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Abstract. In the last few years, there has been increasing interest from the agent community
in the use of techniques from decision theory and game theory. Our aims in this article are
firstly to briefly summarise the key concepts of decision theory and game theory, secondly to
discuss how these tools are being applied in agent systems research, and finally to introduce
this special issue ofAutonomous Agents and Multi-Agent Systemsby reviewing the papers that
appear.
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1. Introduction

In the last few years, there has been increasing interest in the use of tech-
niques from decision theory and game theory for analysing and implementing
agent systems. Our aims in this article are firstly to briefly summarise the key
concepts of decision theory and game theory, secondly to discuss how these
tools are being applied in agent systems research, and finally to introduce
this special issue ofAutonomous Agents and Multi-Agent Systemsby briefly
discussing the papers that appear.

Broadly speaking, decision theory [20] is a means of analysing which of a
series of options should be taken when it is uncertain exactly what the result
of taking the option will be. Decision theory concentrates on identifying the
“best” decision option, where the notion of “best” is allowed to have a number
of different meanings, of which the most common is that whichmaximises the
expected utility of the decision maker. Decision theory provides a powerful
tool with which to analyse scenarios in which an agent must make decisions
in an unpredictable environment.

Game theory [1] is a close relative of decision theory, whichstudies inter-
actions between self-interested agents. In particular, itstudies the problems
of how interactionstrategiescan be designed that will maximise the welfare
of an agent in a multi-agent encounter, and howprotocolsor mechanisms
can be designed that have certain desirable properties. Notice that decision
theory can be considered to be the study ofgames against nature, where
nature is an opponent that does not seek to gain the best payout, but rather
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acts randomly. Given this brief description, it comes as no surprise to learn
that many of the applications of game theory in agent systemshave been to
analyse multi-agent interactions, particularly those involving negotiation and
co-ordination.

This increasing interest in game theory and decision theoryin the agents
community led us to believe that the time was ripe to hold a workshop which
focused on these matters. This workshop was held in London onthe 3rd July
1999, in conjunction with the Fifth European Conference on Quantitative and
Symbolic Approaches to Reasoning and Uncertainty [9]. The special issue of
Autonomous Agent and Multi-Agent Systemsyou are now reading includes
revised and polished versions of the best papers that were presented at this
workshop. Our aims in this article are to provide very brief introductions
to the areas of decision theory and game theory in general, then to put the
papers that appear in this special issue into some context, and finally to point
to further reading on this exciting and rapidly expanding subject.

2. Decision Theory in Agent Systems

Classical decision theory, so called to distinguish it froma number of non-
classical theories which have grown up in the last few years,is a set of
mathematical techniques for making decisions about what action to take when
the outcomes of the various actions are not known. Although the area grew
up long before the concept of an intelligent agent was conceived, such agents
are canonical examples of the decision makers which can usefully employ
classical decision theory.

An agent operating in a complex environment is inherently uncertain about
that environment; it simply does not have enough information about the envi-
roment to know either the precise current state of its environments, nor how
that environment will evolve. Thus, for every variableXi which captures
some aspect of the current state of the environment, all the agent typically
knows is that each possible valuexij of eachXi has some probabilityPr(xij )
of being the current value ofXi. Writing x for the set of allxij , we have:Pr : x 2 x 7! [0; 1℄
and Xj Pr(xij ) = 1
In other words, the probabilityPr(xij ) is a number between0 and1 and the
sum of the probabilities of all the possible values ofXi is 1. If Xi is known
to have valuexij thenPr(xij ) = 1 and if it is known not to have valuexij
thenPr(xij ) = 0.
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Figure 1. An example Bayesian network

Given two of these variables,X1 andX2, then the probabilities of the
various values ofX1 andX2 may be related to one another. If they are not
related, a case we distinguish be referring toX1 andX2 as beingindependent,
then for any two valuesx1i andx2j , we have:Pr(x1i ^ x2j ) = Pr(x1i) Pr(x2j )
If the variables are not independent, then:Pr(x1i ^ x2j ) = Pr(x1i jx2j ) Pr(x2j )
wherePr(x1i jx2j ) is the probability ofX1 having valuex1i given thatX2
is known to take valuex2j . Suchconditional probabilitiescapture the rela-
tionship betweenX1 andX2, representing, for instance, the fact thatx1i (the
value “wet”, say, of the variable “state of clothes”) becomes much more likely
whenx2j (the value “raining” of the variable “weather condition”) is known
to be true.

