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Abstract

The analysis of many biochemical engineering problemswiremmental modelling is based upon
the development and solution of sets of differential equmsti A complete analytical solution of
such a model requires that every numerical constant in #ti®fsequations is precisely known.
This chapter describes some techniques, developed in thefiartificial intelligence, which per-
mit the solution of such sets of equations when some conggdims are either unknown, or only
known imprecisely. The use of these techniques is illustiatith the use of models of anaerobic
fermentors.
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1 Introduction

The basis of the method by which much of modern engineerisgge@ally in areas such
as biochemical and environmental engineering, proceehlg tise identification and solu-
tion of models based upon sets of differential equationsi¢gand Ollis, 1986]. These
equations describe the dynamic behaviour of a system instefrearious key variables.
When the equations are solved, the values of those key lesiabn be used to describe
the state of the system at any instant. In theory, the praeddu developing and solving
such a model is as follows. First, the differential equatidmsed on general knowledge
of the biochemical process and the reactions which undeeiyt are written down. These
equations are generic descriptions of the processes. Twemzal descriptions are then
instantiated for the particular system being studied bytifigng the values of constant
terms through appropriate experimental measurements fhieeequations are solved, ei-
ther analytically or by simulation, to give a descriptiortio¢ specific system of interest.
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For many biochemical systems, the first stage is often velgtisimple. Laws of nature

such as the law of mass conservation, are usually sufficefarin the foundation of the

necessary set of equations. As a result, given a particyde®, it is often relatively easy
to collect together a set of differential equations which fm the nucleus of a detailed
mathematical model of that system. However, to take thisemscand flesh it out with all

the necessary information that will make it an accurate aatistic working model is far

from simple.

This is because the precise values of the constants thtd tieéavariables in the differential
equations are often hard to establish. Real environmeygtdisis are horribly complicated
and as a result, it is extremely difficult to measure the wariconstants with any accuracy.
This is particularly true when the dynamic behaviour of ssigtems is considered. Indeed,
the systems may be subject to complex relations with theiosndings [Serrat al.,, 1992]
which may make it nearly impossible to isolate them withastatting any measurements
made. As a result, it is likely to be extremely difficult, timensuming and expensive to
identify the value of every numerical constant [Stegeal, 1992]. In practice, therefore,
rather than a full set of precise numerical constants, orfi@cisd with an incomplete set
of imprecisely known values. Without the values of all thestants the set of equations
have no practical value because without known values it igpoesible to run a classical
simulation, and for most real systems the set of equationsatebe solved by analytical
means.

Thus incomplete and uncertain knowledge of the necessanencal constants would
seem to rule out the use of conventional methods in projects as modelling the scaling
up of laboratory fermentors in order to perform tasks lilsk evaluation and cost estima-
tion. It need not, however, prevent the use of artificial ligence techniques. Several
authors have applied rule-based methods, for instance\jBalkt al., 1993; Lionget al,,
1991], especially in the area of control of biochemical pisses [Serrat al., 1992; Steyer
et al, 1991; Watts and Knight, 1991]. A particularly appropriatt of artificial intelli-
gence techniques are those from the area of qualitative limggbavis, 1990; Weld and
de Kleer, 1990], since many approaches to qualitative niagedre specifically designed
to solve sets of differential equations when the constanigare either unknown, or only
known imprecisely.

This chapter discusses such techniques, and shows how thelgenused to provide a bat-
tery of approaches to handling the kind of models used inrenmental engineering. In
particular, this chapter focusses on three different agogres under the qualitative mod-
elling bannet. Section 2 looks at qualitative reasoning, an approach iolwihis possible
to handle constants whose values are unknown. Section 3 lab&rder of magnitude
reasoning, which makes it possible to handle informatiahsas ‘A is much larger than
B"—information which it is often possible to obtain in the abse of exact values. Finally
Section 4 considers semiqualitative reasoning, an apprneaich extends qualitative rea-

LFor clarity, in this chapter | use the term “qualitative mitidg” to refer to a whole range of techniques,
and the term “qualitative reasoning” to refer to one of thd3gs distinction is not common practice, and the
term “qualitative reasoning” is often used to refer to theoletfield.
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soning when limited amounts of numerical information arailable. Each section gives a
brief overview of developments in the area and then dissusse particular approach in
some detail, with the aim of giving the reader an appreaiatibwhat it is possible to do
with it. To help with the latter task, each section also idels a relatively detailed example
of the approach applied to an environmental model.

It should be noted that this chapter is not a definitive sunfeyualitative modelling tech-
niques—the subject is far too broad. Neither is it a tutooialhow to use qualitative
modelling, either in general, or in the context of enviromta¢ engineering. Instead it is
intended to provide a short guide to the kinds of things thetitative modelling makes
possible, along with pointers to some of the relevant work.

2 Qualitative reasoning

Historically, the first of the qualitative modelling appobes addressed the problem of
dealing with numerical values whose magnitude is comptateknown. These are the
approaches which will be discussed in this section.

2.1 Overview of qualitative reasoning

The paper that is always cited as being the foundational wodaualitative reasoning is
Hayes’ Naive Physics Manifesto [1978] in which he urged piacers of artificial intelli-
gence to “put away childish things by building large scalerfalizations” [Hayes, 1985Db].
His suggestion was that real progress in the field would cdroataby attempting to model
a large part of human commonsense knowledge about the rela, \aad his first attempt
created an initial theory of liquid behaviour [Hayes, 1989dis work was built upon first
order logic, the traditional tool of symbolic artificial ltigence. At the same time, and to
some extent as a result of Hayes’ proposal, work that matletbenplex systems in a way
that mirrored the kind of approach adopted by engineers wasgng.

