Q1 � Q2, and Q1is close to Q2, Q1 � Q2. Once the relation betweenpairs of quantities is speci�ed, it is possible to deducenew relations by applying the axioms and propertiesof ROM[K], some of which are reproduced in Figure 5.Together, these relations, axioms, and properties en-able us to solve our on-going problems of competinginuences and hypotheses by further re�ning the lan-guage of QP/CNs. To do this we must start deal-ing with the magnitude of the probabilities and in-uences. We denote the magnitude of the change inthe probability of A as j�p(A)j, and the magnitude ofthe inuence between A and C as jS(A;C)j, and ex-press their relative magnitudes using the relations ofROM[K], noting that again symmetry is lost so thatrelations change between causal and evidential direc-tions. Then, provided that we have a QP/CN in whichthe relative magnitude of the inuences is known, wecan apply the rules in Figure 5 to establish the relativesizes of changes at nodes of interest. Thus:Property 6 (relative magnitude) Given jS(A;C)jrel1 jS(B;D)j, and j�p(A)j rel2 j�p(B)j, where rel1,rel2 2 f�;�; 6';�g, then j�p(C)j rel3 j�p(D)j isgiven by Table 5 and the obvious symmetrical results.Proof: The change at C is j�p(A)j � jS(A;C)j, andlikewise for that at D. Thus we need the rela-tive magnitude of the products. (i) For j�p(A)j �j�p(B)j and jS(A;C)j � jS(B;D)j, the result comesfrom P3 and P11. (ii) For j�p(A)j � j�p(B)j andjS(A;C)j 6' jS(B;D)j, we apply P3, P35 and P36 toget j�p(A)j�jS(B;D)j+j�p(B)j�jS(A;C)j� j�p(B)j�jS(B;D)j. Since we already know (from P3) thatj�p(A)j � jS(A;C)j � j�p(A)j � jS(B;D)j, this gives usj�p(A)j � jS(A;C)j + j�p(B)j � jS(A;C)j � j�p(B)j �jS(B;D)j from which the result follows. (iii) Forj�p(A)j � j�p(B)j and jS(A;C)j � jS(B;D)j, the re-sult comes from A8, A11 and P3. (iv) For j�p(A)j �j�p(B)j and jS(A;C)j � jS(B;D)j, the result comes

from A6, A7, A11 and P3. (v) For j�p(A)j 6' j�p(B)jand jS(A;C)j 6' jS(B;D)j, the result comes from thefact that 6' is deliberately not transitive so that norelation between the products can be established. (vi)For j�p(A)j 6' j�p(B)j and jS(A;C)j � jS(B;D)j,we have the same explanation. (vii) For j�p(A)j 6'j�p(B)j and jS(A;C)j � jS(B;D)j, the result comesfrom A7, P35 and P38. (viii) For j�p(A)j � j�p(B)jand jS(A;C)j � jS(B;D)j, the result comes from A8and A5. (ix) For j�p(A)j � j�p(B)j and jS(A;C)j �jS(B;D)j, the result comes from A5, A6, A7 and A8.All other results may be obtained by symmetry 2.Table 5: How to establish rel3 (Property 6)|U indi-cates that the relation may not be established.rel2� � 6' �rel1 � � � 6' �� � � U �6' 6' U U �� � � � �This result allows us to do two things. Firstly, it en-ables us to propagate the e�ect of evidence in a QP/CNso that we can distinguish which of several compet-ing hypotheses is most strongly supported by givenevidence. Consider Figure 6 which gives another ver-sion of recent events, and ponder what happens whenI lose my job. The inuence of losing the job onbeing ill is much smaller than the inuence of los-ing the job on not being quali�ed, S(lose job; ill) �S(lose job; not qualified), and since j�p(lose job)j �j�p(lose job)j we can use Property 6 with rel1 as �and rel2 as � to �nd that rel3 must be �. Thusj�p(ill)j � j�p(not qualified)j, and we know that thechange in p(ill) is much less than p(not qualified).Secondly Property 6 allows us to establish the e�ect oftwo competing pieces of information. If B inuencesC rather than D, then the relation given by Table 5 isthat between the change in p(c) induced by the changein p(a), and that induced by the change in p(b). When