If we take the set of theseXi of which the agent is aware, the setX, then
for each pair of variables inX we can establish whether the pair are indepen-
dent or not. We can then build up a graph in which each node corresponds to a
variable inX and an arc joins two nodes if the variables represented by those
nodes are not independent of each other. The resulting graphis known as a
Bayesian network1 [18], and the graphical structure provides a convenient
computational framework in which to calculate the probabilities of interest to
the agent. In general, the agent will have some set of variables whose values
it can observe, and once these observations have been taken,will want to
calculate the probabilities of the various values of some other set of variables.1 The notion of independence captured in the arcs of a Bayesiannetwork is somewhat
more complex than that described here, but the difference isnot relevant for the purposes of
this article. For full details, see [18].
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Figure 1 is an example of a fragment of a Bayesian network for diagnosing
faults in cars. It represents the fact that the age of the battery (represented by
the nodebattery old has a probabilistic influence on how good the battery
is, and that this in turn has an influence on whether the battery is operational
(battery ok ), the latter being affected also by whether the alternator is work-
ing and, as a result, whether the battery is recharged when the car moves.
The operational state of the battery affects whether the radio and lights will
work. In this network it is expected that the observations that can be carried
out are those relating to the lights and the radio (and possibly the age of the
battery), and that the result of these observations can be propagated through
the network to establish the probability of the alternator being okay and the
battery being good. In this case these latter variables are the ones which we
are interested in since they relate to fixing the car.

Typically the variables an agent will be interested in are those that relate to
its goals. For instance, the agent may be interested in choosing an action that
will allow it to achieve a goal, and might therefore be interested in choosing
that action which has the greatest chance of succeeding in achieving that
goal. When the agent has many goals it could achieve, this strategy could be
extended to make the agent choose to achieve the goal which has the greatest
chance of being achieved, and to do this by applying the action which gives
this greatest chance.

However, building an agent which follows this strategy is somewhat short-
sighted since the agent will not consider the value of the goals, and will
therefore choose a goal which is easy to achieve, but worthless, over a goal
which is hard to achieve but very valuable. To take account ofthis problem,
decision theory makes use of the idea ofutility. A utility is a value which is
associated with a state of the world, and which represents the value that the
agent places on that state of the world. Utilities provide a convenient means
of encoding the preferences of an agent; as von Neumann and Morgenstern
[15] showed, it is possible to define utility functions that faithfully encode
preferences such that a stateSi is preferred toSj, if and only if it has a higher
utility for the agent.

Now, we can consider that our agent has a set of possible actionsA, each
memberAi of which has a range of possible outcomes since the actions are
not deterministic. The value of taking a particular action will depend upon
what the state of the world is—it is of little value carrying asurfboard when
taking a trip across the Sahara—and so in choosing which action to undertake,
our agent will need to look at the value ofU(Sj) whereSj is the state it is
in after the action. Doing this for each possible action, theagent can then
choose the action which leads to the state it values most. We can certainly
build an agent which works in this way, and it would unerringly chose to
achieve the goal with the highest value as encoded by its utility function.
However it would be just as flawed as the agent which only triedto achieve
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Figure 2. An example influence diagram

the most likely goal, trying to achieve the most valuable goal irrespective of
the difficulty of that goal.

To build more sensible agents we combine probability and utility calcula-
tions for each action and calculate theexpected utilityof each. This amounts
to calculating a weighted average of the utility of each outcome, where the
weight is the probability of that outcome given the action being performed.
Since each outcome is itself a state, we have:EU(Ai) = XSj2SPr(Sj jAi)U(Sj)
whereS is the set of all states. The agent then selects actionA� where:A� = arg maxAi2AXSj2SPr(Sj jAi)U(Sj)
Now, these states which are being considered here are just particular instan-
tiatons of the set of state variablesX. Thus the probabilities in this calculation
are just the probabilities of theXi having particular values given the actions.