There are, broadly speaking, three strands to this workaaiing in common the fact that
they deal with abstractions of real numbers into positiegative and zero valued quan-
tities rather than dealing with numbers themselves. Thedpproach is that of Kuipers
[1984] who takes a set of differential equations, abstrdngm to just consider their quali-
tative impact, and then uses them as a set of constrainteeqossible values of the state
variables. This approach has been implemented as the QStiase system [Kuipers,
1986], and the complete line of work by Kuipers and his cgless until 1994 is sum-
marised in [Kuipers, 1994]. The second approach, taken bigleer and Brown [1984]
and Williams [1984] is to build libraries of components, lead which has a well defined
gualitative behaviour described by sets of qualitativéeddntial equations, and connect
components together to build a qualitative model. Someisftbrk is implemented as the
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Table 1. Qualitative addition

0
+ 7
0

o +|D
~ 4 4|+

ENVISION software system which takes its name from the pgead “envisionment” by
which behaviour is infered from the structure of the systdine final approach not only
models components, but also the processes that they maygoend®ork on this approach
is primarily due to Forbus [1984], and is closest in spirithe work on naive physics. In
addition, this approach goes further than the others invarig sets of objects to have group
behaviours over and above their individual ones, thus diogia far richer modelling lan-
guage.

The core of the first two approaches described above is tlaeatigualitative differential
equations. Rather than attempting to deal with a mass of noahelata, values are only
distinguished as positiveH), zero (0), negative<), or unknown (?). These values are
sufficient to identify many of the interesting features oé thehaviour of the important
variables in a given system. Briefly, this works as followsabine that we have a very
simple system which may be described by the equations:

dx
a"‘x = k1
d?x
—dt2+k2 - O

wherek; andk, are positive constants, axds a substrate concentration. The qualitative
abstraction of these equations, in which all numericaleslare replaced by, 0 or — is:

dx

a@x = +
d?x
@@‘i‘ =0

where® is qualitative addition, as described by Table 1. To soleggir of equations we
look for sets of qualitative values that satisfy them, fatance:

X = +
o _
d
d?x

de
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time

Figure 1: The qualitative behaviour »f

In other wordsx s positive, its first time derivative is positive, but itead time derivative
is negative. This set of values tells us that the behaviothetoncentration over time will
be to rise to some limiting value as in Figure 1. We may not kadwat the limit is, but we
do know that the concentration will eventually level off dathis less precise information
may be sufficient for some purposes. Clearly if we are tryingdtablish that the substrate
concentration has a maximum value then the information weabte to deduce is quite
adequate, and in many cases the fact that we can learn sogi&thin qualitative reasoning
far outweighs the fact that what we learn is not very detailed

As qualitative reasoning has been applied, one of the irapbimtuitions to emerge is that
the process of reasoning about a physical system involveddsks. One is building a
model to describe whatever physical system is being inyat&td, and the other is simu-
lating the physical system using the model. The idea of camipoal modelling [Falken-
heiner and Forbus, 1991] revolves around supplying a fbodmodel fragments which
may be composed to form a complete model of the situationnd hend it has been shown
to scale-up on such applications as CyclePad [Forbus andié&yh4994; Forbuset al.,
1999] which captures a significant body of knowledge on tleglymamic processes.

The problem of which model fragments to compose is a sigmifioae, especially if this
task is to be automated [lwasaki and Levy, 1994]. There i3 ts issue of how to repre-
sent the fragments, and how to turn a set of fragments intofizdmodel which can then
be used as the basis for the simluation task. This aspect girtiblem is addressed by Far-
guhar’s Qualitative Physics Complier (QPC). QPC takes h-tegel description of compo-
nents and compiles them down into a form which can be fed ir8Mwhich then carries
out the simulation. QPC has been shown to work well in a widietyaof domains, includ-
ing socio-economic allocation [Brajnik and Lines, 1998}jemical engineering [Catino,
1993], water supply control [Farquhar and Brajnik, 19941d glant physiology [Rickel
and Porter, 1994].

Having established the kind of problems that can be solvedjugialitative reasoning, and
the results it is possible to obtain, we will look at one gizive approach in more detail.
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2.2 TheQSIM system

The system we will consider is Kuipers’ QSIM system [Kuiper886, 1994], which pro-
vides a comprehensive suite of programs for evaluatingitqtisé models. This section
gives an overview of the way that models are built and evatliat QSIM, drawn from the
description given in [Cem Say, 1998].

As with any system for qualitative reasoning, the basic coment of a QSIM model is a set
of state variables. In QSIM these are functions which ardigoausly differentiable with
respect to time. Each variable has a set of values assoeigied—this is thequantity
spacdor that variable, the set of possible values that the végiedn take. These values are
also known as qualitative magnitudes, and the usual qyai#ce is, as already discussed,
the set of signg+, 0, —}. (The symbol is not, strictly speaking, part of the quantity space,
but an abbreviation for+ or 0 or —”. Similarly, (0, +) is an abbreviation for+ or 0", and

(0, —) is an abbreviation for( or —".) We are also interested in the qualitative direction
of a variable, that is the sign of its first derivative. Thegaia are typically drawn from

a quantity space of+, 0, —}, also written asnc, std anddec The qualitative magnitude
and qualitative direction, taken as a pair, make upghalitative valueof a variable, and
the full set of qualitative values of all the relevant vatesbdefines the state of the system
in question.

