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Using interval algebras to model order of magnitude
reasoning

Simon Parsons
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Qualitative reasoning, introduced as a means of simulating human commonsense reasoning, has been
extended by several authors to encompass reasoning about the order of magnitude of quantities. This
paper discusses how interval algebras may form a basis for modelling three schemes for order of
magnitude reasoning, and uses one of them to solve a problem from biotechnology.
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1. INTRODUCTION

Complex physical systems are commonly described by
sets of differential equations relating the behaviour of
those key variables whose changes in value define the
behaviour of the system as a whole. When solved these
equations provide a model of the system which can be
used to predict its behaviour under given circumstances.
However, the solution of such sets of equations is often
time-consuming, and the quality of the solution often
depends upon the accuracy with which various constant
terms are determined. Indeed it is impossible to perform a
conventional computer based simulation of a complex
system without such values. Human beings, in contrast,
have little difficulty in performing reasoning such as “if
pressure increases then volume decreases”, and this sort of
reasoning is possible even when the magnitude of some
constants is only known relative to others, so that, for
instance K3 is known to be greater than Gm.

Qualitative reasoning1 was introduced as a formalism
for reasoning about physical systems that captures many
of these features of human reasoning. Qualitative
reasoning reduces the quantitative precision of behavioural
descriptions whilst retaining the crucial distinctions. Real
valued variables are replaced with qualitative variables
which can adopt only a small number of values, usually
+, 0 and -. The behaviour is described in terms of changes
in the qualitative value of a number of state variables and
their first and second derivatives, and these values are
related by means of qualitative differential equations, often
called confluences. For example, we write:

dPIN, OUT     + dQ#1(V, V)  = 0

dPOUT, SMP  + dF#1(S) + dFA(M) = 0

dPIN, SMP = +

to qualitatively describe part of the behaviour of a pressure
regulator, where dP is shorthand for dP/dt, the first time
derivative of P.  In theory there is no reason to limit the
information used to just the first two derivatives, but in
practice it is extremely difficult to obtain higher order
relations.  All time derivatives are continuous, so that no
variable may jump from one qualitative state to another
without passing through any intervening states, and

variables are combined by means of combinator tables
giving the result of every possible combination of inputs,
so for qualitative addition ⊕ we have the table of Figure
1.
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Figure 1. Combinator table for qualitative addition

The basic model has been extended in a number of
directions in recent years, generally in an attempt to defeat
its tendency to over abstract, obscuring important detail
and rendering some simple problems insoluble. Notable
attempts at providing more precise systems include
Raiman’s2 FOG, Mavrovouniotis and Stephanopoulos’3

O[M], and Dubois and Prade’s4 system based on fuzzy
arithmetic. These systems are often collectively known as
order of magnitude systems since they make explicit use
of the relative size between the quantities with which they
deal.

Other important work has been carried out by Travé-
Massuyès and Piera5 who have provided a mathematical
characterisation of some of the properties of order of
magnitude models, and give a set of axioms for the
algebras that they use. Struss6 has provided an analysis of
the soundness and completeness of qualitative models and
has demonstrated that their difficulties in this respect are
not alleviated by recasting them as algebras of more
restricted intervals.

In this paper we briefly review the work of Raiman,
Mavrovouniotis and Stephanopoulos, and Dubois and
Prade. We introduce semiqualitative models as a
generalisation of the basic qualitative calculus, and sketch
their relationship with interval arithmetic7. Interval
algebras are discussed as an extension of these ideas, and
their relationship with Travé-Massuyès and Piera’s
qualitative algebras outlined. The main part of the paper
analyses the ways in  which interval and qualitative
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algebras may form a simple basis for order of magnitude
reasoning.

2. AN OVERVIEW OF ORDER OF
MAGNITUDE TECHNIQUES

There seem to be three distinct approaches to the
formalisation of human order of magnitude reasoning; the
process by which the relations between the magnitude of
quantities is used to simplify the qualitative models used
to predict the behaviour of devices and systems. Dubois
and Prade4 showed that fuzzy set theory can provide a
basis for an absolute order of magnitude system by
dividing the real numbers into an arbitrarily large set of
fuzzy intervals. Raiman2 proposed a system FOG that
uses relational operators to denote the size relation
between quantities. Finally, Mavrovouniotis and
Stephanopoulos3 introduced a system O[M] based on the
relative magnitude of quantities that overcame what they
saw as serious flaws in FOG.

In the remainder of this section we will briefly discuss
the properties of these three approaches as a necessary
precursor to demonstrating that interval arithmetic is
capable of providing an underlying formal basis for the
techniques.

2.1 Absolute orders of magnitude and fuzzy intervals

Dubois and Prade4 propose that order of magnitude
reasoning can be performed by increasing the precision of
qualitative reasoning, splitting the quantity space1 {-, 0,
+}   into smaller fuzzy intervals; negative large (NL),
negative medium (NM), negative small (NS), zero (0),
positive small (PS), positive medium (PM), positive
large (PL). These may be viewed as a partitioning of the
real numbers (Figure 2).

1

0

NL NM NS PS PM PL

Figure 2. A fuzzy partition of the real numbers

It is  suggested that a meaningful calculus should
conform to the following conditions:

C1: The combinator tables which define the
arithmetic operations of qualitative reasoning
should be maintained for efficient order of
magnitude reasoning.

