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Abstract. Inthe last few years, there has been increasing interasttine agent community

in the use of techniques from decision theory and game théury aims in this article are

firstly to briefly summarise the key concepts of decision themd game theory, secondly to
discuss how these tools are being applied in agent systeseardd, and finally to introduce
this special issue dhutonomous Agents and Multi-Agent Systbynseviewing the papers that
appear.
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1. Introduction

In the last few years, there has been increasing interesteiruse of tech-
niques from decision theory and game theory for analysingraplementing
agent systems. Our aims in this article are firstly to briefiyjmarise the key
concepts of decision theory and game theory, secondly tmustshow these
tools are being applied in agent systems research, andyfiimalhtroduce
this special issue chutonomous Agents and Multi-Agent Systémbriefly
discussing the papers that appear.

Broadly speaking, decision theory [20] is a means of anadysihich of a
series of options should be taken when it is uncertain exadiht the result
of taking the option will be. Decision theory concentratesiadentifying the
“best” decision option, where the notion of “best” is allahte have a number
of different meanings, of which the most common is that winieximises the
expected utility of the decision maker. Decision theoryvies a powerful
tool with which to analyse scenarios in which an agent mudtentkecisions
in an unpredictable environment.

Game theory [1] is a close relative of decision theory, wiatidies inter-
actions between self-interested agents. In particulatudies the problems
of how interactionstrategiescan be designed that will maximise the welfare
of an agent in a multi-agent encounter, and haetocols or mechanisms
can be designed that have certain desirable propertiegce\ibiat decision
theory can be considered to be the studygames against naturevhere
nature is an opponent that does not seek to gain the besttpéywuather
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2 Parsons and Wooldridge

acts randomly. Given this brief description, it comes as unprise to learn
that many of the applications of game theory in agent systeame been to
analyse multi-agent interactions, particularly thoseimng negotiation and
co-ordination.

This increasing interest in game theory and decision thiotlye agents
community led us to believe that the time was ripe to hold aealoop which
focused on these matters. This workshop was held in Londdheo8rd July
1999, in conjunction with the Fifth European Conference oiaQitative and
Symbolic Approaches to Reasoning and Uncertainty [9]. Tleeigl issue of
Autonomous Agent and Multi-Agent Systgros are now reading includes
revised and polished versions of the best papers that wesemied at this
workshop. Our aims in this article are to provide very briatroductions
to the areas of decision theory and game theory in generl, tth put the
papers that appear in this special issue into some contekfjrzally to point
to further reading on this exciting and rapidly expandinbgjsat.

2. Decision Theory in Agent Systems

Classical decision theory, so called to distinguish it framumber of non-
classical theories which have grown up in the last few yeiarg set of
mathematical techniques for making decisions about whiatraio take when
the outcomes of the various actions are not known. Althobgharea grew
up long before the concept of an intelligent agent was cerdesuch agents
are canonical examples of the decision makers which camllyseimploy
classical decision theory.

An agent operating in a complex environment is inherentlyeutain about
that environment; it simply does not have enough infornmagibout the envi-
roment to know either the precise current state of its enmrents, nor how
that environment will evolve. Thus, for every variahlg which captures
some aspect of the current state of the environment, all geataypically
knows is that each possible valug of eachX; has some probabilit}r(z;; )
of being the current value of;. Writing x for the set of allz;,, we have:

Pr:z exw—[0,1]
and

Z Pr(z;) =1
J

In other words, the probabilitr(z;,) is a number betweemand1 and the
sum of the probabilities of all the possible valuesXafis 1. If X; is known
to have valuer;; thenPr(z;;) = 1 and if it is known not to have value;,
thenPr(z;;) = 0.
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Figure 1. An example Bayesian network

Given two of these variablesy; and X5, then the probabilities of the
various values ofX; and X, may be related to one another. If they are not
related, a case we distinguish be referringtoand X as beingndependent
then for any two values;; andz,,, we have:

Pr(w1; A zg;) = Pr(z1,) Pr(wy;)
If the variables are not independent, then:
Pr(zy, A 1132].) = Pr(x1i|x2].) Pr(xgj)

wherePr(zy,|z2,) is the probability ofX; having valuer;; given thatX,
is known to take valuers;. Suchconditional probabilitiescapture the rela-
tionship betweenX; and X, representing, for instance, the fact that (the
value “wet”, say, of the variable “state of clothes”) becameuch more likely
whenaz, (the value “raining” of the variable “weather condition§ known
to be true.