The second main component of a QSIM model is a set of consraihich capture time-
independent relations between variables. Thus, for examye would represent the fact
that:

A=BC

by using themult constraint:
(multABQ

Broadly speaking there are seven different types of canstidat may be employed in
QSIM models. Three capture simple arithmetic relationskipdd minusandmult—and
need no further explanation. The constraiohstantis also fairly simple, specifying the
value of a constant term, ardfdt is used to identify variables which are derivatives of
other variables. The final two constraink8;” andM—, are a little more complex. They
represent the fact that there is a monotonic function redatine two variables named in
the constraint. This function is increasing when the camstisM™ and decreasing when
the function isM~. The constraints, of course, are just a way of specifyinglifierential
eqguations which make up the model being encoded in QSIM.

The final component of a QSIM model is the initial state of thistem. This is simply a
set of initial qualitative values for each variable in thedab If this model is only partially
specified, QSIM can generate a set of initial states whichcarnsistent with the partial
specifications.

Once the model has been created, QSIM can be run to simuiateetraviour of the sys-
tem. Starting from the initial state (or set of states), Q$idés a set of transition rules to
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generate all possible new states. Each of these new sta@sgiof new qualitative values
for all the variables. For example, if the qualitative magde of a variable is- and its
gualitative direction igleg then at some point in the future its magnitude willlbeThus
the next state has as the qualitative magnitude of that variable. The tramssirules, in
general, generate a set of possible next states and eacésef generates a further set of
next states. The full set of sets of states can be consideradrae-like structure of trajec-
tories, a set of transitions from one state to another, wathesstates occuring on several
trajectories. The states along a single trajectory make hgt v known as a qualitative
behaviour.

The role of the constraints in QSIM is to prune the numberatest, thus ruling out certain
behaviours. Each time the transition rules are appliediabelting set of states is checked
against the constraints. When a state has an assignmenaldhtjve values to variables
which violate one or more constraints, that state is deléfteds ensures that the behaviours
generated are consistent with the initial model and so semteegal solutions to the ini-
tial set of differential equations which make up the modeifetence in QSIM is thus a
“generate and test” process.

QSIM has been widely used by researchers in qualitativersag, and, as a result, a num-
ber of enhancements have been developed. In general, tedwecetypes of enhancement.
One makes it possible to incorporate more detailed infaonanto the models, thus al-
lowing more precise predictions to be obtaifiebhis type thus builds on top of QSIM. The
other refines the kind of reasoning carried out in QSIM, efating some of the possible
behaviours that QSIM generates. This type thus filters thipubwf the QSIM inference
engine. An example of the first kind of enhancement is givemNbitzke and Neumann
[Neitzke and Neumann, 1994] in the form of the system RSIMSINR+ allows additional
constraints between variables to be stated. For instahedt constraint is refined to
make it possible to identify monotonically increasing doaisits which are sub-linear, lin-
ear and super-linear. An example of the second kind of sysedem Say’s qualitative
version of L'Hopital’s filter [Cem Say, 1998]. This checksS(M-generated behaviours
against L'Hopital’s rule and rules out those which violdte

2.3 An example of qualitative reasoning

To illustrate the use of qualitative reasoning more congyetonsider the following ex-
ample. It is possible [Bailey and Ollis, 1986] to write dowrt@mplex set of equations
which fully describe the action of an anaerobic fermentalahich, when solved, provide
a suitable model of its behaviour. Unfortunately, the rissof this analysis hinge upon the
values of a number of key constants whose values not onlyfkamy fermentor to fermen-
tor, but are also extremely difficult to measure. As a resu#t difficult and expensive to
provide accurate solutions from a conventional analysiguélitative analysis is, however,

2As will become apparent, this is a general trend in quatitaaeasoning and is the motvation behind
the order of magnitude and semi-qualitative techniquesigdied later in this chapter.
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possible.

The following set of equations provide a simplified modells behaviour of an anaerobic
fermentor:

% + (Ko + kis)xq 4+ Kipxixs = koiXo 1)
% + koo = ko (2)

% ke = ki (3)

dd_)% + KXy = KXo (4)

dd—)f’ + KssXs + kypxixs = 0 %)

wherex;—x5 are concentrations of various substrates, either thostesvasing digested or
the products of the digestion. Tlkeare constants. The full model may also be solved
using qualitative methods, but the additional detail adothing to the understanding of
the technique. Itis, of course, perfectly possible to apipéymethod to any equation based
model. This particular model was chosen because it was/eaaillable.

To apply QSIM to this model we first need to define the quantigces for the variables,
writing X1 for x;, DX1 for dx /dt and so on, we have, in QSIM notation:

(quantity-spaces
(X1 (minf zero inf) “X17)
(X2 (minf zero inf) “X27)
(X3 (minf zero inf) “X3")
(X4 (minf zero inf) “X47)
(X5 (minf zero inf) “X5”)
(DX1 (minf zero inf) “DX1")
(DX2 (minf zero inf) “DX2")
(DX3 (minf zero inf) “DX3”")
(DX4 (minf zero inf) “DX4”)
(DX5 (minf zero inf) “DX5"))

which indicates that each variable can have the usydl, or — value, because we only
distinguish the landmarkso, 0 and—oo. We then specify the constraints between variables
which, because the arithmetic constraints are binary, st we have to introduce four
auxilliary variableX6, X7, X8 andX9. We then have:

(constraints
((d/dt X1 DX1))
((d/dt X2 DX2))
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((d/dt X2 DX3))
((d/dt X2 DX4))
((d/dt X2 DX5))
((mult X6 DX4 X4))
((add X7 DX1 X1))
((add X8 X6 X5))
((add X9 DX5 X8))
((add X2 X7 X6))
((add X2 DX2 X2))
((add X1 DX3 X4))
((add X6 DX4 X4))
(constant X9 0))

The first five of these definBXn to be the first time derivatives of thén, the next four
define the auxilliary variables, and the following five theapture (1)—(5) respectively.
Finally we need to define the initial states of the variables:

Xl =
X2
X3
X4
X5
DX1
DX2
DX3
DX4
DX5

—~
=
_I_
~
—
=
_l’_
SN—
~

P N

These, for instance define the initial valuexptto be either zero or strictly positive, and to
have a time derivative which is zero or strictly positive iltx, has an initial value which
is strictly positive, and a time derivative which is positjwnegative, or zero.

Given this model, QSIM would then generate the full set ofaweburs which satisfy the
initial set of equations. For example, one such behaviogiven in Table 2. As for the

initial state, each column in each half of the table givegttegliction for one of the system
variables X, ...x; and their first derivatives. The value in each cell of thedafVes the

gualitative value of the corresponding variable, that ssqtalitative magnitude and its
gualitative direction, thus the second value in each tuptieu X1 gives the value of:

dx,
dt

which refers to the same quantity as the first value in eade tupder DX1 (as encoded in
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Table 2: A QSIM prediction for the anaerobic fermentor maafgll)—(5).

X1 X2 X3 X4 X5 time
<(07+)7 (07 +)> <+7?> <(07+)7?> <+7 _> <+7 (07_» t0
((0,4),(0,4)) (+7) ((0,+),7) (0,0) (+(0,-)) t
((0,4),(0,4)) (+7) ((0,+4),7) (0, +) (+(0,-)) b
<(0’+)’ (07 +)> <+v?> <(07+)7?> <+7+> <+7 (07_» t3
DX1 DX2 DX3 DX4 DX5 time
<(0’+)a?> <?a?> <?>?> <_>+> <(O> _)70> to
((0,4),7) (7,7 (1,7 (0,4) ((0,-),0) &
<(07+)7?> <?7?> <?77> <+7+> <(0>_)70> to
<(07+)7?> <?7?> <?77> <+7+> <(0>_)70> t3

thed/dt constraints). The second value in each tuple under DX1 gheegalue of:

&x
dt?

The particular behaviour given in Table 2 traces changegwhile the remaining variables
remain in their initial state. This behaviour is a possilfieinlikely, way that the system,
as descibed by the model given above, might evolyés initially positive, with a negative
first time derivative, and a positive second time derivatiaues which are consistent with
the initial state). The first time point on the behaviour isanithe value ok, becomes zero
and the first time derivative becomes zero (for the purpo$éki® example we look at
the situation in which these two events are simultaneousg. riext time point is the next
point at which some value changes, in this case it is the first terivative ofx,, which
now becomes positive. Finally, under the influence of thisitpe derivative x, becomes
positive again.

QSIM will generate all such behaviours which are consistétit the initial state and the
constraints on the variables, following them for as longesirgd by the user.

3 Order of magnitudereasoning

Despite the undoubted success of qualitative methods #rersome problems with qual-
itative reasoning that make it unsuitable for modelling@er systems. These problems
stem from the limited number of values that any constant nalsée can adopt. In this sec-
tion we consider order of magnitude techniques, the dewaéoy of which was motivated
by the desire to overcome these limitations of qualitataasoning.
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M, V m, v

Figure 2: Two colliding masses

3.1 An overview of order of magnitude reasoning

In the first paper on order of magnitude reasoning, Raima@Jlélustrated the problems
of qualitative reasoning with a simple example from mecbsniConsider two masses
which collide while travelling towards one another along ame line (Figure 2). One has
a large mas$/ and velocityV, the other has a small mass and veloaitgndv. The net
momentum from left to right above is given by the law of the senvation of momentum
as:

MVyet = MV — mv

SinceM, V, mandyv are all positive values, they all have qualitative valtieand the net
rightwards momentum is established by the calculation:

MViet=+®@ + S +® +

whereo is the operator representing the difference of two qualgatalues (see Table 3),
and ® is the operator representing the product of two such valses Table 4). It is
clear from Table 4 that the product of two positive valued iskelf be positive so that the
calculation reduces to:

MVpet = + 6 +

Now, Table 3 summarises the fact that the difference of twoesawhich are only known

to be positive can be either positive, negative or zero, nidipg on the relative sizes of the
values. Thus qualitative reasoning can only deduce thatwbeall rightwards momentum
will be 7, while intuitively we can see that it will be becauséV is much larger thamv.