C2: The calculus should be consistent with the
real values that it approximates, and the
operations over them.

Dubois and Prade show that the closure of the combinator
tables for the fuzzy interval system can be obtained by
defining the operations over all possible combinations of

adjacent intervals in addition to the intervals themselves.
Thus we have:

PS ⊕ PS = +
PM ⊕ PM = PM+
PM ⊕ PL = PL

where ⊕ is the addition operator for the calculus, and
PM+ = [PM, PL], + = [PS, PL] for [si, sj] = {sk | si ≤ sk
≤ sj}  with  si, sj, sk ∈ {NL, NM, NS, 0, PS, PM, PL}.

2.2  Relative orders of magnitude and O[M]

Mavrovouniotis and Stephanopoulos3 constructed a
system of order of magnitude reasoning based on seven
primitive relations:

A << B A is much smaller than B
A -< B A is moderately smaller than B
A ~< B A is slightly smaller than B
A == B A is exactly equal to B
A >~ B A is slightly larger than B
A >- B A is moderately larger than B
A >> B A is much larger than B

Further relations are constructed as disjunctions of two
or more consecutive relations, so that ‘A is less than B’ is
denoted ‘A << ... ~< B’. A total of 21 compound relations
may be formed including all those that, Mavrovouniotis
and Stephanopoulos claim, are commonly used by
engineers.

The semantics of O[M] relations are defined by fixing
the allowed range of the ratio of the two quantities in
question. We have for rel ∈ {<<, -<, ~<, ==, >~, >-, >>}:

A rel B –
A
B

  rel 1

and the bounds on the intervals are defined by the values
e1, e2, e3, and e4 (see Figure 3(a)). A strict interpretation

requires:

e3 = e1 + 1

e4 =
1
e1

 (1)

e2 =
1
e3

 

allowing the intervals to be determined by a single
application specific accuracy parameter  e (Figure 3 (b)):

e1 = e (2)

This interpretation was felt to be too error prone, so the
set of intervals was replaced with a pair of sets of
overlapping (Figure 3 (c)) and non-exhaustive (Figure
3(d)) intervals, creating a so-called heuristic interpretation.
Inferences proceed from antecedents whose values are
restricted to the non-exhaustive intervals to create
consequents that have overlapping  interval values.

These consequent values are shrunk to non-exhaustive
values when used as the basis for further reasoning. This
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behaviour mirrors the human tendency to chain
approximate inferences regardless of the inherent
uncertainty, reasoning that:

A >~ B, B >~ C → A >~ C
A >~ C, C >~ D → A >~ D

A/B << 1 A/B >> 1

A/B -< 1 A/B >- 1

A/B == 1

A/B >~ 1A/B ~< 1

e1 e2 1 e3 e4

e 1 1+e e
-1

(1+e)
-1

(1+e)

1

1+e
-1

ee (1+e)e/(1+e) (1+e)/e(1+e)
-2 -1 2

(e)

(d)

(c)

(b)

(a)

         Figure 3. The intervals defining Mavrouniotis and Stephanopolous’ primitive relations

The boundaries are those of Figure 3(e).

2.3 FOG and Symbolic relations

Raiman2 introduced the FOG system based on three
operators, Ne, Vo, Co representing what he claimed were
intuitive order of magnitude concepts:

A Ne B : A is negligible with respect to B
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A Vo B : A is close to B so that A - B is negligible
with respect to B

A Co B : A is comparable to B so that A has the same
sign and order of magnitude as B so that if B
Ne C, then A  Ne C.

these relations are used to define a set of 31 inference rules
such as:

A Vo B → B Vo A
A  Vo B, B Vo C → A Vo C
A Ne B, B Ne C → A Ne C
A Vo B, B Ne C → A Ne C

and the rules are then used with the axiom A Vo A to
propagate relations between quantities to solve problems
that defeat qualitative reasoning due to the latter’s over
abstraction.

Raiman provides a semantics for the relations based on
non-standard analysis. As Dubois and Prade8 point out,
while this is natural in the limiting case, it is problematic
when relations such as ‘close’ are taken to mean ‘within a
certain interval’ rather than ‘infinitely close’. Indeed, such
an interpretation makes the transitivity of Vo
unacceptable, and forces Raiman to limit the repeated use
of such rules.

Dubois and Prade4 suggest using fuzzy relations to
model the FOG approach to order of magnitude reasoning,
giving a fuzzy interpretation of the symbolic relations.

3. A FAMILY OF INTERVAL
ALGEBRAS

In this section we discuss semiqualitative reasoning9 as an
implementation of interval arithmetic7 and show how
interval algebras may be defined. The relationship between
interval algebras and the qualitative algebra of Travé-
Massuyès and Piera5 is outlined.

3.1 Interval arithmetic and semiqualitative reasoning

Semiqualitative reasoning is a generalisation of qualitative
reasoning1 which increases precision by splitting the
quantity space into (2k +1) intervals whose boundaries are
the ordered set of values:

{ I(-k), I(-(k - 1),..., I(-1), I(0), I(1),..., I(k - 1), I(k) }

where I(+j) is the upper boundary of the  jth positive

interval, I(-j) is the lower boundary of the jth negative

interval and I(0) is the zero interval. Clearly the standard

quantity space {+, 0, 1} is that obtained for k = 1, I(-k) = -

• and I(k) = •.