Harking back to the discussion of Bayesian networks above, we can think
of theXi as being structured as a graph, dropping the distinction between
variables and the nodes in the graph which represent them. The Ai can be
brought into the graph as well, as a different kind of node (square, perhaps,
in contrast to the usual round ones relating to theXi) linked to theXi whose
values they influence. We can also incorporate utilities. This time we only
require a single node (a hexagon, to keep it distinct from theothers), and this
is linked to thoseXi which affect its value. Such a graphical structure neatly
captures all the dependencies in an expected utility calculation, and is known
as an influence diagram [8].

Figure 2 is an example of a small influence diagram capturing adecision
problem which a company has to make about its research and development

gtdt.tex; 18/09/2000; 18:18; p.5



6 Parsons and Wooldridge

budget. Since the budget is the thing the decision is being made about, it is
represented by a squaredecision node. This is linked to the factors it directly
effects, namely the technical success of the comapny’s products and their
overall profitability, that latter being captured by the hexagonalvalue node.
The remaining nodes arechance nodesand represent the other factors which
relate to the decision. These are just like nodes in a Bayesian network. Given
a particular instantiation of the decision node, the relevant values can be
propagated through the network, using an algorithm such as Shacter’s graph
reduction algorithm [27] to establish the expected utilityof the decision.

Given that the basic mechanisms of decision theory fit so neatly into the
context of intelligent agents, it is perhaps surprising that they have not been
more widely employed in the field. However, agent systems which use deci-
sion theory seriously (that is adopting the notions of probability and utility)
are rather scarce. One sub-area of decision theory is, however, becoming
popular and that is the field of Markov decision processes (MDPs), discussed
in detail in [2]. In essence an MDP is an iterative set of classical decision
problems. Consider a state of the world as a node in a graph. Carrying out
an action in that state will result in a transition to one of a number of states,
each connected to the first state by an arc, with some probability, and incur
some cost. After a series of transitions a goal state may be reached, and the
sequence of actions executed to do this is known as apolicy. Solving an MDP
amounts to finding a minimal cost policy for moving from some initial state
to a goal state.

MDPs capture many of the facets of real world problems, but unrealisti-
cally assume that whatever system is solving the MDP knows atevery point
what state it is in. This amounts to assuming that it is possible to measure
some aspect of the world and from this measurement tell precisely what state
the world is in. This is rarely the case; it is far more likely is that from the
measurement something can be uncertainly inferred about the world. In such
a situation, the states of an MDP are replaced by beliefs about those states,
and we have a partially observable Markov decision process (POMDP). Be-
cause they can capture so many real situations, POMDPs are currently a hot
topic in agent research, despite the fact that they are intractable for all but the
smallest problems.

3. Game Theory in Multi-Agent Systems

Game theory is a branch of economics that studies interactions between self-
interested agents. Like decision theory, with which it shares many concepts,
game theory has its roots in the work of von Neumann and Morgenstern
[15]. As its name suggests, the basic concepts of game theoryarose from
the study of games such as chess and checkers. However, it rapidly became

gtdt.tex; 18/09/2000; 18:18; p.6



Game Theory and Decision Theory 7

clear that the techniques and results of game theory can equally be applied to
all interactions that occur between self-interested agents.

The classic game theoretic question asked of any particularmulti-agent
encounter is: What is the best — most rational — thing an agentcan do?
In most multi-agent encounters, the overall outcome will depend critically
on the choices made by all agents in the scenario. This implies that in order
for an agent to make the choice that optimises its outcome, itmust reason
strategically. That is, it must take into account the decisions that other agent
may make, and must assume that they will act so as to optimise their own
outcome. Game theory gives us a way of formalising and analysing such
concerns.