Now, to some extent this problem is a straw man. Certainltesys such as QSIM provide
a way around it. Faced with such a situation, QSIM would idenbat the result of the
subtraction would depend upon the relative magnitudéd\wlandmv. Rather than return
the overall momentum &s the system would introduce the quantifi}y —mvas a landmark
value and give three possible behaviours, one for eachtgtiadi value of the landmark.
Thus it would predict that iMV — mvis positive, the net momentum would be rightwards,
if MV — mvis negative, the momentum would be leftwards, anél\f — mvis zero, the
net momentum would be zero. However, Raiman’s main pointillscerrect—resolving
this problem, even with the branching behaviours, invoktepping outside the qualitative
reasoning and selecting one output from many (and a typicalitgtive model will throw
out many such branch points). What would be useful is a waytimating the reasoning,
which, after all, is something that humans find quite easyoto d
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Table 3: Qualitative subtraction

0
+
0

o+
~

o+ +

Table 4: Qualitative multiplication

@[+ 0 —
T+ 0 —
0[0 0 0
— |- 0 +

The first attempt to provide this automation was proposed &iynBn [1986] in the paper
in which he pointed out the problem. He introduced a systeied&OG which allowed
the representation of “order of magnitude” concepts. Tha#laws the statement that, for
instanceA is negligible with respect t8, A Ne B or thatA has the same sign and order
of magnitude a8, A Co B These relations are then used to define a set of inferenee rul
such as:

ANeBBCoC=ANeC

So that ifA is much smaller thaB, which is about the same size @s thenA is much
smaller thanC. In all Raiman provides 30 such rules of inference, givingemantics
for the approach which is based on non-standard analysisi-@& has been used in the
modelling of analog circuits [Daguet al.,, 1987].

FOG has been discussed by Dubois and Prade [1991] who hasa&lemd the problem
that is caused by the use of non-standard analysis as a basisémantics—namely that
the results are only valid in the limit. In order to cope wiituations in whichA Co B
does not mean tha& andB are infintely close together, they propose a new interpostat
in terms of an interval on the ratio & to B. This allows them to validate the inference
rules, and allows a sensible limit on the chaining of infeessuch as:

30 Co 31
31 Co 32
30 Co 32

to be established that prevents the derivatiosaCo 1000 without the need for an arbitrary
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cut-off.

The FOG approach has recently been extended by Dague talprowich more sophis-
ticated approaches to handling order of magnitude reagorim particular, he has pro-
vided a mechanism for obtaining smooth changes betweendieesof magnitude [Dague,
1993b], providing a solution to exactly the same problenrested by Dubois and Prade.
His ROM[K] system, which does this, is based on a set of rulé@sference similar to those
of FOG, and may be considered a natural successor to it. D@agialso provided a sys-
tem which can perform the same kind of reasoning using nuwalenformation [Dague,
1993a], and Nayak [Nayak, 1992] has built a rather similatesy in which the order of
magnitude of a quantity is determined using logarithms:sYigip, 1996] asymptotic order
of magnitude reasoning is also reminiscent of FOG.

Another scheme for order of magnitude reasoning is due tordawuniotis and Stephan-
opoulos [1987; 1989] who formalised the representatiorelaitions such a8 > B to give

a system called O[M] that they claim is expressive enouglafioengineering problems.
The semantics of the relations is provided in terms of thenbewon the ratio betweel
andB, and two possible interpretations are given. The first isheraiatically correct, but
conservative, and the second is heuristic but more humaugseasive in the inferences it
sanctions. O[M] has been applied to problems in processiergng [Mavrovouniotis and
Stephanopoulos, 1988]. Itis possible to show that the Opfaach can be handled using
a formal system for reasoning using intervals [Parsons3]1@hd Trave-Massuyes and
Piera have shown that such interval systems can be used laadilseof a general approach
to order of magnitude reasoning [Travé-Massuyés andP1€389].

3.2 TheO[M] system

In this section we describe O[M], intoduced by Mavrovoursiand Stephanopoulos [1987;
1989] in detail, prior to showing how it may be used to simpéitbiochemical model. O[M]
is based upon a set of seven primitive relations:

A << B Ais much smaller thaB

A—< B Ais moderately smaller thaB
A ~< B Aisslightly smaller tharB
A== Ais exactly equal td®

A >~ B Aisslightly larger tharB

A >—B Ais moderately larger thaB
A >>B Ais much larger thaB

These primitive relations can then be composed to form éurslations. The compositions
which make sense are those of relations which are conseautithe above list, so for
instance, we haveX'is less tharB”, which is the composition ok<, —< and~<. This is
denoted by:

A<<...~<B
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There are a total of 21 sensible compound relations, and d&auniotis and Stephan-
opoulos claim that these are sufficient to capture all orfleragnitude relations commonly
used by engineers. The meaning of these relations are givtermns of the ratio of the two
guantities in question. Thus we take<< B to mean that:

A 1
5 <<
and similarly for the other relations. We can then [Pars@893] define how to translate
between numerical values &f and B and the O[M] relations by applying the following
mappings:
A<<B if e >A/B
A—<B if <A/B<eg
A~<B if gg<A/B<1
[AB]lh=4¢ A==B if 1=A/B
A>~B if 1<A/B<e
A>-B if eg<A/B<eg
A>>B if ¢ <A/B

which generates a relation frofandB, and:

e > A/B if rel is <<
e <A/B<eg ifrelis—<
e <AB<1 ifrelis~<
[ArelB]], =4 1=A/B if rel is ==
1<A/B<e ifrelis>~
e; <A/B<eg ifrelis>—
& <A/B if rel is >>

which gives the bounds on the relative magnituded ahdB from a relation. Theg are
parameters chosen by the user and can be described in teenséngfle parametes:

e = e
1
2~ Tte
e = 1+e
1
e4:é
_e
® 7 Tte
1
eﬁ_(lvte)2
e = (1+¢)°
_1+e
=T e

It is entirely intentional that the intervals defined by themappings either overlap, or
are non-contiguous. The idea is th8tB is mapped into a set of overlapping intervals,
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is transformed somehow, and then “shrunk back” to the narigoous intervals. The
reason is to model the fact that people reason more “aggedgsihan is warranted by the
available information. This works as follows. Consider we ®ld that:

A >~ B
B >~ C

then from the second mapping we know that:

1 < A/B < (1+e)
1 < B/C < (1+e)

From this we can infer that:
1<A/C<(1+e)?

which the first mapping tells us means that:
A >~ C

Now, the important thing about the heuristic mapping is thae then want to use the fact
that:

C >~ D

to infer something about the relative orders of magnitudé\ @nd D, we use the first
mapping again to get:

1 < AIC < (1+¢)

1 < C/D < (1+¢)

and go through the same procedure as before to get:
A >~ D

In the next section we give further examples of the kind o$oedng supported by O[M].