The size of the intervals is tailored to suit specific
problems, and the sequence of boundaries may be in an
arithmetic or geometric progression, or chosen to cover
values of interest9. The arithmetic properties of
semiqualitative systems are defined by Moore’s interval
arithmetic, and are summarised by:

[a, b] ⊗i [c, d] = [min (a⊗jc, a⊗jd, b⊗jc, b⊗jd},

    max(a⊗jc, a⊗jd, b⊗jc, b⊗jd)] (3)

where ⊗ j  ∈ { +, -, × , ÷} and ⊗ i is its interval

equivalent. Division by intervals containing 0 is not
defined. Note that operations over degenerate intervals [a,
b] where a = b, are equal to the equivalent operations over
the respective reals:

[a, b] ⊗i [c, d] =   a⊗jc = a⊗jd  =  b⊗jc = b⊗jd

for  a = b and c = d. Thus interval arithmetic may be
considered to be a generalisation of real arithmetic. In
practice the results of arithmetic operations are specified
by means of combinator tables.  Consider a system using
the ordered set of intervals {[a, b], [b, c], [c, d]} with equal
spacing so that (b - a)  =  (c - b)  =  (d - c) and d = 3b. The
tendency of interval arithmetic to extend the interval
bounds means that the full set of operands include
compound intervals, so that the operator table for addition
⊕ is that of Figure 4.

The closure of the operations is clearly a problem for
arbitrarily specified intervals. A suitable approximation
may be, as above, to allow the upper and lower intervals
to absorb all values that exceed their bounds.  

[c, d][b, c][a, c] [b, d][a, b] [a, d]

[a, b]

[c, d][b, d] [b, d][b, d] [b, d]

[c, d][c, d] [c, d][c, d] [b, d]

[c, d][a, d] [b, d][a, c] [a, d]

[c, d][a, d] [b, d][a, d] [a, d]

[c, d][a, d] [b, d][a, d] [a, d]

[c, d][b, d] [b, d][b, d] [b, d]

[b, d]

[c, d]

[a, d]

[a, c]

[b, c]

⊕

[b, d]

[c, d]

[b, d]

[b, d]

[b, d]

[b, d]

Figure 4. The combinator table for the addition of a set of
intervals

This is unlikely to appeal to purists, and an alternative
approach is to consider new maximum and minimum
intervals  extending  from the largest positive and negative
values to ±•. Despite such theoretical problems,
semiqualitative techniques have been successfully applied
to number of engineering problems which are not soluble
by pure qualitative reasoning. Such problems include
simulations of chemical reactions10 and bioengineering
processes11.

3.2 Interval and Qualitative Algebras

A particular interval algebra may be defined from a ordered
set of values V = {v1,...,vn}. The set of intervals over

which the operators of the algebra are closed is the set of
all intervals [vi, vj] such that vi ≤ vj and vi, vj ∈ V.  We

can define an order12 ≤Q3 over the interval such that [vi,

vj]  ≤Q3 [vk, vl]  iff  (vi + vj ) ≤ (vk + vl).
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Travé-Massuyès and Piera5 present a mathematical
framework to support order of magnitude reasoning that
explicitly distinguishes between different levels of
description. Given a set S and an order ≤  defined over S,
qualitative equality ± is defined as:

a ± b if there exists x ∈ S such that x ≤ a and x ≤ b.
A qualitative algebra is a pair (S, ±) provided with

operations ⊕ and ⊗, which are:

(i) qualitatively associative: a ⊗ (b ⊗ c) ± (a ⊗ b) ⊗ c and
a ⊕ (b ⊕ c) ± (a ⊕ b) ⊕ c.

(ii) qualitatively commutative: a ⊗ b ± b ⊗ a and a ⊕ b
± b ⊕ a.

(iii) ⊗ is qualitatively distributive with respect to ⊕: a ⊗
(b ⊕ c) ± (a ⊗ b) ⊕ (a ⊗ c).

Travé-Massuyès and Piera prove that a qualitative
algebra (S, ±, ⊕, ⊗) and a subalgebra (T, ±, ⊕, ⊗) where
T ‹ S and T ≠ Ø are embedded in one another, and that it is
possible to dynamically refine a model during processing
by switching from T to S.

It is possible to show9 that interval algebras defined as
above are qualitative algebras (Si, ±, ⊕ , ⊗) for interval

addition ⊕ , interval multiplication ⊗ , and Q-equality
defined by the following:

[vl - vj ] ± [vk - vi] if there exists an interval [va, vb]

such that  [va, vb] ≤Q3 [vi, vj] and [va, vb] ≤Q3 [vk,

vl].

4. ORDER OF MAGNITUDE
REASONING USING INTERVALS

Having discussed several proposals for order of magnitude
reasoning in some detail, we now demonstrate how they
may be interpreted in terms of interval algebras. Whilst
interval methods may be said to subsume FOG and O[M]
in some sense, it makes little sense to claim that it
subsumes the more general fuzzy approach. Instead we can
merely claim that the full mechanism of fuzzy
mathematics is not required for the comparatively simple
domain discussed by Dubois and Prade.

4.1 Absolute order of magnitude

As suggested by Dubois and Prade, their absolute order of
magnitude scheme may be modelled by adjacent intervals.