If we take the set of thes&; of which the agent is aware, the 8t then
for each pair of variables iX we can establish whether the pair are indepen-
dent or not. We can then build up a graph in which each nodesponds to a
variable inX and an arc joins two nodes if the variables represented lsgtho
nodes are not independent of each other. The resulting gsdptown as a
Bayesian network[18], and the graphical structure provides a convenient
computational framework in which to calculate the prolitieg of interest to
the agent. In general, the agent will have some set of vasalwhose values
it can observe, and once these observations have been taikewant to
calculate the probabilities of the various values of sorheioset of variables.

! The notion of independence captured in the arcs of a Bayesibmork is somewhat
more complex than that described here, but the differennetiselevant for the purposes of
this article. For full details, see [18].
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Figure 1 is an example of a fragment of a Bayesian networkifgrabsing
faults in cars. It represents the fact that the age of thelyaftepresented by
the nodebattery old has a probabilistic influence on how good the battery
is, and that this in turn has an influence on whether the lyattexperational
(battery ok), the latter being affected also by whether the alternaterdrk-
ing and, as a result, whether the battery is recharged whecahmoves.
The operational state of the battery affects whether thie raad lights will
work. In this network it is expected that the observatiorat ttan be carried
out are those relating to the lights and the radio (and plysie age of the
battery), and that the result of these observations candgagated through
the network to establish the probability of the alternatein okay and the
battery being good. In this case these latter variableshaernes which we
are interested in since they relate to fixing the car.

Typically the variables an agent will be interested in apséhthat relate to
its goals. For instance, the agent may be interested in ofgas action that
will allow it to achieve a goal, and might therefore be insteel in choosing
that action which has the greatest chance of succeedinghievéiog that
goal. When the agent has many goals it could achieve, tlagegyr could be
extended to make the agent choose to achieve the goal whidhdngreatest
chance of being achieved, and to do this by applying the metisich gives
this greatest chance.

However, building an agent which follows this strategy imswhat short-
sighted since the agent will not consider the value of thesgaand will
therefore choose a goal which is easy to achieve, but weghtever a goal
which is hard to achieve but very valuable. To take accoutihisfproblem,
decision theory makes use of the ideautfity. A utility is a value which is
associated with a state of the world, and which representsatue that the
agent places on that state of the world. Utilities provideravenient means
of encoding the preferences of an agent; as von Neumann argelkiern
[15] showed, it is possible to define utility functions thattfifully encode
preferences such that a st&tgs preferred taS;, if and only if it has a higher
utility for the agent.

Now, we can consider that our agent has a set of possiblenactipeach
memberA; of which has a range of possible outcomes since the actiens ar
not deterministic. The value of taking a particular actioifi depend upon
what the state of the world is—it is of little value carryingarfboard when
taking a trip across the Sahara—and so in choosing whicbreictiundertake,
our agent will need to look at the value Bf(S;) whereS; is the state it is
in after the action. Doing this for each possible action, dgent can then
choose the action which leads to the state it values most.aNecertainly
build an agent which works in this way, and it would unernnghose to
achieve the goal with the highest value as encoded by itsyufiiinction.
However it would be just as flawed as the agent which only tigedchieve
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Figure 2. An example influence diagram

the most likely goal, trying to achieve the most valuablel goaspective of
the difficulty of that goal.

To build more sensible agents we combine probability ardyutialcula-
tions for each action and calculate tlvepected utilityof each. This amounts
to calculating a weighted average of the utility of each oote, where the
weight is the probability of that outcome given the actiombgeperformed.
Since each outcome is itself a state, we have:

EU(4;) = ) Pr(S;|4,)U(S})
S;€8

whereS is the set of all states. The agent then selects actiowhere:

A* =arg max Z Pr(S;|A:)U(S;)
€A 5 cs
J

Now, these states which are being considered here are jusiubar instan-
tiatons of the set of state variabXs Thus the probabilities in this calculation
are just the probabilities of th&; having particular values given the actions.