3.3 An exampleof order of magnitude reasoning

To illustrate one possible use of order of magnitude reagpmve will use O[M] to simplify
another anaerobic fermentor model, this time taken fromi¢gaand Ollis, 1986]. The
model is given in (6)—(22):

dpco, \ Pco,
\%
Qco, = —To (7)
Pg

Q = Qco, +QcH, + Qnyo (8)
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hy = % (©)
Ki [COp
ht)y = —~L==2b 10
(h*) HCO, (10)
[HCO; ™| = z-s (11)
Z - L2 (12)
Te = ka([Co)y" —[COyp) (13)
[COp" = Kuapco, (14)
X T (1tox, — ftow) (15)
T = ((cols, ~ [COl) + To + Re + Re (16)
F _ N ds dz

R = g ([Hco ] —[HCo ]) + F+ (17)
00+ x— k1o (18)

ds F 1
9 _ Fls_g- 19
o v (&9 Y (19)
_ Hmax 20
T s -
Re = Yco,/xiX (21)
QcH, = pngCH4/xMX (22)

Clearly this is a more complex model than that presented@hbwugh it has the same
general form. Because of this complexity, it is rather har@xtract useful information
directly from the equations. However, if the equations argsfied, such information can
be extracted, and one means of carrying out this simpliGoas to use order of magnitude
reasoning.

Consider (20). One thing we might want to extract from thigapn is the relationship
betweenu and its maximum valugnax in Steady state operation. In the steady state, we
know? that (hs) is roughly equal tds, but much smaller thak;. In other words;

(hg ~<...> K

(hs) << Ki
Now, given this initial information, O[M] can be applied t2Q) in the same way as we saw
above (for the detailed calculation see [Parsons, 1993]¢termine that:

Hmax >— [

3Note that these examples are constructed with the inteafibaing instructive in the use of O[M] rather
than realistic.
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which tells us that the rate is moderately smaller than themam.

We can also use O[M] to establish something about the rat@éaige of{CO;|p, which

is the concentration of dissolve@iO,. The situation we want to investigate is when the
concentration is well above the initial concentration alighsly less than the equilibrium
concentration:

Taking these and combining the first with (16) and the secoitidl (&3) gives us, respec-
tively:

A€o CICOo + (Te + Re + Re)

TG —< —kLa[C02]D

Combining these, and adding in the additional knowledge tha

F
kka >> v
gives us:
d[Cd?Z]D << ...—< [COylpkia+ Rs+ Re

which is considerably simpler than the original. Furthemlification is possible [Parsons,
1993].

The results of this kind of simplification can be used dingatl as input to a system like

QSIM which can solve the simplified model qualitatively. irch a case order of magnitude
reasoning can be considered a form of pre-processing whashdes a rigorous approach
to abstracting away unnecessary detail. Alternativelg,kind of reasoning could be used
as a further global filter on the output of QSIM, puring brangtbehaviours which do not

fit in with the result of the order of magnitude analysis. lbshl be noted that exactly the
same kind of reasoning can be performed using Nayak®BI&R system [Nayak, 1992] or

Williams and Raiman’s caricatural reasoning [Williams d&alman, 1994].

4 Semiqualitativereasoning

Order of magnitude reasoning provides one means by whidkelihamounts of informa-
tion about the magnitude of constant terms can be taken attmuat in qualitative models.
There are other approaches, all of which integrate, to soctemequalitative and quantita-
tive information including [Dormoy, 1988; Feray Beaumoh®91; Kuipers and Berleant,
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—oo  —500-100 —20 —10 O 10 20 100 500 oo

Figure 3: An initial set of semiqualitative intervals

1988; Steyeet al., 1992; Stickleret al., 1991]. | refer to these as “semiqualitative” ap-
proache& One influential approach is embodied in Berleant and Ksid&erleant and
Kuipers, 1997] Q2 and Q3 which operate as filters on top of Q&Muring that the be-
haviours generated are consistent with whatever numerif@imation is available. The
same approach was used to create the Semi-QuantitativeRB@mpiler [Brajnik, 1994;
Farquhar and Brajnik, 1994]. These methods have been usedx&mple, for carrying
out comparative analyses [Vatcheva and de Jong, 1999]. h&ninteresting approach is
to bring in fuzzy information [Bellazzet al, 1999; Shen and Leitch, 1993; Vescovi and
Travé-Massuyés, 1992]. In the remainder of this chapeipresent a third approach—a
generalisation of qualitative reasoning, known as sentitatise reasoning.