In the early days of multi-agent systems research, it was widely assumed
that agents werebenevolent: put simply, that agents could be assumed to share
a common goal, and would therefore be happy to “help out” whenever asked.
The focus was ondistributed problem solvingsystems, in which groups of
benevolent agents worked together to solve problems of common interest [21,
p3]. There seemed to be an implicit assumption that this class of systems was
the most common, and that scenarios in which agents are in competition were
unusual at best, aberrations at worst. Over time, however, it has come to be
recognised that in fact, benevolence is the exception; self-interest is the norm.
The recognition of this fact appears to have been driven, at least in part, by
the rapid growth of the Internet and the continuing trend towards ever more
distributed systems in computer science generally.

In tandem with this increasing recognition that self-interested agents are
the norm has been a steady growth of interest in the applications of game
theory to multi-agent systems. Game theory entered the multi-agent systems
literature largely through the work of Jeffrey Rosenscheinand colleagues
(see, e.g., [22, 23, 24]). In his 1985 PhD thesis [21], Rosenschein used game
theoretic techniques to analyse a range of multi-agent interaction scenarios.
For example, he showed how certain types of cooperation and deal making
could take place without communication: both agents simplycompute the
best outcome and know that the party they are dealing with will do the same.
Since agents can use game theoretic techniques to predict what others will
do, this obviates the need for explicit communication — coordination arises
because of the assumption of mutual rationality [23].

Perhaps the most compelling applications of game theory to multi-agent
systems have been in the area of negotiation [12, 24, 26]. Putsimply, ne-
gotiation is the process by which agents can reach agreementon matters of
common interest. Negotiation and bargaining were studied in the game theory
literature well before the emergence of multi-agent systems as a research
discipline, and even before the advent of the first digital computer. However,
computer science brings two important considerations to the game theoretic
study of negotiation and bargaining:
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1. Game theoretic studies of rational choice in multi-agentencounters typi-
cally assumed that agents were allowed to select the best strategy from the
space of all possible strategies, by considering all possible interactions. It
turns out that the “search space” of strategies and interactions that needs
to be considered has exponential growth, which means that the problem
of finding an optimal strategy is in general computationallyintractable. In
computer science, the study of such problems is the domain ofcomputa-
tional complexity theory [17]. There is a significant literature devoted to
the development of efficient (polynomial time) algorithms for apparently
intractable problems, and the application of such techniques to the study
of multi-agent encounters is a fruitful ongoing area of work.

2. The emergence of the Internet and World-Wide Web has provided an
enormous commercial imperative to the further developmentof compu-
tational negotiation and bargaining techniques [16].

Given a particular negotiation scenario that will involve automated agents,
game theoretic techniques can be applied to two key problems:

1. The design of an appropriateprotocol that will govern the interactions
between negotiation participants. The protocol defines the“rules of en-
counter” between agents [24]. Formally, a protocol can be understood as
a function that, on the basis of prior negotiation history, defines what pro-
posals are allowable by negotiation participants. It is possible to design
protocols so that any particular negotiation history has certain desirable
properties — this ismechanism design, and is discussed in more detail
below.

2. The design of a particularstrategythat individual agents can use while
negotiating — an agent will aim to use a strategy that maximises its own
individual welfare. A key difficulty here is that typically,the strategies
that work best in theory tend to be computationally intractable, and are
hence unusable by agents in practice.

As noted above, mechanism design involves the design of protocols for
governing multi-agent interactions, such that these protocols have certain
desirable properties. Possible properties include, for example [26, p204]:� Guaranteed success.

A protocol guarantees success if it ensures that, eventually, agreement is
certain to be reached.� Maximising social welfare.

Intuitively, a protocol maximises social welfare if it ensures that any
outcome maximises the sum of the utilities of negotiation participants. If
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the utility of an outcome for an agent was simply defined in terms of the
amount of money that agent received in the outcome, then a protocol that
maximised social welfare would maximise thetotal amount of money
“paid out”.� Pareto efficiency.

A negotiation outcome is said to be Pareto efficient if there is no other
outcome that will make at least one agent better off without making at
least one other agent worse off. Intuitively, if a negotiation outcome is
not Pareto efficient, then there is another outcome that willmake at least
one agent happier while keeping everyone else at least as happy.� Individual rationality.