Harking back to the discussion of Bayesian networks aboee;am think
of the X; as being structured as a graph, dropping the distinctiowdmt
variables and the nodes in the graph which represent themAJltan be
brought into the graph as well, as a different kind of nodeidsg, perhaps,
in contrast to the usual round ones relating to h¢linked to theX; whose
values they influence. We can also incorporate utilitiess Time we only
require a single node (a hexagon, to keep it distinct fronothers), and this
is linked to thoseX; which affect its value. Such a graphical structure neatly
captures all the dependencies in an expected utility caiom, and is known
as an influence diagram [8].

Figure 2 is an example of a small influence diagram capturidgcasion
problem which a company has to make about its research ardopevent
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budget. Since the budget is the thing the decision is beindenabout, it is
represented by a squadecision nodeThis is linked to the factors it directly
effects, namely the technical success of the comapny'sugtedand their
overall profitability, that latter being captured by the dganalvalue node
The remaining nodes ashance nodeand represent the other factors which
relate to the decision. These are just like nodes in a Bayesavork. Given

a particular instantiation of the decision node, the ralewalues can be
propagated through the network, using an algorithm suchast&r’s graph
reduction algorithm [27] to establish the expected utitifyhe decision.

Given that the basic mechanisms of decision theory fit sdynedb the
context of intelligent agents, it is perhaps surprising thay have not been
more widely employed in the field. However, agent systemsiwhise deci-
sion theory seriously (that is adopting the notions of philiig and utility)
are rather scarce. One sub-area of decision theory is, Bwwegcoming
popular and that is the field of Markov decision processes P¥)Ddiscussed
in detail in [2]. In essence an MDP is an iterative set of c¢tadsdecision
problems. Consider a state of the world as a node in a graphyi@g out
an action in that state will result in a transition to one ofumnber of states,
each connected to the first state by an arc, with some praigabihd incur
some cost. After a series of transitions a goal state maydmheel, and the
sequence of actions executed to do this is known@siay. Solving an MDP
amounts to finding a minimal cost policy for moving from soméial state
to a goal state.

MDPs capture many of the facets of real world problems, butalisti-
cally assume that whatever system is solving the MDP knovwesety point
what state it is in. This amounts to assuming that it is pdsdilo measure
some aspect of the world and from this measurement tellgglycivhat state
the world is in. This is rarely the case; it is far more likegythat from the
measurement something can be uncertainly inferred abewtahld. In such
a situation, the states of an MDP are replaced by beliefstahoge states,
and we have a partially observable Markov decision prode&sv(DP). Be-
cause they can capture so many real situations, POMDPs aentiy a hot
topic in agent research, despite the fact that they arechatoée for all but the
smallest problems.

3. GameTheory in Multi-Agent Systems

Game theory is a branch of economics that studies interachetween self-
interested agents. Like decision theory, with which it ssanany concepts,
game theory has its roots in the work of von Neumann and Matgem
[15]. As its name suggests, the basic concepts of game tfeose from
the study of games such as chess and checkers. Howeveiidiyrapcame
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clear that the techniques and results of game theory carlegeaapplied to
all interactions that occur between self-interested agents.

The classic game theoretic question asked of any particotldti-agent
encounter is: What is the best — most rational — thing an agantdo?
In most multi-agent encounters, the overall outcome wipetel critically
on the choices made by all agents in the scenario. This imthigt in order
for an agent to make the choice that optimises its outconmaugt reason
strategically That is, it must take into account the decisions that otgent
may make, and must assume that they will act so as to optirése dwn
outcome. Game theory gives us a way of formalising and ammajysuch
concerns.