In keeping  with the underlying interval arithmetic, we
will reference the intervals by their endpoints so that NL =
[-•, nm], NM = [nm, ns], NS = [ns, 0], PS = [0, ps], PM
= [ps, pm] and PL = [pm, •]. This gives the intervals of
Figure 5.

−∞ nm ns ps0 ∞pm

Figure 5. Intervals for modelling absolute order of
magnitude reasoning

Defining the intervals by means of their boundaries
gives us an easy means of obtaining closure, since the
operations over two intervals are defined by equation (3).
The additional intervals are formed automatically, and
follow directly from the set of landmark values. The
combinator table for the addition operation  ⊕  includes
Figure 6 for the addition of positive valued intervals.

With the full ⊕ table, and a combinator table for
interval multiplication ⊗ as defined by (3) we can specify
a family S of  algebras over the basic set of intervals { [-

∞ , nm], [nm, ns], [ns, 0], [0, ps], [ps, pm], [pm, ∞]}

such that <Si, ±, ⊕, ⊗> ∈ S and Si ⁄ { {[-∞, nm], [nm,

ns], [ns, 0], [0, ps], [ps, pm], [pm, ∞]}, {[-∞, ns], [nm,

0], [ns, ps], [pm, 0], [ps, ∞]}, {[-∞, 0], [nm, ps], [ns,

pm], [0, ∞]}, {[-∞, ps], [nm, pm], [ns, ∞]} {[-∞, pm],

[nm, ∞]}, {[-∞, ∞]} }. Note that the intervals [0, ∞] and

[-∞, 0] correspond to the qualitative intervals + and -

respectively, and that [-∞, ∞] is equivalent to the

qualitative value ? introduced to maintain closure1. There
is an implied order on the Si that is summarised by Figure

7.
Since the family S are interval algebras and thus obey

Travé-Massuyès and Piera’s axioms, we can switch
between levels of granularity at will.

It is also possible to consider the fuzzy intervals as
defining overlapping intervals on the real axis. This
interpretation may also be modelled using adjacent
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[pm, •][ps, pm][0, pm] [ps, •][0, ps] [0, •]

[0, ps]

[pm, •][ps, •] [ps, •] [ps, •][ps, •] [ps, •]

[pm, •][pm, •] [pm, •] [pm, •][pm, •] [pm, •]

[pm, •][0, •] [ps, •] [ps, •][0, •] [0, •]

[pm, •][0, •] [ps, •] [ps, •][0, •] [0, •]

[pm, •][0, •] [ps, •] [ps, •][0, •] [0, •]

[pm, •][ps, •] [ps, •] [ps, •][ps, •] [ps, •]

[ps, •]

[pm, •]

[0, •]

[0, pm]

[ps, pm]

⊕

Figure 6. Part of the combinator table for addition of Dubois and Prade’s set of intervals

[-•, •]

[nm, •]

[ns, •]

[0, •]

[ps, •]

[pm, •]

[-•, pm]

[-•, ps]

[-•, 0]

[-•, ns]

[-•, •]

[nm, pm]

[nm, ps]

[nm, 0]

[nm, ns]

[ns, pm]

[ns, ps]

[ns, 0]

[0, pm]

[0, ps] [ps, pm]

Figure 7. The order on the family of algebras

intervals by distinguishing between those regions that are,
say, purely in PM, and those that are in PS and PM or PL
and PM. Such an interpretation is given in Figure 8. Here

NL = [-∞, nm-], NM = [nm+, ns-], NS = [ns+, 0], PS =

[0, ps+], PM = [ps-, pm+] and PL = [pm-, ∞]. A further
family of interval algebras may be based on this set of
values.

4.2 Relative order of magnitude models

Here we discuss how we can interpret quantities in terms
of the O[M] model. We can both propagate interval
values, and deal with order of magnitude relations, which
are essentially interval based, between relations.

4.2.1 The strict interpretation

O[M] relations are defined by means of the interval
containing  the result of dividing one quantity by another.
Thus the representation has an natural interval arithmetic
interpretation. We first define a mapping [[ ]]  between the
ratio between the quantities and their O[M]  relation. For
any A = [a1, a2]  B = [b1, b2]:

  [[ A B ]]  = 






A << B if  e1  > [A/B

A -< B if  e1  < [A/B] < e2
A ~< B  if  e2 < [A/B] < 1

A == B if  1 = [A/B]
A >~ B if  1 < [A/B] < e3
A >- B if  e3 < [A/B] < e4
A >> B if  e4 < [A/B]

 

where [A/B] = [a1/b2, a2/b1] is the interval valued result

of dividing A by B.
The mapping loses no generality by being described as

operating over intervals (see Section 3.1) and the interval
definition will be required to establish the result of order
of magnitude inference. The constants e1, e2, e3 and e4 are

related to the accuracy parameter e by (1) and (2).  A
reverse mapping [[ ]]’ generates the permitted interval
value of A/B from the relation between them. For rel ∈
{<<, -<, ~<, ==, >~, >-, >>}, A = [a1, a2]  B = [b1, b2],

and [A/B] = [a1/b2, a2/b1]:
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[[A rel B]]’  =  






e1  > [A/B]              i f   rel  = <<

e1  < [A/B] < e2  if rel = -<

e2 < [A/B] < 1     if  rel  = ~<

1 =     [A/B]               i f   re l  =    ==
1 <  [A/B] <  e3 if  rel  = >~

e3 < [A/B] < e4  if rel = >-

e 4 < [A/B]               i f   re l  =  >>

 

