
Fox, J., Parsons, S., Krause, P., and Elvang-Goransson, M. (1993) A generic framework for uncertain reasoning, in

Qualitative Reasoning and Decision Technologies, N. Piera Carreté and M. G. Singh eds., CIMNE Press, Barcelona.

Ginsberg, M. L. (1987)Readings in non-monotonic reasoning, Morgan-Kaufmann, San Mateo, CA.

Guidi, J. N. and Roderick, T. H. (1993) Inference of order in genetic systems,Proceedings of the First Conference

on Intelligent Systems for Molecular Biology, Bethesda, MD.

Harley, E. and Bonner, A. J. (1994) A flexible approach to genome map assembly, Proceedings of the 2nd Interna-

tional Conference on Intelligent Systems for Molecular Biology, Stanford.

Hearne, C., Cui, Z., Parsons, S., and Hajnal, S. (1994) Prototyping a genetics deductive database, Proceedings of

the 2nd International Conference on Intelligent Systems for Molecular Biology, Stanford.

Krause, P., Ambler, S., and Fox, J. (1993) The development of “a logic of argumentation”, inAdvanced Methods in

Artificial Intelligence, B. Bouchon Meunier, L. Valverde and R. Yager eds., Springer-Verlag, Berlin.

Krause, P., Ambler, S., Elvang-Goransson,M., and Fox, J. (1994) A logic of argumentation for reasoning under

uncertainty,Computational Intelligence (to appear).

Kwan, S., Olken, F., and Rotem, D. (1993) Uncertain, incomplete and inconsistent data in scientific databases,Pro-

ceedings of the 2nd Workshop on Uncertainty Management and Information Systems, Catalina Island.

Motro, A. (1993) Sources of uncertainty in information systems,Proceedings of the 2nd Workshop on Uncertainty

Management and Information Systems, Catalina Island.

Ng, R. T. and Subrahmanian, V. S. (1992) Probabilistic logic programming,Information and Computation, 101,

150-201.

Parsons, S. (1993) Qualitative approaches to reasoning under uncertainty, Ph. D. Thesis, Queen Mary and Westfield

College, University of London (to be published by MIT Press).

Parsons, S. (1994a) Imperfect information and databases, Technical Report, Advanced Computation Laboratory,

Imperial Cancer Research Fund.

Parsons, S. (1994b) Hybrid models of uncertainty for protein topology prediction,Applied Artificial Intelligence,

(to appear).

Pitarelli, M. (1994) An algebra for probabilistic databases,IEEE Transactions on Knowledge and Data Engineer-

ing, 6, 293-303.

Prade H., and Testemale C. (1987) Representation of soft constraints and fuzzy attribute values by means of possi-

bility distributions, inAnalysis of Fuzzy Information, Volume 2, J. C. Bezdek ed., CRC Press, Boca Raton, Florida.

Reiter, R. (1978) On closed world databases, inLogic and Databases, H. Gallaire and J. Minker eds., Plenum Press,

New York

Saffiotti, A. (1987) An AI view of the treatment of uncertainty,The Knowledge Engineering Review, 2, 75-97.

Saffiotti, A., Parsons, S., and Umkehrer, E. (1994) A case study in comparing uncertainty management techniques,

Microcomputers in Civil Engineering, Special Issue on Uncertainty in Expert Systems, (to appear)

Shenoy, P. P., and Shafer, G. (1990) Axioms for probability and belief function propagation, inUncertainty in Arti-

ficial Intelligence 4, R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer eds., North-Holland, Amsterdam.

Smithson, M. (1989) Ignorance and uncertainty: emerging paradigms, Springer-Verlag, New York.

Williams, M. H., and Kong, Q. (1988) Incomplete information in a deductive database,Data and Knowledge Engi-

neering, 3, 197-220.

Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338-353.