����������������SSSSw[+]not quali�ed ������������/SSSSw����/ ����/stay �tilllose job hospitalexercise [+][+] [+] [�]S(lose job; ill)� S(lose job; not qualified)S(stay fit; hospital)� S(ill; hospital)Figure 6: Some recent events (IV)the inuences compete the changes are in opposite di-rections, and immediately we have:Property 7 (comparison) If we have jS(A;C)jrel1jS(B;D)j, and j�p(A)j rel2 j�p(B)j, where rel1; rel2 2f�;�; 6';�g, and jS(A;C)j and jS(B;D)j have oppo-site signs, then [�p(C)] is given by Table 5 and theobvious symmetrical results.Table 6: How to establish the sign of the change at C(Property 7). rel2� � 6' �rel1 � [?] [?] [�p(B)] [�p(B)]� [?] [?] [?] [�p(B)]6' [�p(B)] [?] [?] [�p(B)]� [�p(B)] [�p(B)] [�p(B)] [�p(B)]To see how this property may be used, consider Fig-ure 6 once again. Given that the inuence of be-ing ill on going to hospital is much greater thanthe inuence of staying �t on not going to hospi-tal (jS(stay fit; hospital)j � jS(ill; hospital)j), andthat there is a roughly equal increase in the proba-bility of my staying �t (due to knowledge of my ex-ercising) and being ill (j�p(stay fit)j � j�p(ill)j)we can predict that there is an increase in the prob-ability of my going to hospital when I become ill([�p(hospital)] = [�p(ill)]).Thus using ROM[K] allows us to solve the problemof competing inuences in any situation where rela-tive magnitude information is available|clearly manymore situations than possess categorical links|andso improves on the results obtained by distinguishingtruth. However, ROM[K] does not have enough nu-merical information to fully distinguish between com-peting hypotheses, only being able to predict whichhypothesis undergoes the greatest change in probabil-

ity. To tell which hypothesis becomes most likely wheninuences are not categorical we must turn to absoluteorder of magnitude methods.5 ABSOLUTE MAGNITUDESA suitable method for absolute order of magnitude rea-soning, which revolves around the propagation of in-terval probability values, is discussed by Dubois et al.(1992) in the context of quanti�ed syllogistic reason-ing. In this section we adapt it to �t QP/CNs. Westart by identifying suitable interval values for bothinuences between nodes, changes at nodes, and thevalues at nodes. Here we use a very basic set for rea-sons of brevity|more complex sets could be used ifdesired|and provide each with a label. The label ofan interval is merely a means of referring to it, there isno claim that it is a natural linguistic interpretation ofthe interval. For the inuences we have intervals cor-responding to `Strongly Positive' (SP ), `Weakly Posi-tive' (WP ), `Zero' (Z), `Weakly Negative' (WN ) and`Strongly Negative' (SN ):SP WP Z WN SN(1; �] [�; 0) 0 (0;��] [��;�1)where the open intervals explicitly do not allow themodelling of categorical inuences. Note that, onceagain, these inuences are not symmetrical. For bothchanges and values we have `Complete Positive' (CP ),`Big Positive' (BP ), `Medium Positive' (MP ), `LittlePositive' (LP ) and `Zero' (Z):CP BP MP LP Z1 (1; 1� �] [1� �; �] [�; 0) 0The de�nitions of `Little Negative' (LN ), `MediumNegative' (MN ), `Big Negative' (BN ) and `CompleteNegative' (CN ) are symmetrical. When propagatingabsolute order of magnitude quantities, we multiplychange by inuence to get Table 7 The ?s in this ta-Table 7: Combining the absolute values of inuencesand changes. CP BP MP LP ZSP ? ? [MP, LP] LP ZWP ? ? ? LP ZZ Z Z Z Z Zble arise because the results of these combinations de-pend upon the comparative values of � and �, and thecombination of inuences and changes is thus \almost-robust" (Dubois et al. 1992). If we take � � � and1�� � �, which are reasonable since typical values (tocreate equally wide intervals) would be � � 0:33 and� � 0:5, then we have Table 8. Results of combining