Initial relations between quantities may established either
by [[ ]] or by definition. Propagation is achieved by using
[[ ]]’ to get the bounds on the ratios between quantities
which are then manipulated using interval arithmetic. [[ ]]

is then applied to obtain the final relations. Thus given A
-< B and B -< C we can use [[ ]]’ to obtain e1 < [A/B] <

e2 and e1 < [B/C] < e2 from which it is trivial to

establish e1
2 < [A/C] < e2

2. This interval ratio can be

converted by [[ ]] into the relationship A <<...-< C. The
extension of the interval mirrors the cautious, and
arguably correct, tendency of interval arithmetic to
accentuate the underlying uncertainty. Given the bounds
on -< it is possible that the value of A/C is less than the
lower limit on -<.

ps- ps+ pm-ns-ns+nm+ nm- pm+0• •

Figure 8. An alternative modelling of absolute order of magnitude reasoning
4.2.2 The heuristic interpretation

If such cautious inferences are to be avoided we must
support the heuristic interpretation, which requires another
pair of mappings; [[ ]]h to map onto the extended

intervals, and [[ ]]h
’ to retrieve the non-exhaustive

intervals. So for A = [a1, a2]  B = [b1, b2] and [A/B] =

[a1/b2, a2/b1]:

  [[ A B ]] h  = 






A << B if  e1 > [A/B]

A -< B if  e5 < [A/B] < e2
A ~< B if  e6 < [A/B] < 1

A == B if  1 =  [A/B]
A >~ B if   1   < [A/B] < e3
A >~ B if  e7  < [A/B] < e4
A >> B if  e8 < [A/B]

 

where e1, e2, e3 and e4 are related to e by (1) and (2), and

e5 = e/(1+e), e6 = (1 + e)-2, e7 = (1 + e)2, and e8 = (1 +

e)/e are the boundaries of the interval overlaps. We also
have, for any A, B, rel:

 [[ A rel B]]h
’  =  






e5 > [A/B]   if  rel = <<

e1 < [A/B]< e6  if  rel = -<

e2 < [A/B] < 1  if rel = ~<

1 =  [A/B]   if rel =  ==
1 <  [A/B] < e3  if rel = >~

e7 < [A/B] < e4 if rel = >-

e8 < [A/B]  if rel = >>

 

using the same procedure as before we can take A ~< B
and B ~< C, obtain (1 + e)-1 < [A/B] < 1 and (1 + e)-1 <

[B/C] < 1 from which we deduce  (1 + e)-2 < [A/C] < 1
which enables us to conclude that A ~< C.

Note that while the mappings given here cover just the
basic O[M] relations, there is no reason why they cannot
be extended to deal with all 21 compound relations. For
instance we can define [[ A B ]] = A -<... ~< B if e1 <

[A/B] < 1, [[A -<..>- B]]’  =  e1 < [A/B] <  e4, [[ A B ]]

h  =  A -<... ~< B if e5 < [A/B] < 1 and   [[A -<...>-

B]]h
’ =  e1 < [A/B] < e4.

4.2.3 An example

To demonstrate that our approach captures the essence of
O[M], we solve the heat exchanger example introduced by
Mavrovouniotis and Stephanopoulos13. We have a
countercurrent heat exchanger as  pictured in Figure 9,
with a hot flow that is cooled and a cold flow that is
heated. The important parameters are the molar heat
capacities of the hot and cold streams, Kh and Kc and the

molar flows Fh and Fc. The following temperature

differences may be defined:

ÌTh = Th1 - Th2 ÌTc
= Tc1 - Tc2
ÌT1 = Th1 - Tc1 (4)

ÌT2 = Th2 - Tc2

hot

cold

hot

cold

FH, KH

FC, KC

T

T T

T
h1

c1

h2

c2

1 2
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Figure 9. A heat exchanger

so that ÌTh is the drop in temperature of the hot stream,

ÌTc the rise in temperature of the cold stream, and ÌT1 and

ÌT2 are the differences in temperature at either end of the

exchanger. The definitions (4) constrain the values of the
parameters:

ÌTh - ÌT1 - ÌTc + ÌT2 = 0 (5)

and since all the energy entering the cold stream must
come from the hot stream:

ÌTh . Kh . Fh = ÌTc . Fc . Kc (6)

Following  Mavrovouniotis and Stephanopoulos we will
assume:

ÌT2 -< ÌT1 (7)

ÌT1 << ÌTh (8)

Kh >~ Kc (9)

(a) Applying [[ ]]h’ to (7) and (8) we get  ÌT2/ÌT1 = [e1,

e6] and  ÌT1/ÌTh < e5. This simply  yields ÌT2/ÌTh < e1e5
< e1, and applying [[ ]]h gives

ÌT2 << ÌTh (10)

(b) From (5) we know that  
ÌTc 

ÌTh
  = 1- 

ÌT1
ÌTh

  + 
ÌT2 

ÌTh
 .