Zadeh, L. A. (1978) Fuzzy sets as a basis for a theory of possibility,Fuzzy Sets and Systems, 1, 1-28.



sequential loss of speed. This might be of concern in systems with a large number of deductive rules, but could be

offset by building the argumentation engine into the database’s native inference mechanism. A related issue arises

because, for argumentation to work correctly, it is necessary to build every possible argument for a given proposition

in order to ensure that flattening gives the correct support. If this is not done the non-monotonic nature of the flatten-

ing function may over- or under-estimate the degree to which the proposition is warranted. Since many rules will gen-

erate may different arguments, this may cause problems in large  systems. The third issue is that of using the different

methods of handling imperfect information in a way that is more closely integrated than at present, a subject also

addressed by Benferhat [1994],  which we intend to persue  further in the future. Fourthly, there is a question of how

to combine numerical values with symbolic values such as + and ++. This may be addressed in a number of ways,

both general and formalism dependent [Parsons 1993]. Finally, there is the issue of handling the other types of imper-

fect information, namely imprecision and vagueness, that we introduced at the beginning of the paper. At present we

are unsure how argumentation can be of use here, but given the generality of the approach we are optimistic about its

potential.
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conclusion (thus having sign +) whereas all other rules and facts are confirming (having sign ++). This suggests that

models of numerical uncertainty would give similar results. Indeed, they  allow slightly more subtle models to be

assembled. For instance, we can use numerical uncertainty measures to represent the accuracy of the results obtained

by different laboratories, so allowing the quality of their work to be taken into account when arguing for the different

maps. Thus, if we have a lot of confidence in the first laboratory, slightly less in the second laboratory, and little con-

fidence in the third, we could build∆8 where signs are lower bounds on necessity measures.

Note the difference in signs between the default and certain rules. We can now build the following arguments:

∆8 ACR (map(a, b, x, y), (f1, f2, f4, r2, r3), 0.7)

∆8 ACR (map(a, b, y, x), (f1, f2, f3, f4, r1, r2, r3), 0.7)

∆8 ACR (map(a, x, y, b), (f2, f4, f5, r3), 0.5)

As before, the argument for the first and third conclusions are preferred to that for the second because they are in a

higher acceptability class, but now the first is preferred to the third because it has a higher necessity measure. Clearly

this is because the default rule is judged to be more credible than the results of the third laboratory— if this judge-

ment were to be reversed, so would the preference.

5. Discussion

The framework of argumentation appears to provide a principled framework for adopting an  eclectic approach for

managing imperfect data in databases. However, there are issues that we have not as yet addressed.

The first issue stems from the use of minimal logic rather than full first order predicate calculus as a basis for

the deductive mechanism. This is a departure from the usual framework for deductive databases and is taken because

of the desire for a sound semantic basis [Krause et al. 1993]. In practice it means that using argumentation in a deduc-

tive database requires a meta-interpreter, to assemble the arguments, on top of the basic deductive system, with a con-

∆8f1 : before(a, b) : 0.9

f2 : before(x, y): 0.9

f3 : before(y, x): 0.9

f4 : before(a, x) : 0.85

f5 : before(x, b) : 0.5

r1 : before(X, Z)← before(X, Y) ∧ before(Y, Z) : 1

r2 : before(Y, Z)← before(X, Y) ∧ before(X, Z) : 0.7

r3 : map(X, Y, Z, W)← before(X, Y) ∧ before(Y, Z) ∧ before(Z, W) : 1



and Roderick 1993]). We also know from  experiments in another laboratory thata is closer to the top of the chromo-

some thanx. We can represent all this information using the relation “before” (see∆7), ignoring the signs for the

moment. To this we can add some very simple rules for inferring new relations between loci, and for building ordered

tuples of four loci, which are rough maps  of the chromosome. The first expresses the transitivity of the “before” rela-

tion, while the second comes from the fact that known pairs of loci are usually some distance apart so that, for

instance,a andb will be some distance fromx andy so that ifa is beforeb anda is beforex, b is also beforex. This,

then, is adefault rule for coping with incomplete information about the order of two pairs of loci.

From∆7 we have:

∆7 ACR (map(a, b, x, y), (f1, f2, f4, r2, r3))

∆7 ACR (map(a, b, y, x), (f1, f2, f3, f4, r1, r2, r3))

Clearly these disagree with one another. Using the definitions in 3.2 we can see that the argument formap(a, b, x, y) is

in class A2 because it can berebutted by the argument formap(a, b, y, x), but this latter argument is only in A1 since

it is not consistent. Thus argumentation enables us to handle the inconsistency in our initial information. Now con-

sider what would happen if we later learnt thaty was before b as a result of another experiment in a third laboratory.