In the early days of multi-agent systems research, it waglwidssumed
that agents wereenevolentput simply, that agents could be assumed to share
a common goal, and would therefore be happy to “help out” wkienasked.
The focus was owlistributed problem solvingystems, in which groups of
benevolent agents worked together to solve problems of cominterest [21,
p3]. There seemed to be an implicit assumption that thisdasystems was
the most common, and that scenarios in which agents are ipetition were
unusual at best, aberrations at worst. Over time, howeviags come to be
recognised that in fact, benevolence is the exceptionjsielfest is the norm.
The recognition of this fact appears to have been drivereadtlin part, by
the rapid growth of the Internet and the continuing trenda@s ever more
distributed systems in computer science generally.

In tandem with this increasing recognition that self-istted agents are
the norm has been a steady growth of interest in the apmitatf game
theory to multi-agent systems. Game theory entered tha-agdint systems
literature largely through the work of Jeffrey Rosenschanu colleagues
(see, e.g., [22, 23, 24]). In his 1985 PhD thesis [21], Rodezia used game
theoretic techniques to analyse a range of multi-agentaati®n scenarios.
For example, he showed how certain types of cooperation aatimaking
could take place without communication: both agents singalgnpute the
best outcome and know that the party they are dealing withdwithe same.
Since agents can use game theoretic techniques to predattotiers will
do, this obviates the need for explicit communication — damation arises
because of the assumption of mutual rationality [23].

Perhaps the most compelling applications of game theoryuiti-agent
systems have been in the area of negotiation [12, 24, 26]sifyly, ne-
gotiation is the process by which agents can reach agreemnemiatters of
common interest. Negotiation and bargaining were studi¢iod game theory
literature well before the emergence of multi-agent syste® a research
discipline, and even before the advent of the first digitahpater. However,
computer science brings two important considerations éggdime theoretic
study of negotiation and bargaining:
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Game theoretic studies of rational choice in multi-aggmounters typi-
cally assumed that agents were allowed to select the battgprfrom the

space of all possible strategies, by considering all ptesgiteractions. It
turns out that the “search space” of strategies and inierecthat needs
to be considered has exponential growth, which means teatritblem

of finding an optimal strategy is in general computationaityactable. In

computer science, the study of such problems is the domaiaroputa-

tional complexity theory [17]. There is a significant literee devoted to
the development of efficient (polynomial time) algorithnos &pparently
intractable problems, and the application of such tectesdo the study
of multi-agent encounters is a fruitful ongoing area of work

. The emergence of the Internet and World-Wide Web has geodvan

enormous commercial imperative to the further developneécbmpu-
tational negotiation and bargaining techniques [16].

Given a particular negotiation scenario that will involvet@mated agents,
game theoretic techniques can be applied to two key problems

1.

The design of an appropriapgotocol that will govern the interactions
between negotiation participants. The protocol defines'ilies of en-
counter” between agents [24]. Formally, a protocol can lietstood as
a function that, on the basis of prior negotiation histosfjres what pro-
posals are allowable by negotiation participants. It issgie to design
protocols so that any particular negotiation history hatage desirable
properties — this isnechanism desigrand is discussed in more detail
below.

. The design of a particulatrategythat individual agents can use while

negotiating — an agent will aim to use a strategy that maxmits own
individual welfare. A key difficulty here is that typicallyhe strategies
that work best in theory tend to be computationally intrlgaand are
hence unusable by agents in practice.

As noted above, mechanism design involves the design obgults for

governing multi-agent interactions, such that these pm$ohave certain
desirable properties. Possible properties include, farmgpte [26, p204]:

Guaranteed success

A protocol guarantees success if it ensures that, eveptagiieement is
certain to be reached.

Maximising social welfare

Intuitively, a protocol maximises social welfare if it emea that any
outcome maximises the sum of the utilities of negotiatiorig@ants. If
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the utility of an outcome for an agent was simply defined imteof the
amount of money that agent received in the outcome, theneqmidhat
maximised social welfare would maximise ttetal amount of money
“paid out”.

— Pareto efficiency

A negotiation outcome is said to be Pareto efficient if therea other
outcome that will make at least one agent better off withoakimy at
least one other agent worse off. Intuitively, if a negotimtoutcome is
not Pareto efficient, then there is another outcome thaiméke at least
one agent happier while keeping everyone else at least @y.hap

— Individual rationality.