Using [[ ]]h’ on (8) and (10) we can rewrite this as  ÌTc
/ÌTh = [1 - e/(1 + e), 1 + e/(1+e)]. Clearly, since e < 1,

ÌTc /ÌTh  ⁄ [e2, e3] so [[ ]]h gives us :

ÌTc ~<...>~ ÌTh (11)

(c) Applying [[ ]]h’ to (8) and (11) we get ÌTc/ÌTh= [e2,

e3] and  ÌT1/ÌTh < e5. This gives us ÌT1/ÌTc < e5 (1+e) <

e1, and applying [[ ]]h gives

ÌT1 << ÌTc (12)

(d) Rewriting (6) as  
ÌTc 

ÌTh
  = 1- 

ÌT1
ÌTh

  + 
ÌT2 

ÌTh
  and

substituting in the results of applying [[ ]]h’ to [9] and

[11], we get Fc/Fh = [e2, e3
2] which by [[ ]]h gives us:

Fc ~<...>~ Fh (13)

These results are precisely those obtained by O[M].

4.3 The FOG approach

In this section we consider how the interval methods
introduced in Sections 3 may be used to model Raiman’s2

FOG. Raiman’s approach may modelled by interpreting

the relations Vo, Co and Ne in terms of the basic relations
supplied by O[M]. Mavrovouniotis and Stephanopoulos3

suggest the equivalences:

A Ne B – A << B
A Vo B – A ~<...>~ B
A Co B – A -<...>- B

in which case the technique we have discussed for O[M]
relations  may be applied.

4.3.1 An interval interpretation of  FOG

Alternatively we can adopt Raiman’s definitions and
obtain Vo and Co in terms of Ne:

A Vo B iff (A - B) Ne B (14)

A Co B iff ÅC  A Ne C ⇔ B Ne C

then borrowing from O[M] and defining Ne by the ratio
between A = [a1, a2] and B = [b1, b2], we have, say:

A Ne B iff [A/B]  <  e5 (15)

since A - B = [a1 - b2, a2 - b1], (14) and A Vo B → B Vo

A give us:

A Vo B iff
a2  - b1

b1
  < e5  and 

b2 - a1
a1

  < e5 (16)

As far as Co is concerned, we know from (14) that for
A Co B then for C = [c1, c2] such that  a2/c1 < e5, b2/c1
< e5. This condition alone does not preclude A Ne B, so

we need to encode the intuitive notion that A/B = [1 - k, 1
+ k] ± 1. We will conjecture these limits as A/B = [1- e2,

1 + e2] so that:

A Co B iff A = [(1- e2)b2, (1 + e2)b1]  

Since the intervals are bounded by real parameters
derived from e which describes the granularity of the
reasoning, both these approaches allow  us to perform
inferences that are not possible in FOG such as:

A Vo 0.1, B Vo 1000 → A Ne B

4.3.2  A further example

Raiman provides a simple mechanics problem that defeats
simple qualitative techniques as motivation for the
development of FOG. Here we show how it may be
solved using the interval schemes described above. Two
masses M and m (Figure 10), where m  is negligible in
comparison with M, and roughly equivalent speeds Vi and

vi, are moving in opposite directions in one dimension.

What happens after impact?
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M m

V v
i i

Figure 10. A pair of colliding masses

We have:

m Ne M (17)
vi Vo -Vi (18)

The conservation of energy and momentum give us,
respectively:

MVi
2 + mvi

2 Vo MVf
2 + mvf

2 (19)

MVi - mvi Vo MVf
  + mvf (20)

Using the O[M] interpretations of Ne and Vo suggested
by Mavrovouniotis and Stephanopoulos, and applying [[
]]h’, we can rewrite (19) and (20) as:

Vi 








1   -  
mvi

2

MVi
2

Vf 








1   +
mvf

2

MVf
2

 = [e2, e3] (21)

Vi 








1   -  
mvi
MVi

Vf 








1   +
mvf
MVf

 = [e2, e3] (22)

Now, (17) and (18) give us the values m/M < e5 and

vi/Vi < [e2, e3], so, taking the accuracy parameter e to be

0.1, we can solve (21) and (22) and calculate Vf  = [0.84,

1.1] Vi, ignoring the physically impossible solution, so

that:

Vf Vo Vi

Applying [[ ]]h’ gives us Vf/Vi = [e2, e3] which, along

with (22) allows us to deduce:

vf Vo Vf

Comparing this with Raiman’s results suggests that
this interpretation of Vo is perhaps closer to his idea of
Co than Vo.

Solving the problem with the second interpretation of
the symbolic relations, we can rewrite (16) as:

A Vo B iff [A/B] = [
1

1 + e5
 , 1 + e5]

With m/M < e5 as before, we can solve (21) and (22) to

get Vf  = [0.84, 1.1] Vi, so that:

Vf Vo Vi and vf Vo Vf

4.3.3 Related work

In a recent paper Dubois and Prade8 suggest another
means of dealing with Raiman’s relations, providing a
new semantics based on crisp intervals. Whereas our
approach makes Raiman’s inference rules redundant to
some extent by propagating interval values and mapping
between intervals and relations, Dubois and Prade augment
the rules by parameterising the symbol relations with
tolerance intervals into which the ratios of the related
quantities fall:

A Vo(M) B ⇔ 1 - e ≤ min(A/B, B/A) ≤ 1

where M = [1 - e, 1] and 0 ≤ e ≤ 1
As inference proceeds, the tolerance interval evolves, its

growth depending on which rules are fired. The size of the
interval can be used to terminate inference when a given
limit is exceeded, rather than after an arbitrary number of
steps.