Adding this fact f5 to∆7 would give us a new argument for a new map:

∆7 ACR (map(a, x, y, b), (f2, f4, f5, r3))

which is also in A2 since it can be rebutted. To resolve the conflict between the arguments formap(a, b, x, y) and

map(a, x, y, b) we need further information. Elvang-Gøransson et al. [1993] have suggested that the problem may be

resolved by the idea of having a preference order over  subsets of the database, when arguments from more preferred

subsets are accepted over those from less preferred subsets. In this case it is natural to prefer the subset of the data-

base that does not include the default rule r2 since conclusions made using defaults are less certain to be valid than

others, and this ensures that the preferred map ismap(a, x, y, b).

It is worth noting that this solution would also be obtained if the default rule were identified assupporting its

∆7f1 : before(a, b).

f2 : before(x, y).

f3 : before(y, x).

f4 : before(a, x).

r1 : before(X, Z)← before(X, Y) ∧ before(Y, Z).

r2 : before(Y, Z)← before(X, Y) ∧ before(X, Z).

r3 : map(X, Y, Z, W)← before(X, Y) ∧ before(Y, Z) ∧ before(Z, W).



∆6 ACR (¬flies(opus), (f1, r1), [0.8, 1])

∆6 ACR (¬flies(opus), (f2, r2), [0.5, 1])

which may be flattened using interval arithmetic to get a rather unhelpful probability of [0, 1] for Opus being able to

fly. Under Krause et al’s scheme, we obtain:

∆6 ACR (¬flies(opus), (f1, r1), 0.8)

∆6 ACR (¬flies(opus), (f2, r2), 0.5)

which may be flattened to get a probability of 0.8 + 0.5 − 0.4 = 0.9 for Opus being unable to fly. Better bounds than

those given by Nilsson may also be obtained using the method suggested by Ng and Subrahmanian [1992]. However,

we believe that the global approach is more in keeping with the spirit of argumentation.

Following Dubois et al. [1991] we may also use possibility theory. Here the signs in a database are the lower

bounds on the necessity measures of the propositions, the combination operation isminimum, and the flattening oper-

ation ismaximum. Thus if we take the values in∆6 to be lower bounds on necessity measures we can infer that:

∆6 ACR (¬flies(opus), (f1, r1), 0.8)

∆6 ACR (¬flies(opus), (f2, r2), 0.5)

which may be flattened to get the conclusion that there is a lower bound of 0.8 on the necessity of Opus being unable

to fly.

4. An example

We are interested in the problem of modelling information concerning the order of pieces of genetic material along a

chromosome, and the use of deductive techniques to do so [Hearne et al. 1994, Cui 1994], a task that involves the use

of very imperfect information [Guidi and Roderick 1993], [Harley and Bonner 1994]. In this section we show how

argumentation might be used to model what information is known, and to deduce new information about orders in a

way that handles some of the problems of the imperfection.

We are concerned with the order of four pieces of genetic material (known as loci in biological parlance)

along a  chromosome. Experiments from one laboratory tell us that a is closer to the top of the chromosome thanb,

while other results point to bothx precedingy and y precedingx (such inconsistency is typical of genetic data [Guidi

∆6f1 : penguin(opus) : (0.8)

f2 : dead(opus) : (0.5)

r1 : ¬flies(X)← penguin(X) : (1)

r2 : ¬flies(X)← dead(X) : (1)



More acceptable arguments are preferred to less acceptable ones. Thus given the database∆5:

We can see that the argument:

∆5 ACR (flies(tweety), (f1, r1), ++).

is in A3 since it cannot be rebutted. However, it is not in A4 because it is open to being undercut by the argument that:

∆5 ACR (¬bird(tweety), (f2), ++).

while this latter argument is in A2 since it can be rebutted by the argument for bird(tweety). Thus the most acceptable

conclusion that can be deduced from∆5 is that Tweety flies.

3.3 Uncertain information

In the examples we have considered so far we have restricted ourselves to representing only facts that are true (and

thus have sign ++), and rules that are either true and so confirm their conclusions (and have sign ++), or add support

to their conclusions (and so have sign +). In general, however, the facts that we hold about the real world are not

always true; it is possible to represent this by using different dictionaries of signs. In particular we can use any num-

ber in the interval [0, 1] as a sign, and by judicious choice of the combination and flattening operations  used to calcu-

late the sign of any deduced fact, we can  apply various established numerical models for handling uncertainty.