4.1 An overview of semiqualitative reasoning

In semiqualitative reasoning the values of variables amdtamts are restricted to a set of
2k + 1 intervals [Parsons and Dohnal, 1993]. This set of intergalers all numbers from
oo t0 —oo, and the intervals are continuous and non-overlappinghaoany real number
falls into one, and only one, interval. The intervals are Byatric about zero, which is a
distinguished value, and there &rpositive andck negative intervals. The boundaries of the
intervals may be set by an arithmetic or geometric progoessir may be chosen to reflect
what are considered to be interesting values. Since thefsatlwes used in qualitative
reasoning corresponds to the set of semiqualitative iatebtained fok = 1, it is clear
that semiqualitative reasoning is a generalisation ofitaiale reasoning.

A basic understanding of how semiqualitative reasoning beaysed to solve sets of dif-
ferential equations may be obtained from a simple exampbesider the following set of
eguations:

X1 +Xo = X3
XXy = X3
dx
— = X
dt >

The model is solved just as the qualitative one was by findsej af values for the variables
and their derivatives from the set of all possible valissthat the equations are satisfied.
If we have the set of intervals depicted in Figure 3 then thieviong five triplets describe

4Kuipers prefers the term “semiquantitative”.
SThe set of all possible values is not restricted to the skeofl intervals. All compositions of contiguous
intervals are also permitted values.
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one set of assignments of values to the five variables, arsdaihel conceivable state of the
system:

X dx dx
dt dt2
X [0,20] [0, 10] 0
X, [20,100] [0,10]  [—20,—100]
X; [10,20] [20,100]  [20,100]
X [0,10]  [0,10] 0
X5 [10,20] [0, —10] 0

This state is not however a physically possible state of yiseesn since it is not a solution
of equations that describe the system. This is becaysedetermined fronx; = [0, 20]
andx, = [20, 100] from the first equation which gives a value of:

[0,20] & [20, 100] — [20, 500]

where@ gives the result of adding two intervals using intervaltarietic [Moore, 1966]
(in this case20, 120]) and then finding the smallest interval or composition oéiméls
that holds the result. This value xf contrasts with that of the proposed solution, in which
X3 = [10, 20], and this contradiction rules out the solution. By similaeans, a generate
and test approach can identify all the sets of five tripletectvlare solutions of the set of
equations, and these correspond to all the semiqualitstittes of the model.

By allowing variables to take on a wider range of values thaalitptive reasoning does,
semiqualitative reasoning permits the use of those nuadesatues that are known, and this
means that it generates more precise solutions than arbleassing qualitative reasoning.
However, the fact that it is not necessary to have any monmdtion than whether a
guantity is positive, negative or zero means that, as is #ise for qualitative reasoning,
semiqualitative reasoning is very robust, and may be ussiiiuations where conventional
methods cannot be used.

4.2 The QSENECA system

Having seen the kind of results that semiqualitative ansilgan generate, we consider
a software system which can perform a semiqualitative amalgn a set of differential
equations. Since it is described at length in [Parsons arth&lp1995] we just give a
brief description here. Overall, the program works in a \@nyilar way to QSIM. It takes
the relations between the semiqualitative variables ok#tef equations to be a series of
constraints upon their value. The analysis then consistakifig the known values, and
propagating these through the network of constraintsnga®w they affect those values
that are initially undefined.

Input to the program is in four parts. The first is the set diedéntial equations describing
the model to be analysed. As for QSIM, these equations aressgd in terms of functions
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Table 5: Functional blocks, note that DX is short @r, and DDX for%‘

Identification ~ Decription

M1 Addition
M2 Multiplication
M3 Derivative
M4 X>Y
M5 DX > DY
M6 DDX > DDY

relating the variables of interested—here the functioesdascribed as functional blocks
such as those in Table 5, and the equations are considergagsheof connected functional
blocks. The second part of the input is the set of semiquizktantervals to be used for
the analysis. The third part of the input is the list of valeswhose value is required in
the output. All of these parts of the input are fairly strafghward. The final part of the
input is more complex. One way of looking at it is as a form oéuabout the system,
another is as a set of constraints on the output. Either wagy list of variables and the
intervals into which their values fall, and, as just mengidnwe can take this to be a way
of ruling out solutions which do not agree with these valugsas a request to find states
of the model which agree with them

Once given this information the program first compiles a $ebmbinator tables from the
set of semiqualitative intervals—one of the overheads efgmiqualitative approach is
the need to build a combinator table for each functionallokery time that the program
is run. Next the program decides on an order in which to tesv#tues of the variables.
This is done in such a way that the most constrained variadet value propagated first,
so that once its value is established the conceivable valugsthe related variables may
be evaluated as swiftly as possible. After these two stepgtbgram begins the process
of propagating the constraints, essentially following aayate and test strategy for the
value and derivatives of every variable. Finally, afterlgpym all the constraints to all the
variables and establishing their possible values, thesysutputs a list of all the possible
interval values of all the derivatives of all the variablestdd in the final part of the input.