5. A MORE COMPLEX EXAMPLE

In this section we consider the application of methods of
order of magnitude reasoning based on interval analysis to
a more complex problem, namely the steady state analysis
of an anaerobic digestor. Such digestors form the basis of
many sewage treatment facilities and thus represent an
important class of bioreactor. Bailey and Ollis14 give
discuss the model of an anaerobic digestor represented by
the set of equations in Figure 11.

An analytical solution to this rather complex model
may be obtained, but only if exact values of all the
numerical constants are given. Using much less precise
knowledge, it is possible to deduce quite a lot about the
system’s steady state behaviour using order of magnitude
reasoning. In the following analysis we apply the style of
reasoning introduced by Mavrovouniotis and
Stephanopoulos using interval arithmetic as discussed in
Section 4.2.

We start with an estimation of the rate µ based on the
knowledge that, in the steady state, (hs) is roughly equal
to Ks but much smaller than Ki:

(hs) ~<...>~ Ks (40)

(hs) << Ki (41)

Applying the mapping [[ ]]h
’ to = (40) and (41) we

know that  
Ks

 (hs)
   = [e2, e3] and 

(hs)
 K i

  = [0, e5]. Thus

from (37) we have:

µmax
µ

 = [1 + e2, 1 + e3 + e5]
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If we take the accuracy parameter to be e = 0.1, we can

see that 
µmax

µ
  ‹ [e7, e4] so that applying [[ ]]h gives:

µmax >- µ

and we know that the rate is moderately smaller than the
maximum. Next we can make an assessment of the rate of
production of dissolved CO2, [CO2]D. We start from the

observation that the steady state concentration is much
greater than the initial concentration, and slightly less
than  the equilibrium concentration:

[CO2]D >> [CO2]D0
(42)

[CO2]D ~< [CO2]D
* (43)

Applying [[ ]]h
’ we learn that  

[CO2]D

[CO2]D
* 

  =   [1, e3]

and  
[[CO2]D0

[CO2]D
   = [0, e5]. Using (42) in (33) we find that:

d[CO2]D
dt

 =
F
V

 ([–1,  e5 – 1] [CO2]D)  

  +  TG  + RB  + RC (44)

Now, from (43) and (30) we get:

TG = kLa ([0, e3 – 1][CO2]D) (45)

which allows us to rewrite (44) as:

d[CO2]D
dt

 = [CO2]D kLa [0, e3 – 1]

 + 
F
V

  [–1,  e5 – 1] [CO2]D]

 + RB  + RC (46)

Given the additional knowledge that :

kLa >>
F
V

 

we can apply [[ ]]h
’  to obtain 

F
V

  / kLa = [0, e5] which we

can use with (46) to learn that:

d[CO2]D
dt

 =    [CO2]D kLa [0, e3  + e5 + e5
2 – 1]

+ RB  + RC  (47)

                                                                                                                                                                                                                                                                                                                                                                                                 

 
dpCO2

dt
 = – pT  

V
ρgVG

   TG  – 
pCO2

VG
  Q (23)

QCO2
= –  

V
ρg

   TG (24)

Q = QCO2
 + QCH4

+ QH2O
(25)

(hs) =
s(h+)
Ka

  (26)

(h+) =
K1 [CO2]D

[HCO3
-]

  (27)

[HCO3
-] = z – s (28)

dz
dt

 =
F
V

 (zo – z) (29)

TG = kLa ([CO2]D
* – [CO2]D) (30)

[CO2]D
* = KHa pCO2

(31)

d[tox]
dt

 =
F
V

 ([tox]0 – [tox]) (32)

d[CO2]D
dt

 =
F
V

 ([CO2]D0 
– [CO2]D)  +  TG  + RB  + RC (33)
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Rc =
F
V

 ([HCO3
-]0 – [HCO3

-])  +  
ds
dt

  + 
dz
dt

  (34)

dx
dt

 =
F
V

 (x0 – x)  +  µx – kT[tox] (35)

ds
dt

 =
F
V

 (s0 – s)  – 
µ

Yx/s
  x (36)

µ =
µmax





1   +  

Ks
(hs)

 + 
(hs)

Ki

 (37)

RB = YCO2/x µx (38)

QCH4
=

V
ρg

  YCH4/x µx (39)

                                                                                                                                                                                                                                                                                                                                                                                                 

Figure 11. Equations describing an anaerobic digestor

Now,  [0, e3  + e5 + e5
2– 1]  ‹ [0, e3], so applying [[

]]h we get the fact that  [CO2]D kLa [0, e3  + e5 + e5
2 –

1] << ... -< [CO2]D kLa, so that:

d[CO2]D
dt

    << ... -<  [CO2]D kLa + RB  + RC

and the effect of the mass transfer rate of CO2 from gas to

liquid phase, TG,  can be seen to dominate in determining

the instantaneous concentration of dissolved CO2. The

original equation is already considerably simplified, and it
can be simplified further. The relationship between the
constant yield coefficients  Yx/s and YCO2/x  is such that:

1
Yx/s

  >~ YCO2/x
(48)

so that, by [[ ]]h
’,  

1
Yx/s. YCO2/x

  = [1, e3]. This allows

us to rewrite (36) as:

ds
dt

 =
F
V

 (s0 – s)  (49)