A protocol is said to be individually rational if followinghe protocol

— “playing by the rules” — is in the best interests of negabatpar-

ticipants. Individually rational protocols are essenbacause without
them, there is no incentive for agents to engage in neganisti

— Stability.

A protocol isstableif it provides all agents with an incentive to behave in
a particular way. The best-known kind of stabilityNsish equilibrium
two strategiess and s’ are said to be in Nash equilibrium if under the
assumption that one agent is usindhe other can do no better than use
s', and vice versa.

— Simplicity.

A “simple” protocol is one that makes the appropriate sgatéor a
negotiation participant “obvious”. That is, a protocol isiple if using
it, a participant can easily (tractably) determine theroptistrategy.

— Distribution.

A protocol should ideally be designed to ensure that ther@issin-
gle point of failure” (such as a single arbitrator), and ltleao as to
minimise communication between agents.

The fact that even quite simple negotiation protocols caprbgen to have
such desirable properties as these accounts in no smafop#ne success of
game theoretic techniques for negotiation [12].

Despite these very obvious advantages, there are a numipeoldéms
associated with the use of game theory when applied to raggutiproblems:

— Game theory assumes that it is possible to characteriseeam'sigref-
erences with respect to possible outcomdamans however, find it
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extremely hard to consistently define their preferences avieomes —
in general, human preferences cannot be characterisecgwwaimple
ordering over outcomes, let alone by numeric utilities [25475—-480].
In scenarios where preferences are obvious (such as thetageer-
son buying a particular CD and attempting to minimise cogame
theoretic techniques may work well. With more complex (rnisue)
preferences, it is much harder to use them.

— Most game theoretic negotiation techniques tend to asshmewail-
ability of unlimited computational resources to find an oyl solution
— they have the characteristics of NP-hard problems. (A ‘mtiwn
example is the problem of winner determination in combinat@uc-
tions.) In such casespproximationsof game theoretic solutions may
be more appropriate.

Despite these problems, game theory is extremely comgedisna tool for

automated negotiation. In cases where it is possible taactaise the pref-
erences and possible strategies of negotiation partiipdren game theory
has much to offer.

4. ThePapers

As discussed by Guttmaet al. [7] and Crabtree [5], one of the niches in
which autonomous agents are rapidly proving their wortHdsteonic com-
merce. Here agents help to “grease the wheels” that musinwrder that
goods and services can be bought and sold across the Int@metlass of
these wheel-greasing agents are shopbots, agents which gealnternet on
behalf of consumers, comparing prices across dozens of itgzh Shopbots
thus help to cut consumers’ costs, not just in the sense oWy them
to find the cheapest source of the good they require, but al$bel more
general sense of reducing the cost of obtaining optimalepaicd quality.
Shopbots can also help to reduce the costs of suppliersdogirey the cost
of evaluating, updating and advertising prices, and thu® lthe potential
to significantly affect the way markets operate. As a redtdiphart and
Greenwald [11] have investigated the impact of shopbot#igles commod-
ity markets, modelling the behaviour of both buyers andesellising game
theoretic techniques, and the paper in this issue presenutsmary of their
results.

Shopbots can be considered as operating on the side of bnyemselec-
tronic market helping them to find the best deals. The comgieany kind of
agent which operates on the side of sellers are what havedadled “price-
bots”, autonomous agents which fix the prices charged bylerselorder
to secure the best price that sellers are prepared to paauiteand Kephart
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[30] have investigated how such price-setting agents camdude adaptive,
in particular how they can make use of Q-learning [32], anreagh which
factors in the long-term expected reward for a given actaken in a given
state. They consider a number of different model econonmegjding one
in which buyers are assumed to make use of shopbots, and fbhanhdhe
Q-learning approach leads, broadly speaking, to increpssits for sellers,
in part because it reduces the effect of price wars (wheerselepreatedly
undercut each other in an attenpt to capture a bigger shdne aofiarket).