����������������SSSSwSPnot quali�ed ������������/SSSSw����/ ����/stay �tilllose job hospitalexercise SPWP SP WNFigure 7: Some recent events (V)with negative inuences and changes can be obtainedby symmetry. where intervals such as [MP;LP ] in-Table 8: Combining the absolute values of inuencesand changes with � � � and 1� � � �.CP BP MP LP ZSP [BP, MP] [BP, MP] [MP, LP] LP ZWP [MP, LP] [MP, LP] [MP, LP] LP ZZ Z Z Z Z Zdicate that the result falls somewhere in the intervalcreated by the outer bounds of the named intervals.If we then provide for the comparison of intervals, forinstance by �int (Parsons 1995b) where [a; b] �int[c; d] i� a � c and b � d, and negation by mappingacross zero into the symmetric interval, we can re-solve conicting inuences. For example, consider Fig-ure 7 in which the inuences have now been given ab-solute orders of magnitude. Consider what happenswhen it is known that I both exercise and become ill.Taking into account the size of the priors, we have�p(exercise) = MP and �p(ill) = BP . Using Ta-ble 8 gives �p(stay fit) = [MP;LP ] so that we cancalculate the e�ect of staying �t on going to hospital as�p(hospital)stay fit = [[MN;LN ]; LN ] = [MN;LN ].The other inuence on the probability of going tohospital is being ill, and clearly �p(hospital)ill =[BP;MP ]. Since j[BP;MP ]j �int j[MN;LN ]j, thebiggest e�ect on the probability of going to hospital isbeing ill, and �p(hospital) = [+].To resolve competing hypotheses, we need to be ableto combine changes and prior values, and with our setof intervals we get Table 9. Prior values are givenacross the top, changes down the side. Again the re-sults are almost robust, with those given based uponthe same values of � and � as before. Note that onlycertain combinations are possible; where they are not,the corresponding triple of prior, change, and inuencecannot occur together. Now, if we are given the abso-lute value of the prior probabilities of the competing

Table 9: Combining the absolute values of changes andpriors. CP BP MP LP ZCP CPBP [CP, BP] BPMP [CP, MP] [CP, MP] MPLP [CP, BP] [CP, MP] [BP, LP] LPZ CP BP MP LP ZLN [BP, MP] [MP, Z] [LP, Z]MN [BP, Z] [MP, Z]BN [LP, Z]CNhypotheses, we can resolve their competition. For ex-ample, consider that the prior values of p(lose job) andp(hospital) are both LP , then, if �p(exercise) = MPand �p(not qualified) = BP , then �p(hospital) =[MN;LN ] and �p(lose job) = [MP;LP ]. We canuse this information along with Table 9 to deter-mine the posterior values p�(lose job) = [CP;LP ] andp�(hospital) = [LP;Z] which by application of �inttells us that it is more likely that I will lose my jobthan go to hospital.Thus the use of absolute orders of magnitude providesa solution to both the problem of competing hypothe-ses, and that of competing inuences. Note that thismethod may be implemented either by the use of pre-compiled tables as discussed here, or more exibly andless e�ciently by the direct use of interval arithmentic.6 SUMMARYThis paper has discussed various means of re�ningqualitative probabilistic reasoning to make it less sus-ceptible to the problems of choosing between compet-ing hypotheses, and of predicting the e�ect of conict-ing inuences. The �rst method we considered was theidenti�cation of extreme probabilities, and the cate-gorical inuences that cause such values to arise. Thissolved both problems, but only in the special case inwhich hypotheses are a�ected by a categorial inu-ence. To provide more general results we used relativeorder of magnitude reasoning to give a good solutionto the problem of conicting inuences. However, therelative method did not fully solve the problem of con-icting hypotheses, and so an absolute order of magni-tude scheme was introduced. This gave a satisfactorysolution to both problems.These di�erent schemes provide a battery of methodsfor extending QP/CNs which can be employed whenthe basic QP/CN framework is not su�ciently expres-sive. Clearly re�ning the representation will increasecomputational complexity, and the right degree of re-�nement will be determined by the particular situation
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