   – [1, e3] YCO2/x
 µx

which may be combined with (38) to give:

ds
dt

  + RB =
F
V

 (s0 – s)  (50)

  – [0, e3 - 1] YCO2/x
 µx

Now, since the substrate concentration is much less
than its initial value:

s << s0

we have s = [0, e5] s0  from [[ ]]h
’ and:

ds
dt

  + RB = [1 - e5, 1] 
F
V

  s0  

   – [0, e3 - 1] YCO2/x
 µx

which with the additional knowledge that YCO2/x
 µx = [0,

e5] 
F
V

  s0 , which comes from applying [[ ]]h’ to YCO2/x

µx << 
F
V

  s0, we can write:

ds
dt

  + RB = [1 - e3e5, 1] 
F
V

  s0 (51)

Now, since we know that in the steady state z  = z0,

(29) gives 
dz
dt

  = 0, and when we use the fact that the

initial carbonate concentration is zero, [HCO3
-]0  = 0, we

can rewrite (34) as:

Rc = –
F
V

  [HCO3
-]  +  

ds
dt

  

This in turn may be used with (51) to write (46) as:

d[CO2]D
dt

 =   [CO2]D kLa [0, e3  + e5 + e5
2 – 1]

+  [1 - e3e5, 1] 
F
V

  s0

– 
  F
V

  [HCO3
-]  

We also know that the carbonate concentration is
moderately less than the initial substrate concentration, so
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that  [HCO3
-] -< s0  and [[ ]]h

’ gives [HCO3
-] = [e1,

e6]s0. Thus:

d[CO2]D
dt

 =   [CO2]D kLa [0, e3  + e5 + e52 – 1] 

       +  [1 - e3e5 - e6, 1 - e1] 
F
V

  s0

which, using [[ ]]h, may be transformed into:

d[CO2]D
dt

 ≤ [CO2]D kLa  +  
F
V

  s0

It is also possible to reason about the rate of change of
the partial pressure of CO2, simplifying (23). We start by

combining (24), (25) and (39) to get:

Q =     –  
V
ρg

   TG  + 
V
ρg

  YCH4/x µx + QH2O
(52)

Using [[ ]]h
’ on the information that:

TG -< YCH4/x µx

we obtain YCH4/x mx  = [e7, e4] TG . This allows us to

write (52) as:

Q =  
V
ρg

   [e7 - 1, e4 - 1] TG  + QH2O

and this may be substituted into (23) to obtain:

 
dpCO2

dt
 =    – pT  

V
ρgVG

   TG  (53)

        – 
pCO2

VG [ QH2O
 + 


V

ρg
[e7 - 1

‘ 
e4 - 1]TG  

we know that pT is moderately larger than the partial

pressure of CO2 so that:

 pT >- pCO2

so  pT  = [e7, e4] pCO2
 and we have:

 
dpCO2

dt
 =  – 

pCO2

VG
 



V

ρg
 TG   + QH 2O  

which is considerably simpler than the original. So the
use of interval algebras has provided us with a
computationally easy means of simplifying quite complex
expressions by taking into account information about the
relative magnitude of variables in a way similar to that in
which a human being might.

6. FUTURE WORK

The work described in this paper provides a sound
theoretical basis for modelling order of magnitude
reasoning using interval algebras. The next stage of this
work is to implement a system that performs order of
magnitude reasoning in this way. The goal of this new
work is an interactive system that, given a set of
equations relating one set of variables to another, and a
number of order of magnitude relations between the
variables, can use the methods described in Section 4 to
establish relations between the magnitudes of previously
unrelated variables.

7. CONCLUSION

We have demonstrated that, despite its simplicity, interval
analysis, and the interval algebras that may be built using
the techniques of interval analysis, are subtle and powerful
enough to provide an underlying computational basis for
several different types of system of order of magnitude
reasoning. We can build a set of absolute intervals, defined
by means of intuitive landmark values, that fall into a
natural hierarchy of intervals of varying discrimination.
These can form the basis of a reasoning system whose
precision can be altered as desired. Such a system may be
used for simple order of magnitude computations of the
form 100 + 0.5 ±100 in the manner of that of Dubois and
Prade4, or as the basis for a scheme for reasoning about
variables and constants which is essentially an extension

of Raiman’s2 system that incorporates numerical
information. An alternative scheme can be constructed
across a ratio scale so that a given interval represents the
range of values of the ratio between two quantities. This
set of values can be used to reason about the relationship
between quantities, forming the underlying mechanism of
another type of order of magnitude reasoning. This allows
the modelling of the approach adopted by Mavrovouniotis
and Stephanopoulos3, as well as another means of
modelling Raiman’s treatment.

This approach to modelling order of magnitude
reasoning has been illustrated on a number of examples,
including the simplification of the steady state model of
an anaerobic fermentor. Here several complex expressions
were considerably simplified by eliminating negligible
terms in a way analogous to that in which human beings
perform the same task. There is, to my knowledge, no
alternative system which could perform this kind of
reasoning, making simplifications based on knowledge
such as “pT is quite a lot larger than pCO2

” that is based

on as simple an idea as interval arithmetic, and one that is
as easy to implement. Other approaches either require
more data, as conventional models do, or are based on
complex ssytems of symbolic manipulation2,3.
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