In applications of game theory in multi-agent systems, &geane usu-
ally taken to maximise their expected utility. This apptoacowever, is not
always practical—there are often bounds on computati@sdurces which
prevent the optimal solution being computed. As a resudtglhas been much
interest in computing solutions under bounded rationatlitsit is approaches
which aim to be rational in the sense of computing the sabutidth maxi-
mum expected utility, but which acknowledge bounds on tresiources, and
so relax one or more assumptions of the optimal approaatingfiGoodrich
and Packard [29], consider an adaptation of Simon’s ideateffcing—that
is searching for an optimal solution until the cost of couing the search
outweighs the improvement in solution that further worklwiing. They do
this by introducing the notion of praxeic utility, a measwhich explicitly
models the resources consumed, and allows these to be éalagainst the
desire to obtain the best solution.

The approach adopted by Stirling, Goodrich and Packardewdeparting
to some degree from classical decision theory, still makesofithe same ba-
sic mechanisms. In particular, the approach takes praxétes as primitive
although, as with utilities in classical decision theohgge will ultimately
be grounded in some kind of preference order. In contrastglaan der
Torre and Weydert [13] start with an agent’s goals, and cmndiow an agent
might reason about its goals and use these to define ity ditihtction. Their
approach is logic-based, and thus an extension of recett evoqualitative
decision theory [6].

The two papers just described deal with combinations oéfsefind utili-
ties. In the case of Stirling, Goodrich and Packard, theBefbare distributed
over states of affairs (roughly speaking conjunctions ofppsitions), while
in the work of Lang, van der Torre and Weydert, the beliefstaken over
individual propositions. Thus, in neither case, is theremstructure to the
items that beliefs are distributed over. Vane and Lehne}, [@4 the other
hand, build belief distributions over much more complexeckg—in fact they
deal with beliefs over games, in the sense of game theorysdanee, their
hypergame framework allows a agent in a game theoretimgetiti hedge
its bets about what its opponent is doing. It does this bytifiémg a set of
possible games, representing the possible behaviourggigaponent might
engage in, building a probability distribution over thesegs, and evaluating
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12 Parsons and Wooldridge

the best moves by the usual maximum expected utility algoritThe result
is an elegant formalism which is a strict generalisation athbgame theory
and decision theory, and which looks to be a useful tool foidmg future
generations of mixed game theoretic and decision thecaggats.

5. Further Reading

In this final section, we provide some pointers to furthedieg on the use
of decision theory and game theory in the multi-agent systiéerature.

As befits a subject which has been established for some thmes aare
a number of good textbooks on decision theory. Of these,apsrithe best
are those by Lindley [14], Raiffa [20], and Smith [28]. Theoks by Lindley
and Smith are both intended for a statistics audience, ViRaléa’s intended
audience is more a economics or business one, but all arenvaarefully
enough to make them easy for computer scientists to undersfes men-
tioned above, the main area in which ideas from decisionryhkave been
carried into artificial intelligence is that of Bayesianwetks and influence
diagrams. The standard reference on Bayesian networksrePaarl’s land-
mark volume [18], though Jensen’s more recent contribytl® provides a
clearer introduction, and both Cowelt al. [4] and Castilloet al. [3] cover
more ground. Sadly none of these authors cover influenceafiegin any
detail, and the main reference for graphical decision nsodetnains [8].
On the more specialised topic of Markov decision procedbese is at least
one good monograph [19], and a humber of articles which givemof the
necessary detail. Of the latter, the paper by Boutilier,rDad Hanks [2] is
perhaps the most useful.

The game theory literature has grown steadily since thenarigf the field
— there are now a clutch of journals on the subject, and maxtpdeks.
Unfortunately, for a non-economics audience, many of thesthooks are
hard going. Among the more helpful is Binmor&an and Gamegl] (which
also includes a good summary of further reading and an amuasitique of
other textbooks in the field). With respect to the multi-aiggystems litera-
ture, most applications of game theory have been in the dreagmtiation,
and the starting point should undoubtedly be RosenscheliZktkin’s [24].
Kraus provides a summary of work on negotiation as of 1997, il Sand-
holm’s authoritative [26] provides an excellent summargaine theory for
multi-agent interactions.
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