For instance, if we want to make use of a probabilistic method to quantify uncertainty we have several different ways

in which we can compute the probability of a proposition from the probabilities of the steps in the argument. We may

use a local scheme such as that proposed by Ng and Subrahmanian [1992], or Nilsson [1988], which require the use

of an interval probability because of the possible dependencies between the steps. Under Nilsson’s scheme, for exam-

ple, resolving a ruleR with probability p(R) with a factF, probability p(F), to get a factG, requires a combination

function that gives p(G) = [p(R) + p(F) − 1, p(R)], and flattening two probabilistic measuresp(G) andp’(G) from two

different arguments gives[0, p(G) + p’(G) − 2p(G)p’(G)]. Alternatively,  Krause et al. [1994]  provide a global

approach which takes the structure of the arguments into account. Here the probability of an argument for a proposi-

tion is the product of the probabilities of all the steps in the argument, while flattening arguments consists of summing

the probabilites of the different arguments and then subtracting the product of the probabilities of the steps in all the

arguments. Thus, if we have the probabilistically quantified database∆6 in which we are not sure of Opus’ status as a

penguin, or even whether or not he is alive, then Nilsson’s scheme allows us to infer that:

∆5f1 : bird(tweety) : (++)

f2 : ¬bird(tweety) : (++)

r1 : flies(X)← bird(X) : (++)



From this database we can deduce two conflicting arguments:

∆4 ACR (flies(tweety), (f1, r1), +).

∆4 ACR (¬flies(tweety) (f2, r2), ++).

Since both arguments refer to the same proposition, we can apply a “flattening function” to provide an overall opinion

about Tweety’s ability to fly. One  function [Fox et al. 1993] simply allows a confirming argument to outweigh any

number of supporting arguments; applying this gives the conclusion that Tweety does not fly, reversing the initial

conclusion. Thus argumentation permits non-monotonic reasoning [Ginsberg 1987], and so captures the kind of abil-

ity to handle incomplete information that is provided by the closed world assumption [Reiter 1978] and negation as

failure [Clark 1978] commonly used in logic databases. Note, however, that the number of arguments is monotoni-

cally increasing as new facts are added to the database so that it is the flattening function that makes the conclusions

drawn from the database non-monotonic.

3.2 Inconsistent information

Database∆4 demonstrates one way of handling inconsistent information  by viewing the argument for one of a pair of

inconsistent conclusions as more credible than the other.  A more sophisticated approach is to use the intuitive idea

that arguments may be “defeated” by other arguments, examining the structure of the arguments to find conflicting

alternatives, and to use the conflicts to determine which conclusions are the most acceptable.

The examination of argument structure is based upon the notions of rebuttal and undercutting. Argument a1

for propositionp rebuts propositionq, which is supported by argument a2, if p directly contradicts q (in other words

p is logically equivalent to¬q). Similarly,p undercuts q if p directly contradicts r which is one of the steps ina2. We

also distinguish consistent arguments, which draw facts from consistent sub-bases of the whole database, and logical

arguments which are based on the axioms of the logic that underlies the system of argumentation rather than the

information in the database. Having made these distinctions we can identify the following classes of arguments for a

database∆, which are listed in increasing order of acceptability [Elvang-Gøransson et al. 1993]:

A1: the set of all arguments that may be made from∆.

A2: the set of alllogically consistent arguments that may be made from∆ (so that⊥ cannot be derived from the

steps in the argument).

A3: the set of all arguments that may be made from∆ for propositionsfor which there are no rebutting arguments.

A4: the set of all arguments that may be made from∆ for propositionsfor which there are no undercutting argu-

ments.

A5: the set of alltautological arguments that may be made from∆.



which indicate that there is support for both Tweety and Opus flying, while it is also confirmed that Opus does not fly.

3. A general framework for managing imperfect information

The system of argumentation described in Section 2 may be used to handle a number of different types of imperfect

information by choosing different signs, or methods of flattening the various arguments for and against propositions.

3.1 Incomplete information

In general, there are two ways to handle incomplete information, either by explicitly representing the fact that infor-

mation is missing [Codd 1979], or by providing a means of making assumptions about the missing values [Reiter

1978], which may necessitate revising conclusions later (since assumptions might be contradicted by new informa-

tion). In applying argumentation we take the latter approach, as illustrated by database∆3:

Note that rule r1  makes assumptions about birds flying which is not always valid, but often is. From∆3, we can con-

struct the following argument:

∆3 ACR (flies(tweety), (f1, r1), +).

which indicates that there is support for Tweety flying. Now, suppose we learn some new information— that Tweety

is dead— so that we have an enlarged database∆4.