A protocol is said to be individually rational if following the protocol
— “playing by the rules” — is in the best interests of negotiation par-
ticipants. Individually rational protocols are essentialbecause without
them, there is no incentive for agents to engage in negotiations.� Stability.

A protocol isstableif it provides all agents with an incentive to behave in
a particular way. The best-known kind of stability isNash equilibrium:
two strategiess ands0 are said to be in Nash equilibrium if under the
assumption that one agent is usings, the other can do no better than uses0, and vice versa.� Simplicity.

A “simple” protocol is one that makes the appropriate strategy for a
negotiation participant “obvious”. That is, a protocol is simple if using
it, a participant can easily (tractably) determine the optimal strategy.� Distribution.

A protocol should ideally be designed to ensure that there isno “sin-
gle point of failure” (such as a single arbitrator), and ideally, so as to
minimise communication between agents.

The fact that even quite simple negotiation protocols can beproven to have
such desirable properties as these accounts in no small partfor the success of
game theoretic techniques for negotiation [12].

Despite these very obvious advantages, there are a number ofproblems
associated with the use of game theory when applied to negotiation problems:� Game theory assumes that it is possible to characterise an agent’s pref-

erences with respect to possible outcomes.Humans, however, find it
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extremely hard to consistently define their preferences over outcomes —
in general, human preferences cannot be characterised evenby a simple
ordering over outcomes, let alone by numeric utilities [25,pp475–480].
In scenarios where preferences are obvious (such as the caseof a per-
son buying a particular CD and attempting to minimise costs), game
theoretic techniques may work well. With more complex (multi-issue)
preferences, it is much harder to use them.� Most game theoretic negotiation techniques tend to assume the avail-
ability of unlimited computational resources to find an optimal solution
— they have the characteristics of NP-hard problems. (A wellknown
example is the problem of winner determination in combinatorial auc-
tions.) In such cases,approximationsof game theoretic solutions may
be more appropriate.

Despite these problems, game theory is extremely compelling as a tool for
automated negotiation. In cases where it is possible to characterise the pref-
erences and possible strategies of negotiation participants, then game theory
has much to offer.

4. The Papers

As discussed by Guttmanet al. [7] and Crabtree [5], one of the niches in
which autonomous agents are rapidly proving their worth is electronic com-
merce. Here agents help to “grease the wheels” that must turnin order that
goods and services can be bought and sold across the Internet. One class of
these wheel-greasing agents are shopbots, agents which search the Internet on
behalf of consumers, comparing prices across dozens of web sites. Shopbots
thus help to cut consumers’ costs, not just in the sense of allowing them
to find the cheapest source of the good they require, but also in the more
general sense of reducing the cost of obtaining optimal price and quality.
Shopbots can also help to reduce the costs of suppliers, by reducing the cost
of evaluating, updating and advertising prices, and thus have the potential
to significantly affect the way markets operate. As a result,Kephart and
Greenwald [11] have investigated the impact of shopbots in single commod-
ity markets, modelling the behaviour of both buyers and sellers using game
theoretic techniques, and the paper in this issue presents asummary of their
results.

Shopbots can be considered as operating on the side of buyersin an elec-
tronic market helping them to find the best deals. The complementary kind of
agent which operates on the side of sellers are what have beencalled “price-
bots”, autonomous agents which fix the prices charged by a seller in order
to secure the best price that sellers are prepared to pay. Tesauro and Kephart
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[30] have investigated how such price-setting agents can bemade adaptive,
in particular how they can make use of Q-learning [32], an approach which
factors in the long-term expected reward for a given action taken in a given
state. They consider a number of different model economies,including one
in which buyers are assumed to make use of shopbots, and foundthat the
Q-learning approach leads, broadly speaking, to increasedprofits for sellers,
in part because it reduces the effect of price wars (when sellers repreatedly
undercut each other in an attenpt to capture a bigger share ofthe market).