4.3 An example of semiqualitative reasoning

As an example of the use of the QSENECA system, consider th&salitative analysis
of the same anaerobic fermentor as we used in Section 2 tegpleare for convenience:

dx
d—tl —+ (k12 —+ k13)X1 + k11X1X5 = k21X2
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dx
d—t2+k21X2 = KioXg
dx
d—t3 —kesxys = kisxg
d
d—)%+k43X4 = K1 XiXs

d
d—)::S + k53X5 + k11X1X5 =0

As with the qualitative model, the fact that a specific exaniplused should not distract
attention from the fact that the method can be used to solyea@mation based model. The
model used for the semiqualitative analysis consists oféinee set of differential equations
as before, plus those numerical values that are known. Hregke values of the following
constants:

kyp = 100
ko = 15
ks = 5.0
kyy = 3.0
ki = 1.0
ks = 0.3
kes = —1.0

The first stage in the analysis is to write the equations thatidbe the model in form in
which they may easily be specified using the functional dodkitially they are written
as a series of variables related only by addition and equdlitere is no subtraction block
since subtraction causes problems in interval arithmatid, any equation written using
subtraction may be rewritten using addition. This generateew set of equations:

Xo X1 + X9 = X2
X7 +Xi2 = X
Xi5 + X6 = Xg
Xg +Xi6 = Xig
Xio + X7 + X9 = Xig

This second set of equations may be directly written dowreims of functional blocks.
There are further equations which relate the variablesdratiove equations to each other,
just as in the QSIM model:

o
% T o
dXQ

X7 = H
Xg = dX3

dt
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dx;
X9 = ot
Xio = C:j—)ff
X1 = 6.5%
X12 = 3.0%
X13 = 100x;
X4 = 1.9%
X5 = 5.0
X6 = 1.0x4
X1z = 0.3%X5
Xig = 0
X9 = Xi3Xs
X0 = X+ X1
X1 = X+ Xi7

Having done this, it is simple to transform the set of equegito a network of functional
blocks, and this comprises the first part of the input to tlegmm. The second part of the
input are the semiqualitative intervals, which are thosEigtire 4. These are a default set
of boundaries suitable for a first attempt at an analysis.tfiing part of the input is the list
of variables whose value are required in the output. In tleergle, since we are interested
in the values ok,—x, this part of the input will contain the names of these vaealdnd
their first and second derivatives, because we want to knewdtue of all three. The
fourth part of the input is a set of additional constraintgegiby stating the values of some
of the variables and their derivatives:
2
X i @

X1 [0, 20] [0, 10]

Xo  [10,1000] ?

X3 [0,20] ?

X, [10,1000] ?

Xs  [10,20] [0, —10]

Note that? is shorthand for the intervil-oo, oo]. This set of constraints may be considered
as a query, in this case asking the question:

Whenx; is present in a concentration of less than 20, what are the imay
which it is possible to achieve a Iineéaﬂ;% = 0) increase of concentration of
x; of less than 10 units per unit time whikg is present with a concentration
of between 10 and 20, and changes Iineéﬁ’afgQ = () at a rate of less than 10



Qualitative modelling 23

—oo —1000-500-100 —20 —10 O 10 20 100 500 1000 oo

Figure 4: A second set of semiqualitative intervals

units per unit time? Meanwhileg; is known to have a positive concentration
of less than 20, while that o, andx, is between 10 and 1000. The way that
these last three variables change with time is not known.

This is, of course, a more constrained version of the prolsielved by QSIM in Section 2.
Solving this model gives the following as one possible behav(we only write down the
gualitative state oX,, X3 andxy, the variables whose time derivatives are unknown):

X dx dx
dt dt2
X, [20,100] 20, 100] [0, —10]
x;  [10,20] [500,1000]  [—20, —100]

Xy [500,1000] [—500,—1000]  [500, 1000]

which gives us a reasonably detailed idea of what valueauib&tisate concentrations might
have, and less detailed but still useful information on hiegytmight change over time. Of

course, in general, there will be a number of semiqualigegmutions for every qualitative

one, each with slightly different interval values for vdules and their derivatives. These
are, of course, the result of various branching historieeersemiqualitative analysis.

The analysis may be refined. For instance, if we want to fuithestigate the value and
first derivative ofx,, say, we could choose a new set of intervals, choosing theruippit
of the third positive interval to be 50 instead of 100 as inufeg5. With the rest of the input
the same as before, the following behaviour is one generated

X o dx
dt dt2
X2 [20,50] 20, 50] [0, —10]
xs  [10,20] [500,1000]  [—20, —50]

x, [500,1000] [—500,—1000] [500, 1000]

which shows that by making certain intervals narrower, gassible to make the solution
more accurate, in that the intervals in the solution becoareower also. This process
could, of course, be repeated. We could split the intg®@l50] into [20, 35] and[35, 50]

in order to further narrow down the possible valuegbr split[500, 1000] into [500, 750]
and|[750, 1000] to get a better idea of the possible valueg.ofOf course, every such divi-
sion increases the computation needed and may well gerselatge number of additional
solutions.
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—oo —1000-500-50 —20 —10 O 10 20 50 500 1000 oo

Figure 5: A third set of semiqualitative intervals
5 Summary

The modelling of environmental problems often involvesgbkition of models, expressed
in terms of differential equations, which have missing atiply known numerical values.
This makes it difficult to solve the models using conventl@iaulation techniques. This
chapter has discussed the use of a range of techniques ftifitiarintelligence which
provide ways of solving such models. While the techniquesat@vercome the difficulties
entirely—since it is not possible, in general, to providegse answers from imprecise and
incomplete data—they do provide means of obtaining someisak which may be useful.

The chapter has introduced three strands of work from the efgualitative modelling
which seem patrticularly applicable for environmental @egring—qualitative reasoning,
order of magnitude reasoning, and semiqualitative reagomior each technique the chap-
ter has given an overview of the style of reasoning it prosj@edescription of a particular
system which provides that kind of reasoning, and an il&isin of that kind of reasoning
applied to a model of an anaerobic fermentor. Despite thigeotration on one type of
model, it is hopefully clear that the techniques descritmddabe applied to a wide range
of environmental problems.
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