∆2f1 : penguin(opus): (++)

f2 : bird(tweety): (++)

r1 : flies(X)← bird(X): (+)

r2 : bird(X) ← penguin(X): (++)

r3 : ¬ flies(X)← penguin(X): (++)

∆3f1 : bird(tweety) : (++)

r1 : flies(X)← bird(X) : (+)

r2 : ¬flies(X)← dead(X) : (++)

∆4f1 : bird(tweety) : (++)

f2 : dead(tweety) : (++)

r1 : flies(X)← bird(X) : (+)

r2 : ¬flies(X)← dead(X) : (++)



labels to arguments which denote the confidence that the arguments warrant in their conclusions. This form of argu-

mentation may be summarised by the following schema:

database ACR (Sentence, Grounds, Sign)

where ACR is a consequence relation for a logic of argumentation, which sanctions inferences made using the rules

in Figure 2 (which are adapted from those in [Fox et al. 1993]), along with the identity¬St ≡ ⊥←St (⊥ is logical con-

tradiction). Infomally, Grounds (G) are the facts and rules used to infer Sentence (St) and Sign (Sg) is a number or a

symbol drawn from a dictionary of possible numbers or symbols which indicate the confidence warranted in the con-

slusion. The use of a number of different dictionaries of signs is one of the marks of generality of argumentation since

most formalisms for handling imperfect data are restricted to a single dictionary. The rules in Figure 2 are indepen-

dent of the dictionary used— different dictionaries imply different functions comb for combining signs during the

construction of arguments. Typically we will have a number of different arguments for a given sentence, and so we

flatten these to give a single measure which may or may not be expressed using the same dictionary.

One simple dictionary includes just two signs: ++, meaning confirmed, and +, meaning supported, where confirma-

tion is stronger than support, and combining the two signs gives the weaker. A sentence is confirmed by an argument

if the argument constitutes a logical proof of the sentence, whilst support means that the argument warrants an

increase in belief in the sentence. Thus, given the database∆2 we can construct the following arguments:

∆2 ACR (flies(tweety), (f2, r1), +).

∆2 ACR (flies(opus), (f1, r2, r1), +).

∆2 ACR (¬flies(opus), (f1, r3), ++).

∆ ACR (St’, G∪G’, comb(Sg, Sg’))

∆ ACR (St’ ← St, G, Sg) ∆ ACR (St, G’, Sg’)

Axiom

(← E)

(∧ E2)

Figure 2. The rules which define the construction of arguments.

∆ ACR (St ∧ St’, G∪G’, comb(Sg, Sg’))

∆ ACR (St, G, Sg) ∆ ACR (St’, G’, Sg’)(∧ I)

∆ ACR (St’, G, Sg)

∆ ACR (St ∧ St’, G, Sg)

∆ ACR (St, {l}, Sg)

(l:St:Sg)∈ ∆

(∧ E1)

∆ ACR (St, G, Sg)

∆ ACR (St ∧ St’, G, Sg)

∆ ACR (St’ ← St, G∪G’, comb(Sg, Sg’))

∆∪(St,G,Sg) ACR (St’, G’, Sg’)(← I)



This profusion of different techniques makes the situation in handling imperfect information in databases

very similar to that in  Artificial Intelligence  a few years ago. At that time there were a number of schools of thought,

each with its own techniques, which were applied to every form of imperfection irrespective of the type it had been

devised to handle. The debate that ensued prompted a number of researchers [Fox 1986], [Saffiotti 1987], [Clark

1990], [Parsons 1993], to suggest that an eclectic approach, in which different techniques are used together, might be

profitable. This viewpoint has gained ground in recent years, especially with the development of general frameworks

in which different models may be studied [Fox et al. 1993] [Shenoy and Shafer 1990] and has been vindicated by sev-

eral empirical results [Saffiotti et al. 1994], [Parsons 1994b].

The eclectic position has much to offer the database world [Parsons 1994a]. The the aim of this paper is to

demonstrate this by presenting a general framework for handling imperfect information in deductive databases. In

previous work we and our colleagues have developed an inference system called “argumentation” for reasoning with

imperfect information [Krause et al 1994]. Here we show how argumentation may be used in deductive databases to

make inferences in the presence of incompleteness, inconsistency and uncertainty, illustrating the use of our method

on an example  problem drawn from the domain of molecular biology. We do not address the complementary problem

of how to choose the correct method of handling imperfect information in a given situation— this is addressed else-

where [Saffiotti et al. 1994] [Parsons 1994]. In the next section we give a brief introduction to the method, before

demonstrating in Section 3. how it may be used to model different forms of imperfect information in the context of a

deductive database. A fuller treatment may be found in [Krause et al. 1994].