In applications of game theory in multi-agent systems, agents are usu-
ally taken to maximise their expected utility. This approach, however, is not
always practical—there are often bounds on computational resources which
prevent the optimal solution being computed. As a result, there has been much
interest in computing solutions under bounded rationality, that is approaches
which aim to be rational in the sense of computing the solution with maxi-
mum expected utility, but which acknowledge bounds on theirresources, and
so relax one or more assumptions of the optimal approach. Stirling, Goodrich
and Packard [29], consider an adaptation of Simon’s idea of satisficing—that
is searching for an optimal solution until the cost of continuing the search
outweighs the improvement in solution that further work will bring. They do
this by introducing the notion of praxeic utility, a measurewhich explicitly
models the resources consumed, and allows these to be balanced against the
desire to obtain the best solution.

The approach adopted by Stirling, Goodrich and Packard, while departing
to some degree from classical decision theory, still makes use of the same ba-
sic mechanisms. In particular, the approach takes praxeic utilities as primitive
although, as with utilities in classical decision theory, these will ultimately
be grounded in some kind of preference order. In contrast, Lang, van der
Torre and Weydert [13] start with an agent’s goals, and consider how an agent
might reason about its goals and use these to define its utility function. Their
approach is logic-based, and thus an extension of recent work on qualitative
decision theory [6].

The two papers just described deal with combinations of beliefs and utili-
ties. In the case of Stirling, Goodrich and Packard, these beliefs are distributed
over states of affairs (roughly speaking conjunctions of propositions), while
in the work of Lang, van der Torre and Weydert, the beliefs aretaken over
individual propositions. Thus, in neither case, is there much structure to the
items that beliefs are distributed over. Vane and Lehner [31], on the other
hand, build belief distributions over much more complex objects—in fact they
deal with beliefs over games, in the sense of game theory. In essence, their
hypergame framework allows a agent in a game theoretic setting to hedge
its bets about what its opponent is doing. It does this by identifying a set of
possible games, representing the possible behaviours thatits opponent might
engage in, building a probability distribution over these games, and evaluating
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the best moves by the usual maximum expected utility algorithm. The result
is an elegant formalism which is a strict generalisation of both game theory
and decision theory, and which looks to be a useful tool for building future
generations of mixed game theoretic and decision theoreticagents.

5. Further Reading

In this final section, we provide some pointers to further reading on the use
of decision theory and game theory in the multi-agent systems literature.

As befits a subject which has been established for some time, there are
a number of good textbooks on decision theory. Of these, perhaps the best
are those by Lindley [14], Raiffa [20], and Smith [28]. The books by Lindley
and Smith are both intended for a statistics audience, whileRaiffa’s intended
audience is more a economics or business one, but all are written carefully
enough to make them easy for computer scientists to understand. As men-
tioned above, the main area in which ideas from decision theory have been
carried into artificial intelligence is that of Bayesian networks and influence
diagrams. The standard reference on Bayesian networks remains Pearl’s land-
mark volume [18], though Jensen’s more recent contribution[10] provides a
clearer introduction, and both Cowellet al. [4] and Castilloet al. [3] cover
more ground. Sadly none of these authors cover influence diagrams in any
detail, and the main reference for graphical decision models remains [8].
On the more specialised topic of Markov decision processes,there is at least
one good monograph [19], and a number of articles which give much of the
necessary detail. Of the latter, the paper by Boutilier, Dean and Hanks [2] is
perhaps the most useful.

The game theory literature has grown steadily since the origins of the field
— there are now a clutch of journals on the subject, and many textbooks.
Unfortunately, for a non-economics audience, many of thesetextbooks are
hard going. Among the more helpful is Binmore’sFun and Games[1] (which
also includes a good summary of further reading and an amusing critique of
other textbooks in the field). With respect to the multi-agent systems litera-
ture, most applications of game theory have been in the area of negotiation,
and the starting point should undoubtedly be Rosenschein and Zlotkin’s [24].
Kraus provides a summary of work on negotiation as of 1997 [12], and Sand-
holm’s authoritative [26] provides an excellent summary ofgame theory for
multi-agent interactions.
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