2. A system of argumentation

In a standard deductive database [Das 1992], anargument is a sequence of inferences leading to a conclusion. If the

argument is correct, then the conclusion is true. Thus from the simple database∆1:

the argument∆1 flies(tweety) is correct becauseflies(tweety) follows from∆1 given the usual logical axioms and

rules of inference. Thus a correct argument simply yields a conclusion which in this case could be paraphrased “fli-

es(tweety) is true in the context of f1 and r1”. In our system of argumentation this traditional form of reasoning is

extended to allow arguments to indicate support and doubt in propositions as well as proving them, by assigning

∆1f1 : bird(tweety).

r1 : flies(X)← bird(X).



Incomplete information has missing values, either because the value cannot be measured, is not available, or

has not been obtained. Imprecise information is information that is not known with sufficient precision so that what

should be single-valued attributes take disjunctions of single values. Vague information arises from the “fuzziness” of

natural language when terms such as “young” are used, and uncertain information is the rest of subjective opinion in

establishing whether or not something is true. Finally, inconsistent information is the result of two or more pieces of

information that conflict with one another.

Figure 1: A relational table with imperfect data

To illustrate, consider the  relational table in Figure 1. The first tuple in the table is incomplete because

Jack’s age is not known1. The second tuple is imprecise, because Irwin’s age is not known with complete precision; it

is only known that he is between 25 and 27. The third tuple is vague because we only know that Bull is old, and the

concept ‘‘old’’ covers a vague range of ages. The fourth tuple is uncertain because whoever entered Japhy’s age was

only 90% certain that his age is 28, and the fifth and sixth tuples are inconsistent with one another because we have

two contradictory, yet certain, pieces of information, one stating that Cody is 27 and one stating that he is 92.

Different types of imperfect information have typically been handled using different techniques. Thus

incomplete information is often represented with explicit null values [Codd 1979]. Imprecise and vague information

may be handled using fuzzy set theory [Zadeh 1965],  as Buckles and Petry [1987] suggest. Uncertain information

may be managed using probability theory, e.g. [Pittarelli 1994], though methods based upon possibility theory [Zadeh

1978] have also been applied [Prade and Testemale 1987]. Inconsistent information has been largely ignored. Some

of these approaches have been extended to handle the problem of deriving new information in deductive databases

[Dubois, Lang and Prade 1991], [Ng and Subrahmanian 1992], [Williams and Kong 1988].

1. Note that by leaving the relevant row of the table blank, we have finessed the problem of the certainty of this information, a

point which is rather subtle. If we have no information about Jack’s age, are we certain that this is the case, or are we just ignorant

of the whole issue? If the latter is the case, what certainty should be attached to our lack of knowledge?

Name Age Certainty

Jack Dulouz

Irwin Garden 25, 26 or 27 1

Bull Hubbard Old 1

Japhy Ryder 28 0.9

Cody Pomeroy 27 1

Cody Pomeroy 92 1
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Abstract

Many different models for handling imperfect information have been proposed in the context both of databases and of

artificial intelligence. In general these are either symbolic methods for handling incomplete information or numerical

models for handling imprecision, vagueness or uncertainty, and all typically handle a different aspect of the problem.

In this paper we suggest that in order to properly model imperfect information in deductive database we should adopt

an eclectic position that attempts, in a principled way, to use whatever model best fits the given data. To do this we

suggest a general framework based upon previous work on a system of argumentation.

1. Introduction

To paraphrase Motro [1993], the ability to represent and manage imperfect information in information systems is

important because: “Imperfect information permeates our understanding of the real world. The purpose of informa-

tion systems is to model the real world. Hence information systems must be able to deal with imperfect information”.

Imperfection may arise from many sources [Kwan et al. 1993], and take many forms [Smithson 1989], and the pre-

cise categorisation of the different forms has been long debated in the literature. Composing the different suggestions

Parsons [1994a] categorises imperfect information as being incomplete, imprecise, vague, uncertain or inconsistent.

Proceedings of the Workshop on Uncertainty in Databases and Deductive Systems, 1994,
(WUDDS ‘94).


